EXAM 4

> Math 103, Fall 2004, Clark Bray.
> You have 50 minutes.
> No notes, no books, no calculators.
> YOU MUST SHOW ALL WORK AND EXPLAIN ALL REASONING TO RECEIVE CREDIT

Good luck!

Name \qquad
ID number \qquad

1. \qquad (/40 points)
2. \qquad (/30 points)
"I have adhered to the Duke Community Standard in completing this examination."
3. \qquad (/15 points)

Signature: \qquad
4. \qquad (/15 points)

Total \qquad (/100 points)

1. In each of the following cases, use any techniques from this course to compute

$$
\int_{C} \vec{F} \cdot d \vec{r}
$$

(a) $\vec{F}=(y, x), C=$ the arc of the unit circle going counter-clockwise from $(1,0)$ to $(0,1)$.
(b) $\vec{F}=(x+y, y), C=$ the entire unit circle, oriented counter-clockwise.
(c) $\vec{F}=(x+y, y), C=$ the arc of the unit circle going counter-clockwise from $(1,0)$ to $(0,1)$.
(d) $\vec{F}=(2 x, z, y), \vec{r}=\left(t(t-1) e^{t^{2}} \cos t, t+t^{2}(t-1),(t-1) \sin t\right), t \in[0,1]$
2. In each of the following cases, use any techniques from this course to compute

$$
\iint_{S} \vec{F} \cdot \vec{n} d S
$$

(a) $\vec{F}=\nabla \times\left(x, 0, x^{2} y z^{3}\right), S=\left\{x^{2}+4 y^{2}+5 z^{2}=21, z \geq-1\right\}$, oriented such that the normal vector is $(0,0,1)$ at the point where z is greatest.
(b) $\vec{F}=(x+x y, y+y z, z+z x), S$ is the unit sphere.
(c) $\vec{F}=(0, y+1,0), S$ is the disk of radius 1 in the plane $y+z=0$ with center at $(0,0,0)$, and upward normal.
3. Let S be the part of the sphere $x^{2}+y^{2}+(z-4)^{2}=25$ that is above the $x y$-plane, oriented with the outward pointing normal from the sphere itself. Let $\vec{F}=\left(z e^{y^{2}}, x e^{z}, y\right)$. Determine the value of

$$
\iint_{S} \vec{F} \cdot \vec{n} d S
$$

4. Suppose that $\vec{F}(x, y, z)=(P(x, y), Q(x, y), 0)$, and that C is the closed curve parametrized by $\vec{r}(t)=\left(\cos ^{3}(t), \cos ^{3}(t), \sin ^{3}(t)\right), t \in[0,2 \pi]$. Show that

$$
\oint_{C} \vec{F} \cdot d \vec{r}=0
$$

