EXAM I

> Math 103, Fall 2004, Clark Bray.
> You have 50 minutes.
> No notes, no books, no calculators.
> YOU MUST SHOW ALL WORK AND EXPLAIN ALL REASONING TO RECEIVE CREDIT
> Good luck!

Name \qquad
ID number \qquad

1. \qquad (/40 points)
2. \qquad
"I have adhered to the Duke Community
3. \qquad
(/30 points)

Standard in completing this examination."

Signature: \qquad (/30 points)

1. Consider the following three vectors:

$$
\vec{u}=<3,4,12>\quad \vec{v}=<2,3,6>\quad \vec{w}=<3,6,6>
$$

(a) Find the magnitude of each of these vectors.
(b) Find the angle between \vec{u} and \vec{v}.
(c) Find the volume of the unique parallelepiped that is defined by \vec{u}, \vec{v}, and \vec{w}.
(d) Find the equation of the unique plane that passes through the points \vec{u}, \vec{v}, and \vec{w}.
2. Consider the curve parametrized by

$$
<t, t^{3}-t>\quad t \in[-2,2]
$$

(a) Show the process of rewriting the expression

$$
s=\int d s
$$

to arrive at an integral, in terms of t, that represents the length of this curve.
(b) Write down a single integral, in terms of t, that represents the area between this curve and the lines

$$
x=4 \quad y=-6 \quad y=6
$$

Make sure to explain how you know that your integral represents the desired area. (Note: In order to get a single integral, your "slices" of area will have to be horizontal!)
3. The Enterprise is damaged, and its position sensors are not working; however, the computer still has complete control over the amount of force the engines put out.
(a) Spock proposes firing the engines in order to realize a (time-dependent) acceleration vector of

$$
a(t)=<6 t, 6 t-24 t^{2}, 4>
$$

over the time interval $[0,10]$.
Assuming that the ship's initial position and velocity are the zero vectors, find an expression for the ship's position as a function of time.
(b) Following this path over the given time interval, will the ship cross the boundary of the Neutral Zone, with equation defined by

$$
-10 x-y+10 z=5000
$$

(Hint: What are the starting and ending values for $-10 x-y+10 z$ as the ship moves from $t=0$ to $t=10$?)
(c) At the time $t=1$, what are the normal and tangential components of the acceleration? What is the curvature of the path at that point?

