EXPOSE n® XVI

Robert L. BRYANT:

In this paper, we study the surfaces in hyperbolic space of constant mean
curvature l. These surfaces share many properties with minimal surfaces in Euclidean
space, the most important being that these surfaces possess a "Heierstrass represen—
tation" in terms of holomorphic data (Theorem A). We concentrate on the complete
surfaces of finite total curvature in H” and show thatr many of the "regulariry"
results of minimal syrface theory carry over to hyperbolic space, though the hyper-
bolic analogue of the Gauss mzp fails to have all of the good features of the

Euclidean Gauss map for minimal surfaces,

0. INTRODUCTION.

This paper grew out of the author's investigations into the theory of
second order partial differential equations on surfaces whose solutions could be
Tepresented in terms of holomorphic functions on Riemann surfaces. The most famous
example is, of course, Laplace's equation pu = Q , but classically other equations
were considered with this property, for example Liouville's equation Au = &% can
be solved in terms of holomorphic data. The famous example from geometry is the
minimal surface equation in E3 ; the holomorphic representation being, of course,
the famous "Weierstrass representation" (see[3]). It is natural to ask if the
minimal surface equation in spaces of ather constant sectional curvature admits a
"holomorphic resolution"” like the Weierstrass representation. This turns out not
to be the case. However, it turns out that in a space form of sectional curvature
¢, the surfaces with mean curvature satisfying H = +/Z¢ have a Weierstrass repre-
sentation. When € = 0 , this is just the Weierstrass representation of minimal
surfaces. When ¢ > 0 » there are no such surfaces. When c < 0 we are reduced by
dilation to the case ¢ = 1, i.e, hyperbolic Space.

In §1, we set up the baric geometry of hyperbolic space in terms of the
moving Frame. It furns out that the space of isometries of hyperbolic space,

PS¢ (2,C), has a natural complex structure and holomorphic metric and we show how

this is reflected in the structure equations.
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In §2, we study surface theory in hyperbolic space and introduce the
hyperbolic Gauss map. We show that, in analegy with the Euclidean case, the hyperbo-
lic Gauss map is conformal iff the surface is either totaly umbilic or has mean
curvature l. We then prove the Weierstrass representation result, Theorem A, that
the surfaces of mean curvature 1 in H3 are locally the projections from 53(2,T) of
holemorphic null curves where 52(2,L) is given its Cartan-Killing metric.

In §3, we examine the immersions f : Mz > H3 of mean curvature | which
are complete and of finite total curvature. Just as in the minimal surface case in
E3 , such MZ are conformally ceompact Riemann surfaces minus a finite number of
points, and the (2,0) part of the second fundamental from is a holomorphic quadra—
tic form on H2 which extends meromorphically to the punctured points. However, in
contrast to the case of Euclidean minimal surfaces, the Gauss map need not extend
meromorphically across the punctures and the total curvature need not be an imntegral
multiple of 4w . We present examples related to the Enneper surfaces and the
catenocids in Euclidean space to illustrate these differences. We conclude with a
criterion relating the depree of singularity of the (2,0) part of the second funda-
mental form with the meromorphicity of the Gauss map at the punctures. This allows

us to recover some of the results of Gary Kerbaugh's thesis.

It is a pleasure to thank Blaine Lawson for several interesting discus-
sions on this problem and Phillip Griffiths for his suggestions in the proof of

Proposition 4.

1. HYPERBOLIC SPACE.

In this paper, we shall be concerned with surface theory in hyperbolic
3-space, i.e., the unique complete, simply connected Riemannian 3-manifold of

constant sectionnal curvature ~1. We describe the standard Minkowski model as

follows : Let La denote‘]R4 endowed with linear coordinates xo, xl, x2, x3

)2

; an
P e

3 . . . .
Adx"# 0 ; and a time orientation gilven

inper product < , > given by the quadratic form —(x0)2 + (x1
an orientation for which dx° A dx] A dx2
by " >0 . We set

W= {ver | <v,v>=-1 and x°(v) > 0}

. 3 . .. . . 4
and give H™ the induced metric it inherits as a space-like hypersurface of L . We

. 3 . . . . L.
also give H™ the orientation for which M € TVH3 form an oriented basis iff

3
. . . 3.
{V'VI’VZ’VB} forms an oriented basis of Iﬁ . It is well-known that H™ is homeomor—
phic to a 3~ball and that the induced metric on H3 is complete with constant sec~
tional curvature -1. The linear transformations of La which preserve the quadratic

form and the two orientations form a group which is the identity component of the
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8roup S0(3,1). These linear transformations preserve H3

and restrict tgo H3 to form

the group of orientation Preserving isometries of H3 -The geodesics of H3 are formed

by the intersections of H3 with 2-planes in La which pass through the origin of
JA
L .

3,
The space H~ is not compact,

but can be compactified by adding on a two-
y the ideal boundary,

éxtend to econtinuoys (in fact,

Minkowski model,

sphere
in such a way that the rigid motions of H3
smooth) homeomorphisms of ﬁa = H3 U Sf
this ideal boundary Sj ma
Space of null lines ip 14

"at infinity"

In the

¥ be most conveniently viewed as the

is viewed as the space of lines on which the
Each geodesic in H3

and conversely each pair of distincr points in

, while H3
inner product isg negative, intersects Sj
Sf is joined by a unique geodesic
the reader should consult [6] or [s5].

For doing differentiai geometric caleculations we shall use
frames. Let F pe the (connected) six-manif
satisfy the three conditions

in two distinct points

in H”. For more details,

moving

4 .
old of bases (eo'el’EZ’EB) of T which

€, ANe Ae Ae, >0
o 1

2 3
o
X (eo) >0
-l if a,8 =0
<e s eB> =¢ 0 if a # 8

lifg=9g8 = 1,2, or 3

The space F is a smooth submanifold of I[Z!'x ]qu ]L4>< ]L!'

Regarding the pro-
jections on the factors e, F- lﬁ

as vector-valued functions on F .

we see that
{masla,B = 0,1,2,3} so that

there exist unique |-forms on F ,

(1.1} de

]
o
E

8
o B a

Using the imdex range | < i,j,k < 3, using the formulae for the inner products

P i i . :
above, and writing w for W, » we see that these equations can be writtep
i
de = e,y
0 i
i i
de, = g + e.uw;
(1.2) i o? 395
0 =ar s wl
i i

Moreover, differentiating these equations,

we get the remaining structyre equations
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dut = —m; A mJ
(1.3) i i k i i
dy. = —w, Aw., — W Aw .
J k ]
The map e, : F+ H is a smooth submersion. We clearly have eseysey € 'I‘e H3 and,
o

denoting the metric on H3 by ds2 , we have

(1.4) et(@s?) = < de_,de_ > = Wh? + WH2+ wH?.

Thus, we may regard F as the oriented orthonormal Erame bundle of H3 . Equations
(1.3}, (1.4) then show that ds2 has sectional curvature —| as claimed above.
Another map will be useful in our discussion. Let N3 < Lq denote the
positive null cone. Thus N3 = {v E Iﬁ'|<v,v> = 0 and xo(v) > 0}. The map egtey :
F + N~ is a smooth submersion. We let daz denote the induced "metric“onN3.We have
d(e_rey) - (eo+23)m3 + el(wlﬂa;) + ez(mz +m§)
(1.5)

(e0+e3)*(du2) =< d(eo+e3),d(eb+e3) > = (mlfm;)z + (m2+m§)2

. - 2
Let [eo+e3] denote the line spanned by e _te, . Then [eo+e3] : F+ 5 . We have

exhibited Si as the quotient N3/R+ . The "metric" ddz is only well-defined up

to & facter on 5_ . Thus Si inherits a natural conformal structure as a quotient

of N3 . We fix the orientation of Si so that a positive 2-form on S: pulls back
under N~ + 5 te a positive multiple of (m2+m§) A (ml+m;). We leave the verification
that this is well defined to the reader.

There is another way of describing H3, F, N3 and Si which will be quite

useful in our calculations. We identify Eﬁ with the space of 2 x 2 Hermitian sym—

metric matrices by identifying (xo,xl,xz,x3) with the matrix
L2
¥ +x x + 1x
a.6) ( | 2 o 3 ) -
x - ix X - x

The complex Lie group, $4(2,E) of 2x2 complex matrices with determinant |, acts

4 .
naturally on I.° by the representation

(1.7 g.v =g v g¥

A . . t—
where we regard v as a 2 % 2 Hermitian symmetric matrix as above and g* = g .
Under this identification,we clearly have < v,v > = —det{v). Thus 52(2,E) preserves

324



SURFACES OF MEAN CURVATURE ONE IN HYPERBOLIC SPACE

<, > and, since Sg(2,L) is connected, it must also preserve the two orientations.

The kernel of this representation is {iIz] < 52(2,r), so PSL(2,L) = Sz (2,0) ﬁtlz}
as the identity component of 50(3,1). We now
recognize H™ as the space of unimodular positive definite Hermitian 2 x 2 matrices.

We can use 5¢(2,%) to parametrize F as follows : Set

(l 0 (0 1) (o i) (1 0)
(]-8) e = s = y 8 = , & =
~ o l) m TPV N iol 73 oo

d =g.e = *
and let ea(g) g-e =g e 8

is seen to act faithfully on 14

- Then the map g v (ea(g)) is a 2~1 map of Si(2,L)

onto F . The cancnical forms ml, m; pull back under this map te be left-invariant

l-forms.In Fact, one easily verifies that we have the equation on $¢(2,T)

- | m3+imf (ml—m;) + i(m24m§)

(1.9 & dg=3 11 2 2 3.2
(v +o ) =1 (w +wl) —(w +iw?)
3 3 ]

This equation will he important when we compare features of the complex geometry
. . . 3
of 32(2,C) with features of the Riemannian geometry of H

3 - .
The space N~ becomes the space of positive semi

~definite 2 x 2 Hermitian
miatrices of determinant O .

. . : t-—-
Such a matrix can always be written in the form a a

t | S . : . :
where "a = (a ,a”) is a non-zero vector in EZ uniquely defined "up to phase", i.e.

up to multiplication by et? . The map ata w [al,az] € EPI represents the map
N~ Si and identifies Si with EPI

In this way, the map [eo(g) + 33(8)]
$2¢2,8) + cp!

is seen to be holomorphic. Indeed,

the natural action of 52(2,C) on
Si becomes simply the action of S2(2,T) on EPl

by linear fracrional transformations.

IT. SURFACE THEORY IN HYPERBOLIC SPACE AND THE CASE H = 1,

Throughout this section, M2 will denote a connected, smooth oriented

surface. £ : M » H3 will denote a smooth immersion. Weaker dif

ferentiability hypo-
theses would do,

but for simplicity we stay in the smooth category.

We let Ff(l) € M x F denote the first order frame bundle of £ . Thus

. a ., _ - : _
(m'eo'eI’EZ'EB) € FE if e = f(m) and e Ae, = f*(TmM) as oriented Z-planes. By

. . . 1. ‘s . :
projection on the first factor, FE )ls identified as the circle bundle of oriented

orthonormal frames for the induced metric ds% = f*(dsz) = <df,df > on M . We

restrict all forms and maps to FEI). It follows that e € Tf(m)H3 is the oriented

unit normal to f*(TmM) and hence, we may regard e

3 as well-defined as a map
e, : M- I,
> 3 (1

We have e..df = w” = 0 on Ff

3 , SO dsi = (wl)2 + (mz)2 , and the area
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. . . 3 1 3 2 .
form induced on M is dAf = m]A mz > 0 . Since dw3 = w] AW T wyAw T o, it

follows that there exist smooth fumctions h. . = h'i (i,j = 1,2) on Fél) so that
i

j
"’? LTLIP !
(2.1) -
3 2
wy Moy hyp [ e
1 2

. A 2 . .
One easily verifies that II = h“(ml)2 + Zhlzm o’ + hzz(w )2 is a well-defined

smooth quadratic form on Mz , just as in Euclidean surface theory. The condition

Il = 0 is, of course, the condition that f(Mz)lies in a totally geodesic H2 c H3.
It is convenient to regard M2 as a Riemann surface where we use the

complex structure on Mz which is compatible with the given orientation and the

conformal structure determined by d52 . That this uniquely determines a complex

3
structure on M2 is well known, see [ 5] . We set w = ml + im2 and note that
2 — i — .
dsf =w ° w, dAf = (%) w A w and that dy = —1wT A w . Moreover
2 _ 2 3 1 2 _ 2 1 2
(2.2) dml = Twg A w) w Aw = {1+ h12 hllh22)m Aw .

It follows that {(-K) =1 + hfz - h“h22 where K 1is the Gauss curvature

of dsi . The mean curvature, H, is defined by H = %(hll+h22).

We will now consider an analogue of the Euclidean Gauss map for surfaces
in E3 . It is easy to see that, at each e = f{m), the oriented gecdesic in H3
passing through e with tangent vector 33(m) (in other words, the oriented normal
geodesic) meets the ideal boundary in the points [eotea] € Si . Since the geodesic
is oriented, we may speak of [Eo_eJJ as the initial point and [eo+231 as the final
point without fear of ambiguity. In particular, we have a well-defined map
[eo+e3] M +—SE , roughly analogous to the Euclidean Gauss map. Recall ([Ossermann])
that for M = E~ , the Gauss map is conformal iff Mz is either totally umbilic or

minimal. We have the following amalogue in hyperbolic space.

PROPOSITION 1. The map [eo+e3]:M > Si is conformal iff the immersion F is either

totally umbilic {in which case [e0+33] reverses orientation) or f satisfies H = |

(in which case [eo+33] preserves ovrientation).

Proof : The map [e°+e3] is conformal iff dai = < d(eo+33), d(e°+e3) > is a multiple

2
of dsE . We compute
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2.2

2 1 1,2 2
daf = {w +m3) + {w +m3)

1 2.2 I 2.2
((l—hll)m —hlzw )T+ (_h12m + (I—hzz)w )

2 2 1,2 L. 2 2.2
(2(H —H)—K)dsf + (H—l)((hll—hzzj(m PR 4h]2m Ou™ - (hll_hZZ)(m 7).

2, _ 2 . s .
It follows that dof 15 a multiple of dsf iff (H—l)(hIl h22) = (H l)h12 0.

If H = 1, then du? = (—K)dsg . Thus -K > o . Moreover,
1
Whd) A () = (a4, > 0
3 3 f
2 2, . . . .
so [e0+e3} S S_ 1is either orientation Preserving or a constant map.

If H# I, then let U = {m & M[H(m) # 1}

-The set U is open anmd £{U0) is
clearly tvotally umbilic. Let

V be a connected component of U . Then, H must be
constant on V by a standard argument ,and hence, constant on V
tinuous on M . Thus H £ 1 on V and so V'E u

of U it follows that V = v

since H is cop~
- Since V was a2 connected component
» S0 by the connectedness of M s V=M. Thus £ is

totally umbilic. We compute

(m2+m§) A (m1+m;) = —(H—l)zwl A m2 <0

S50 [eo+e3] reverses orientation. m

Remark : The case where H = 1| and f 1is totally umbilic is easily seen to be the

case where f(M) c H3 is an open subset of a horosphere in H3.

In this case, the
value of [eo+e3] is simply the point of tangency of the horosphere with the ideal
boundary Si .

. .- . 3
As another instance of the analogy between minimal surfaces in E

and
. 3
surfaces of mean curvature 1 in H

» We recall that, :'Lf'M2 < E3 is a smooth
is the induced metric
this metric, then (—K)ds2

minimal surface, ds2 » and K< 0 is the Gauss curvature of
is the pull-back via the Gauss map of the metric of Gausg

curvature 1 op SZ. Hence (—K)ds2 has Gauss curvature +] when K # 0. Conversely, if

2. . . .
ds” is a metric on Mz with (—l{)ds2 4 metrie of Gauss curvature +1,

then there exists
. P . . 3
(locally) 4n 1sometric immersion of MZ into E

as a minimal surface (in fact, there

is a l-parameter family of such immersions). 3

Now, consider the case of f : Mz +H
with H = 1. If we set n =

(wl+m;) - i(m2+w§), then we have

n = ((l-h]l) + ihlz)m

#
i3
i
g
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i/ A m = KL/ D A @)

The structure equations give

. 2
dy = “lyy AW
.2
dn = 1w/ A n
2 . — . —
duj = (K} (i/2)u A w = (1/2)n A n
It follows immediately that dui = pan = Koaw = (—K)ds% has Gauss curvature +1.
Conversely, by avplying the Frobenius theorem, see [ 3] , one can prove that

- 2, . 2
if ds” is a metric omn M2 so that (—K)ds2 has Gauss curvature +l, then M can be

locally isometrically immersed into H3 with H = I,

P . : : . 3 . fs
It 1§ interesting to note that, whereas dilation in E~ carries minimal
s . . 2 . . P :
surfaces to minimal surfaces, implying that ds” satisfies our integrability condi-
. : 2 .
tion iff c"ds” does where ¢ # 0 is a constant, there does not seem to be any

. : . 3 :
corresponding motlen in H” preserving the surfaces of mean curvature 1.

We conclude this section by proving an analogue for surfaces satisfying
H =1 in H of the Weierstrass formula for minimal surfaces in E3 .Recall that
52(2,C) is a complex Lie group and that g_ldg is a holomorphic 82(2,C)—valued l-form
on S£(2,C). The Cartan-Killing metric on §2(2,E) is given by the holomorphic qua-
dratic form

(2.3) ¢ = -4 det(g 'dg).

2, . . . .
If ¥ is a Riemann surface, a holomorphic map F : M2 + S¢{2,C) 1is said to be null
iE F¥(¢) = 0 .

THEOREM A : Let Mz be a Riemann surface and let F : Mz + 52(2,8) be a null iomersicno.
2 3, . . . .
Then eDnF = f:M -+ H is a smooth conformal immersion with H = 1. Conversely, if

: . 2 . . : . :
M~ is simply connected and f:M -+ H3 1s an immersion with H = 1, then there exists

2 . . . . .
an F:M~ + S4(2,E) which is holomorphic with respect to the induced complex structure

2 ;
on M and so that f = eonF . Moreover, F is unique up to right multiplication by a
constant g € SU(2) = §2(2,0).

Remarks : Note that this theorem is a close analogue of the Weierstrass theorem :

. 3
In the standard Weierstrass theorem, we replace H3 by E3 » 52(2,C) by €

3 3
eD:SL(Z,E) + H by Re :E3 -+ E3 s ¢ by the natural complex inner product om &~ ,

»
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and of course g

lbyH=o0 . Theorem 4 then holds verbatim For minimal surfaces
in E

In the second Part of the theorem, if we do not assume M o pe simply
connected, then we sril] get a holomorphic map F:ﬁ2 + 82(2,C) where ﬁz is the sim-
Ply comnected cover of M2 and we get a Tepresentation y "l(M’mo) + SU(2) in the

obvious way,

Proof of Theorem A : To simplify our calculations, we will use the notatiop
——— Yo ‘heorem A

@ = w o+ jp oand g = m? - img - Assume that T MZ + SE(2,0) is a holomerphic

null immersion of 2 Riemann syrface M . Then we have, by (1.9)

F*(m3+iwf) = 2a

(2.4) FE(u-1) = 2

F* (w+7) 2y

where o , g s and y are holomorphic I-forms on Mz. Since F ig null, we have

FE(3) = 4@ + ay) = o

and

+
2]

F*(m3)
F¥*(w)

oo
w| R

+
-

Now let f =~ eooF » then we have

£4@s?) = P(Wh)? 4ye 3y < @+ D+ @ey) ey
T (T + (Zden +8eB + o) + @2 4 BTy

= dnoa  + Bafl + Yo?

Since F ig an immersion, this last expression ig pesitive definite. Since it
clearly determines the same conformal Structure as the given Complex structure, ir
follows that f M2 + H is a conformal immersion with induced metric dsé = f*(dsz).
We will now show that for this immersion y = l by computing H in a first order
adapted frame. Let [ M bea simply connected open set on which there exists a
smooth [-form ¢ of type (1,0) so that dsg = ¢n$' on U . Clearly M ig covered
by such open sets. Restricting to U, we see that there exist functions 4, B, Con
U satisfying

F*(m3+iu,|2) = 244
(2.5) F¥(y - n) = 284

FRw + 1) = 204
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(2.6) A+ BC=0, 28R+ BB+CC=1.

By elementary algebra (and the simple connectivity of U), we see that there exist

smooth functions p,q on U (unique up to replacement by {-p,—q)) so that

= pa
2
=P
2
= -1

g = 1.

Sl o oW b
]

D

+
-]

Note that because A¢ , B¢ , and Cp are holomorphic on U , it follows that p/q is
meromorphic on U (unless q = 0). In particular, the l-form pdq - qdp must be of

type (1,0) since we have the representations

2
p d{q/p) where p # O
pdq-qdp={ 5
-q d{p/q) where q¢ # 0 .

Let h : U + SU(2) be defined by

-

Then eou(Fh) = eouF since h has values in SU{2). Moreover, we compute

¢y e = v lamn + b ldh

2
-1 pq =-q -1
=h 9 ¢h +h dh
P -Pq
qdp + pdp pdq - qadp ~ ¢
qdp - pdgq pdp + qdq
0 m3 + iy w + T
= E(Fh)* 2
w - - (w +im1)
it follows that {Fh)*{w)} = - ¢

(FR)*@w) = 0 -
Thus Fh : U + Sg(2,E) is an oriented adapted {rame field on U for the immersion

f = eonF = eo(Fh). Moreover, since

(Fh)*(r) = w ~ 2(qdp ~ pdq)
and since qdp - pdq has type (1,0) it follows that the mean curvature of the immer—
sion f 1is identically 1 as promised.

. L. 2. .
To establish the converse propositioun, we suppose that M~ 1is simply
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2 . . . . -
connected and we let £ : M~ » H3 be an immersion with H 3 1. By simple connectivity,

there exists a (1,0) form ¢ globally defined on M2 for which ds2 =

£ = $od . We may
therefore choose a lifting g : Mz + 58(2,0) for which the associated frame field

{eo(g)} is adapted with 4 = ~¢ . Thus, we have
3 . L= . —
-1 1 o+ 1mf w+ T 1 1p -2¢ - n
g dg = —g* ==
2 — . 2 .
w -7 'M'ﬂwﬂ n -ip

where by the hypothesis, p is a real form and n is of type (1,0) (since the mean
curvature of f

is = 1). Consider the 5U(2)-valued |-form on M
1 ip -n
L .
n ~ip
It is easy to see that u satisfies duy = —pa p (since both n and ¢ are of type (1,0)).
It follows by the Frobenius theorem that there exists a smooth map h : Mz -+ SU(2)

. . -1 .
(unique up to left translation by a2 constant} so that B =h 'dh . Let us write

T -p
h = _
p q
for smooth functions p and q on Mz

. Then, if we set F = gh_l y we easily com-
pute

Tt follows that, since dF is of type (1,0) we must have that F - MZ + 82(2,E) is

holomorphic. Clearly ,F is a null immersion and satisfies

-1
eooF = eou(gh ) = e %8 = £

Now we show uniqueness up to constants as follows : if FI’FZ : MZ + 52(2,0) are
two holomorphic 1liftings of £ , Wwe must have
Fl = th
2 - . -
M" = SU(2) is a holomorphic map of M2 into S£(2,C).
totally real submanifold of 52(2,8) and hence

where h : However, SU(2) is a

h must be constant. =

I1I. FINITE TOTAL CURVATURE.

In the theory of minimal immersions £ : Mz -+ E3 » the complete surfaces

of finite total curvature play an important role.

2

The main results, due to Osserman,
are as follows. If f : M » E3

is a minimal immersion for which the induced metric
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is complete and of Finite total curvature, then there exists a unique compact
Riemann surface ﬁa and a finite set of peints E ¢ ﬁz so that Mz = Ez - E as
Riemann surfaces. The (1,0).part of df, namely 3f , is holomorphic on Mz and
extends meromorphically to ﬁz. Finally, the Gauss map Y ¢ M2 + S2 is holomorphic
and extends to a holomorphic mapping ?} : ﬁ2+ S2 whose degree is the total curva-
ture divided by —4w. These results go a long way toward describing the complete
minimal surfaces of finite total curvature in purely algebraic terms, via Riemann
surface theory.

In this section, we pursue the analogy between H = 0 in E3 and H = 1| in
H3 by studying the immersiomns f : M2 + H3 satisfying the conditions H = 1 , dsi is
complete, and ds% has finite total curvature. These assumptions on f will hold
throughout this sectiom. We continue to denote the first order adapted frame bundle

1 , . .
by Fé ) and we assume all forms and functions are restricted to 1it.

PROPOSITION 2 : The quadratic form O = (1 - h]l + ih12) (r.u)2 is a well=defined

holomorphic quadratic form on M .

Proof : If we set n = (m1 +m;) - i_(m2 +m§), then the structure equations read

. . 2
dw —1mf AW dn = iw) An

+ ih. dw

n 1 2

(1 - h1

It immediately follows that §
(2,0). =

now 1is well-defined, holomorphic, and of type

If @ = 0, then it follows that n = 0 so ddi = nen £ 0 , so the mapping
2 . PR P s
E: M -+ H3 is totally umbilic. We have already seen that this implies that E(MZ)
is a horosphere in 1-13 . We set this case aside nmow and assume henceforth that

0 #£0.Let B be the zero divisor of { . Thus, as a formal sum

E=L v (@).p=20
per P
where UP(Q) ie the order of vanishing of @ at p&M ., We let ]B| denote the support
of B, i.e., the set of p € M for which uP(Q) > 0 . Then |B| is a discrete set in
M since Q £ 0.

PROPOSITION 3 . The quadratic form da% is a pseudo-metric on M of constant Gauss

curvature +|
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Proof : Let p € M be fixed and let z : U+ L be a local holomorphic coordinate with

PE U and z(p) = O . Then we may write

)]

v 2
2y = ) P hiz)(dz)

where hfz) is holomorphic and h(0) # 0 . We have ds? = eZAdZud; for some smooth
A on U . It follows from v

Q-q = (nenYo (wew) = dugﬂdsé

that

do? = 13|2vp(Q)Ih(z)lzeHZAdanE ;
fIU

2., . . .
Thus de 1s indeed a pseudometric on M in tha usual sense. Moreover, the structure

. . . — — 2
equations dn = waAn , dm? = (i/2)n An show that nen = dof has constant Gauss
curvature +]1 ., =

We now need some elementary facts about pseudo-metrics of curvature +| .

First, if we regard GPI as T U {=} and let [ : EE] —{®}+ € be the standard mero-

. . : 1
morphic coordinate,then the standard metric of Gauss curvature +] on P
written in the form

can be

4 dredr
e
(1+zz)

. . . . 2. .
Second, if D is a simply connected Riemann surface and do” is a pseudo-metric on

D of counstant Gauss curvature +] , then there exists a meromorphic function £ on

D so that, as a holomorphic map £ : D » Pl satisfies &£*(u) = duz , L.e.

2 _ 4 deodg

dg
i+ £6)2

(This second fact follows from the Frobenius Theorem.) Moreover, £ is unique up to

rotations of PI - Thus, if ' : D + Pl also satisfies E'*(y) = doz , then

where a,b are complex constants satisfying aa + bb = I . Third, we will need the

following identity. If z : D + C is a holomorphic coordinate imbedding D in €

{we are assuming D # Sz), then we have
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2 __ aet@]|?
(1 + £@EED)

do dzodz = eZAdzod;

where the smooth functionm A satisfies the identity

a5 _ (gz)z 260 (2)E (=) - 3 (2
a2t %7 45" (2))2

I

1
5 SZ(E)

where SZ(E) is, by definition, the Schwarzian derivative of f with respect to z .
Finally, we shall need the following extension of the above results to the case of

non-simply connected domains.

PROPOSITION 4. Let duz be a pseudo—metric of Gauss curvature +[ on the punctured

disk a* = {w € £|0 < |wf < 1}. Suppose moreover that the do® - area of A is finite.

Then there exists a local holomorphic coordinate z on & = {w € &|]w]| < e} for

some g > 0 with z(0) = O,and a real number B > -1 se that, on ﬂs , we have

2, —B
dUzlﬂ = &-(jill—é% dZod_Z_
3 (l+(zz) )
Moreover, B is unique,and =z 1is unique up to replacement by Az where |l|= 1

Proof : Let L = {y € C|Re(y) < 0}. Then exp : L » A* given by exp(y) = e =w is
a universal covering map of A* . Let dgz = exp*(doz). Then d;z is a pseudometric on
L of constant Gauss curvature +l . Moreover, dgz is invariant under the deck trans-
formation y + y + 2ni . Since L 1is simply connected, it follows that there exists
a meromorphic £ : L + EJ so that E¥(p) = d?z . The invariance of d?z implies that

there exists a point (a,b) € E2 with aa + bb = 1 so that f satisfies

ag(y) -
be(y) +

E(y + 2wi) =

CRR|

: . 1 . . . ..
Since each element of the rotation group of P is conjugate to a rotation fixing
. : . . 1
0 and = , we see that, by composing £ with a suitable rotation of P, we may
assume that £ actually satisfies

2ria

E(y + 2mi) = e £(y)

where o« 1s some real number, O < a < |. It follows that there is a well-defined

meromorphic function {w) on A¥* so that ¢(ey) = e_uyg(y) for all y € L. . It follows
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that, on A* , we have the formula

do? = 440%) o d @)
(O + G2
_ w2 g i
(1 " rw(!]plz)z

where the last expression shows that the middle expression is well defined even
though wa¢(w) is a multivalued meromorphic function onm 4%, We are going to use
the hypothesis that g* has finite dcz—area to show that ¢ is meromorphic at
w=0, i.e.,that ¢ does not have an essential singularity at w = 0 . Let us

. . . -0 -
assume this for the moment. Then,there exists an lnteger n so that w P(w) is a

non-vanishing holomorphic function on a neishborhood, say Up = {w € E||w| < p} of
¢ . Then,on Up there exists a holomorphic funcrion g{w) so that Plw) = wneg(w)
for w € Up - There are now three cases

R - +

(1) a+n » 0 . In this case, we set § = a+tn - | and z = weg/(B D . Then we

easily compute that

2. —B
dGZ _ &(B+l) iz;ll 5 dzedz ;
p (1 + (zz) )
(ii) a+n <0 . In this case, we set 8 = —(a+n+l) and z = we_g/(8+l) and again
the above formula holds;
(iii) ota = 0, Since n is an integer and 0 < ¢ < | » it follows that

@=n=0. Thus y = e® and d02 = 4dw=d$7(l+w$)2 where ¢ is holomorphic and nom—
vanishing on Up * By a rotation of P we may replace ¢ by ¢ where ¢(0) = 0 . Tt
follows that there exists a unique integer 8 > O so that ¢ can be written in the
g+l

form ¢ = 2z for some local holomorphic coordinate z on a {(possibly smaller)

neighborhood of 0 € Up - We then have

2 _ 4dgedy  _ 4(p+1)2(a7)B
da” = -2 — B+l 3
(T+¢d) (1+(zz) )

The stated uniqueness of B and z now follows easily.

dZod; -

It remains to show rhat the finiteness of the integral

2i d(wp) ad(wy)

A=
A* (l + Iwawrz)Z

implies that ¥ has, at worst, a pole at w = 0 . If ¢ were known to be rational, say

a = pfq with P»q € Z, q # 0, then G4 < = would be the area covered by the map
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h(x) = xp¢(xq) h : A% P] (counting multiplticities). If h had an essential sin-
gularity we would then have a contradiction since by Picard's theorem, h would
‘cover any point of Pl infinitely often with at most 2 exceptions. Since h has
no essential singularity, it follows that ¢ does not. Unfortunately, this simple

argument does not gemeralize to the case of irrationmal a's .

Our arpument is based on a Nevanlinna-type inequality. Qur basic reference
is [1 §1b] and we will use their notation. Thus, our Finiteness conditiom

is

2
[, da%log(l + Wy |7 < =
A

where {{w) 1is meromorphic in the deleted disk o* = {wlO <w < l}, and o is some
real number. By dilating, we may actually assume that ¢(w) is meromorphic en the
disk {w]0 < fw| <1 + €] for some £>0 and that ¢ has no poles or zeroes on [w| = L.
Then,we may apply Corollary (1.5) of [1, § 1b] to h(w) =1 + IWa¢(W)|2

and conclude that N(D,r} < C] log r + C' and hence that {{w) has only a finite

number of poles in a*¥ . 1t follows that by dilating and restricting to a* , Wwe may

assume that ¢{w) has no poles in ¥ and is smooth on rhe boundary |w1 = I.
- L . B
Let A = {z E A lz is not negative and real} . For every B € K, we let
zB denote the unique branch well-defined on 4 so that lB = 1. Then,

2 - . . - .
tl{y) = ¥ a¢(y2) : A +C is well-defined and helomorphic on A . Now,he integrand
4mdd” log (1 + lwaw(w)lz) is the pull back via wu¢(w) : o +L of the spherical area

1 . . .
form on P > € . Since y » y  is a double cover of a* , it follows that

[ 4ndd® lag() +|g|?) < =

i}
Thus the area of the spherical image £(a ) — Pl , counting multiplicities, is
finite. Tt follows that there is a set K< & of positive measure so that r(y) =k
has only a finite number of solutioms for all k € K . By shrinking A* and dilating

if necessary, we may assume that Z(y) ¢ K for ally € A . Form> 0 , set
B = 1{z¢€ .r3_|2_m_2 < jzf <« 3.27"2 and -3/6 7 < arg z < 3/4 u}.

Consider the functions cm(y) = ;(Z-Ey) for v € BD . This sequence [;m(y)} does
not assume values in K for any y € Bo . It Follows by a theorem of Montel [2 ’
‘vol.II, p -248, Thm.15.2.8] that the sequence (cm(y)} constitutes a normal family.

Hence ,Chere exists a subsequence ‘[g (y)} so that either {z_ (y)}! converges

uniformly on compact sets to a holomorphic function or else converges uniformly in
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the spherical sense to o € P!

1
E s
Re(z) > 0 . It follows that there exists an M < = so that |;mk(y)[ <M for IyF%

If the limit function is holomerphic, it is bounded on the arc |zf =

Re(y) >0, and all k> O . Let a = g be an integer. Then we have

_I:I]ka 2 =, . = o bl
R R IR I R T S N

for all k> 0 and y = 1 » Re {(y) > 0 . It follows that the holeomorphic function

wa¢(w) is uniformly boﬁnded by a constant M on a sequence of concentric cirecles
in A" whose radii go to zero. It follows by the maximum modulus principle that
]wa¢(w)| is bounded on a neighborhood of zero and hence by the removable singu-
larities theorem waw has a holomorphic extension to w =0 .

If the limit function of the sequence |;kay)| is ® , then we apply the
above reasoning to {1/1;m (¥)} and conclude that w—alp(w)_l is holomorphic at zero.

Thus,in either case v(w) has at worst a poele at w =0 . m

Remarks : The Nevanlinna part of the above argument was suggested to the author by

Phillip Griffiths. The normal families part was modeled on a similar proof by

[ 2, wol. 1I, pg-258, Thm.15.4.2). The source of the complication in the proof
is, of course, the branching term w* . Note that Proposition 4 would definitely be
false without the hypothesis of finite daz—area. Also, note that dcz extends to be
a pseudo-metric on a neighborhood of O € 4 iff B is an integer. For further proper—
ties of pseudo-metrics, the reader is referred to the paper by Cowen and Griffiths
cited abave.

We now turn to the study of F : H® o H2 satisfying our hypotheses. Since
dsi is complete with nog—positive Gauss cutvature, the finiteness ig the total
curvature implies that M~ ig conformally a compact Riemann surface M~ winus a finite
number of points E c ﬁz + Henceforth we will simply identify Mz with ﬁz - E . The
above is a theorem of Huber and a proof may be found in [ 3) , The set E cannot
be empty : it is easy to see that, if v € H3 is fixed, then every point p €M for
which <v,f(p)> is a local minimum of <f,v> : M+ R satisfies |H(p)| >! where

H(p) is the mean curvature of f at P -

PROPOSITION 5 : The support of the divisor B is finite in M and Q extends to

M as a meromorphic quadratic differential.

Proof : The support of B is discrete in M so it suffices to show that [Bj cannot

2 . .
accumulate at any e € E , However, dcf 1s a pseudo-metric en M of constant Gauss
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. 2, .
curvature +I and finite total area since the area form of ddf is (=K} times the
2 . . .
area form of dsf . By Propositioun 4, it follows that, if e € E then there exists a
local holomorphic coordinate z : U + ¢ on U c M where e € U , z(e) = 0 and a real

number g = R(e) so that

2 _ a1y’ zmf

(e P2

da dzodz .
In particular, dc% does not vanish on a deleted neighborhood of e in U . Since
dui vanishes on |Bj , it follows that |B| N U =@ . Thus B is finite. Now, there

also exists a function h(z) holomorphic on z(U - {e}) = € - {0} so that

] = h(z) (d2)2
U-{e}
. . . . — 2 2
gince { is holomorphic on M . Since Qo Q = dufodsf , We see that
— B+1. 2 2
a5 - U e5) ) lhéz)l dzadz
U-{e} 4(B+1} " (zz)
|
If b2 B is an integer, it follows that
2
d32| < c[hE)) g4
f v zb

for some comstant ¢ > O and some deleted neighborhood V of e in U .

Since ds? is complete at the end e , it follows that the flat metric
|h(2)/zb|2danE is also complete. By a lemma of Osserman [4 ,Lemma.9.6] ,
it follows that h(z)zub has a pole of finite order at z = 0 . Thus h(z) is meromor—

phic at z = 0 , so § is meromorphic at e . Since e € E was arbitrary, this esta-

blishes our claim. =

It follows that we may now define vP(Q) for all p€ M .By Riemamn's
relation, we have

(M) = -

| —

I v (@ =- %— deg B
pemM P

where B is the divisor of 0 as 2 meromorphic form on M .
COROLLARY : For all e € E, Rg{e) = “e(Q) + 1

Proof : Near the end e , the metrics dsi and |h(Z)Z_B|2dZod; are obviously equi-
valent in that one is complete iff the other is. But the completeness of

|h(z)z_B|2dzodz is clearly equivalent to the condition ve(Q) - Ble) =-1 .=
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Remark : Proposition 5 is quite analogous to a similar result in the theory of mini-
mal surfaces f : M2 + E3 which are complete and of finite total curvature : in that
case, the Gauss map Ye Mz - 52 is holomorphic and extends uniquely to a holomor—
phic mapping Yg ! ﬁz » 8§ (we use the opposite orientation on 52 from the standard
one since, in the standard orfentation, the Gauss map of a minimal surface is anti-
holomorphic), see [ 4]. Moreover, the -analogue of d 'E namely —-K dsf , 1s
Y;(u) where p is the ;tandard metric of Gauss curvature +1- on S2 < E3 - Thus, in
the Euclidean case daf extends to be a pseudo-metric on all of M and has the
normal form above at each e € E with g(e) an integer. Moreover, the analogue of
Q is the {2,0)-part of the second fundamental form Hf of £ : MZ + E3 . The fact
that @ in the Euelidean cage extends meromorphically to ﬁz follows from Lemma 9.6
i; [ 4] coupled with the equation Qgﬁ = dsi,do? and the assumed completeness of
dsf .

We are now going to examine some of the differences between the two
theories by computing some examples., The following formulae will be useful. Suppose
that ™ is a Riemann surface and that F : Mz + 52{(2,€) is a holomorphic null immer-

sion. Referring to the proof of Theorem A , we see that we may write

PR
F=F ] » FIF, ~ FF, = 1
3 4
2
—1 Pq -q _ —
F dF = $ PP taqq=1
P -rq

q -p
h = -
P q
where the Fi are holomorphic functions on M » & is of type (1,0) on U € M and p,q

are smooth functions on U with P/q meromorphic. The mapping Fh : U » Seg(2,E) is

an adapted framing on U so we can compute

(1]
+

1]
I

_ el =T q — =t =
o 3 Fh(_go+g3) h F~2F(P) (@p) F

Thus, using our identification of Si with EP2 s we see that

_ 1
[eo+e3] = [qu + sz, F3q + F3p] [

= [dFl, dF3]

339




R. L. BRYANT

Moreover, we have

ds§ = ¢=$
do2 = 4(pdq - qdp)e(3dq - Tdp)
Q = 2{(pdq - qdp)=¢

Note, in particular, that, because of the relation pp + qq = 1 , we have

do? = fui(l:qu)ncl(_péqgl
(1 + {p/q]5

Thus ,the total curvature of ds% on the open set U 1is just the area (counted with
P e e . . . . 1
multiplicities) of the spherical image of the meromorphic map p/q : U » P

Example 1 (Enneper's Cousin) : Let M =€ and let 3} # 0 be a complex number. We
define F : € + S2(2,L) by

cosh Az - Xz sinh Az X sinhjz
F(z) = .
A_lsinh Xz - z cosh Az cosh Az
We compute
z -1
F]dF=—A2(2 )dz,
z. -z
so F is a holomorphic null immersion. In this case, we may choose ¢ globally on
C to be ¢ = - Az(l + 2z)dz and subsequently compute that for f = th ,
dsi = 02 O+ 22)%dzedz
do? = & dzodz/(1 + 27)°
9 = 22%(de)?

[e°+e3](z) = [X cosh Az, sinh Az] € EPI

Clearly dsi is complete on € . In fact, the alert reader will recognize this as
the metric induced on € by immersing it minimally in E3 as Enneper's surface

(see H3])- Hote that dci is just the standard metric on Pl restricted to

T =T -{w}. Thus, the total curvature is —47 . It is not difficult to see that
two values of A give rise to equivalent immersions f iff they have the same

modulus. Thus, we may as well take A to be real and positive.

In contrast to the Euclidean case, note that the hyperbolic Gauss map,

2 . .
[eo+e3] : €+ 5 does not extend across z = w . In fact, this map omits exactly
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two values ([A, +1]) and covers the remainder of Sf infinitely many times. Writing

¢ and s for cosh Az and sinh Az » we easily compute

_ _ ] As - :
E(z) = (1 + zz)(cc + s8) [——— (is,c) + M(z)J

(c_c- + sg) c

where the matrix M{z) consists of rerms of the order of lz[_l

and smaller. If we
2
regard S_  as the closure of H3

as the hyperbolic ball, this formula implies that

for |z] >>0 , f(z) is close to [A sinh Az , cosh 1z] in Qf

closure of E{C) in H3 1] Sf contains all of Si . Thus, the

of £(L) is the entire 82

. It follows that the
"asymptotic boundary"

- This formula also implies that f is not an imbedding.

Example 2 (Catenoid Cousins) : Ler M = €* and let ¥ be a real number satisfying

1 .
T, # 0 . We consider the multi-valued holomorphic map

L [en2t uz—(u+l)1

F{z) = +l _
VZu+l Y2t (u+l)z U_

We compute _
- -2 -

1 g2 2
dz .

2u+l z2u _z—l

~d - b4 -
It follows that F : T¥ 5 52(2,C) is a holomorphic null immersion where TF is the

-~ —
universal cover of C* and F is the sinple-valued lift of F . Computing f = FtF

we find

| wtlw/z| Gzt o e+l uz
£(z) = —— - —
2u+l nz u+l 0 (zz) * u/z p+l

3, . . . .
Thus, f : €* + ¥ is 4 well-defined immersion with mean curvature 1. We also compute

ds2 = uz(u+l)2(l+(zg)2“+1)2 -
Sf = 7 = oui] dzedz
(2u+1) “(2z) ¥
2 —2
dg? = 42D @z

dzod-z-
L (e *2

Q = ~2u(u+1) (dz/z) 2
1 2

[eo+e3](z) = [1,z] € ¢Pp = s

Thus dsg is complete. Its tota] curvature is easily seen to be —4w(2u+i). The hyper—
bolic Gauss map is actually |-
iy s .

@

| and completes across the ends as a biholomorphism
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. ® . . P
It is easy to see that f{E) 1s a surface of revolution whose axis is
2

the geodesic joining the two points ([1,0],[0,1}} in 5.

Moreover, the profile curve is imbedded for - % < W < O,but has a single
self-intersection when p> 0 .

Note that the value of B at the ends z = O, is 2y Coupled with Exam-
ple 1, this shows that, in contrast to the Euclidean minimal surface case, B can
be any real number greater than -1 . Also, in contrast to the Euclidean minimal
surface case, the total curvature can be any non-positive number, i.e. there is
no "quantization" of the curvatures. Finally, this example shows that even when
the hyperbolic Gauss map completes across the ends, there is, in general, no rela-
tion between the total curvature and the degree of this map.

In the simply-connected case, we have a complete classification.

THEOREM B : Suppeose that M2 is simply connected and that f : M2 + H3 is a complete,

mean curvature !, finite total curvature immersion. Themn M is conformally equi-

valent to € . Any holomorphic lifting F : Mz + 52 (2,C) furnished by Theorem A

satisfies

F dF = dz

where z _is a standard coordinate z : M + € and r),t, are polynomials in z with

ho common zeroes. Conversely, given a pair of polynomials in z with no common

zeroes, say (rl,rz), then there exists an F : € 52(2,C) unique up to left trans—

lation satisfying the above equation. The map f = F'F : € + H3 is then a conformal,

mean curvature |, complete immersion whose total Gauss curvature is -4n rimes a

non-negative integer. Two pairs r = (rl,rz) and s = (51,52) give rise to immersions

comgruent under rigid motions of H® iff there exists an h € 80{(2) so that r = sh .

Proof : We already know that M canpot be the sphere or the Poincaré disk, so we
may as well take M = € . By Theorem A , there exists a holomorphic null lifting

F: €+ 52(2,€) unique up to right translation by an element of S0(2). Since T is
holomorphic and an immersion, the components of F—ldF must be holomorphic |-forms

on € with no common zerces. Let us write

where the Fi(z) are entire functions on B with no common zerces and satisfying

2 . . . :
Fl = F2F3 - The induced metric on f : T + H3 is given by
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dsg = (2|Fl|'2 + |F2]2 + |F3|2)dzodZ - IEF, = 0, then F| #0and F, is an entire
funetion with no zeroes. Since dsi is complete, Qsserman's Lemma 9.6 implies that
F3 does not have an essential singularity at z = « . Thus F3 is a polynomial in
z with no zeroes and hence is constant. In this cdse, we may simply take (rl,rz) =
(0,(F3(0))l/2). Now suppose F, 0. By our previous remarks, the total curvature
of the metric dsf is the spherical area of the image (counting multiplicities) of

the meromorphic map F2/Fl =plq : €+ Pl - By hypothesis this is finite. By

Picard's theorem, this can only happen if F2/F] extends meromorphically to z = w .
Thus FZ/FI = rI/r2 where r, and r, are polynomials in z with no common factors.
Thus, we may write F2 = rlc , F1 = r,G where G is an entire function (G is clear-

ly meromorphic on € and cannot have any poles on & since T and T, have no

common zeroes while F] and FZ have no poles on ). Tt follows, since ¢ fo , that

F3 = rf(G/rz). Again, since F3 has no poles and Ty and T, have no cowmon Zeroes,

it follows that G/r1 = H where H is an entire function on € . We now have
2
- Tty g
F dF = Hdz
r2 -r r
1 172

We can now compute Q = 2(rldr2 - rzdrl)anz - By Proposition 5, @ is meromorphic
at z = = , s0 H extends meromorphically to z = o , However, H is entire on

and has no zeroces since F_ldF has no zeroes. Thus, H is comstant and by scaling
(rl,rz) we may as well assume H = 1. Thisg proves the first part of the theorem. The
converse is as follows : Given a pair of relatively prime pelynomials (r],rz), ve

consider the linear differential equation

2

T. T -r

% - Fy |12 2
£l HT

with initial condition F(0) = I, (say). By the standard theory, this has a unique
solution (globally defined) F : € » Sg(2,E). The corresponding metric on £ = F'F
is given by

ds} = (e %+ Ir, 15 %dzed2

. 2
Since [rI] + |r2|2 > C0 > 0 for some CO € R s We see that dsg is complere. The
total curvature is —4n times the degree of the rational mapping rlfr2 : Pl + EI
and is therefore 43|uax(dl,d2) where di is the degree of r; . The uniqueness sta—

temert is now elementary. w
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Remark : Theorem B also follows from Lawson's cotrrespondence between minimal sur-
faces in E3 and surfaces of mean curvature | in H3 plus the classification of the
finite total curvature simply conmected minimal surfaces in E3 . A big difference,
first proved by Gary Kerbaugh (private communicatiom), is that although the corres-—
ponding minimal surface im E” is algebraic, the mean curvature [ surface in H3 is
never algebraic unless (rl,rz) consists of a pair of constants (in this case, the
resulting surface is a horocycle). Kerbaugh proves even more : if the resulting
surface [ : € + H3 constructed above has only one point in its asymptotic boundary,
then (rl,rz) is a pair of constants. This involves a study of the above differential

equation for F(z).

On the other hand, using methods of algebraic geometry, it is possible
to comstruct many holomorphic maps F : M +» $g(2,C) which are null immersions where
M is a compact Riemamn surface minus a finite number of points and the components
of F extend meromorphically to M. it follows, in this case, that F_ldF is an
$2(2,T)-valued meromorphic l-form on M and hence by our formulae, the total curva—
ture of £ = F'F will be an integral multiple of 4x and the hyperbolic Gauss map
will complete holomorphically across the poles of F . Thus, the space of such
surfaces is quite large.

We now turn to a condition relating the hyperbolic Causs map and the
holomorphic form § . Let a¥ = (w € E|0 < |w] <1} and let f : a¥ o H3 be a mean
curvature !, conformal immersion. We say that dsg is complete at w = 0 if any smooth
curve y(t) in A*which tends toward w = 0 as t +w=has infinite dsf—length. Clearly,
the results of our earlier propositions apply,and we may conclude that if dsi has

finite total curvature then ( completes meromorphically across w = O .

PROPOSITION 6 : Let £ : a*+ H3 be a conformal, mean curvature | immersion which is

complete at w = O and of finite total curvature, then the hyperbolic Gauss map

[e0+e31 : A*-+Si completes holomorphically across w = O iff the order of Q at w = 0

is at least -2

Proof : TEQ =0 on A" , then f is totally umbilic and [eo+e3] i - 52 is

o
constant so of course it completes across w = 0 . We set this case aside,and assume
that @ # O from now on. Then du? is a pseudo—metric of Gauss curvature +| to which
. - . *
Proposition 4 applies. We replace o™ by a smaller disk & = {z € C|O <]z| < e}EEA*

. : . *
where z 1is & holomorphic coordinate on AE so that for some B > -1

2 _ 4+ 22 dzedz
ez P2

do

*
Let us write § = h(z)(dz)2 where h(z} is a non—zero holomorphic function on ﬂE and
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h(z) is meromorphic at z = ¢ . Let K: = K: = {y € E|Re (y) < log &} and we denote
the covering map by y & ef =5 . Note that zB = eBy is well-defined on A . Tracing

through the proof of Theorem A » we find that there exists a holomorphic map

F s Z: b 58(2,C) with f(ey) = F(y) F(y) for y € A satisfying

1 _Z—(B+l)
dz .

Since_F(y)bf(Y) = F(y+2ui) F(y+2n1) for all y € A* » it follows that the holomorphic
map y & F (y)F(y+2n1) € S%(2,m) actually has values in the totally real submanifold
SU(2) < 84(2,C),and hence IS constant. Let us erte F(y+2ﬂ1) F(y)H where H € SU(2).
Since this implies that F_ (y+2n1)dF(y+2w1) =H F (y)dF(y)H y we conclude

, o~ (B+1) (y+2mi) | (B 1)y
- = H
o (B¥1) (y+27i) . o (B+ 1)y -1
~F
for all y € Ae - It immediately follows that
LTi{B+1) o
H=g 0 TR
where ¢ = *l. We now set
o (B+1)y/2 0 1 0
Gly) = Fly)
a e(B+l)y/2 1
and we see that G(y+2ni) = oG(y) for y € E:. It follows that if we write
u v
g=| ! e,
Y2 Y2

: . * s
then the ratios of the components u. o, v, are well-defined on AE - In particular,

I E
—~(B+id)y/2
e ¥ F(y) (E(B"'l))") .

we note that

u, | o (Bt1)y/2
(uz) = G(y) (0) = F{y) (e(8+1)y/2 )

By our previous formulae, [e +e ](ey) = [u 1) u, ()] . Thus, our problem

Teduces to showing that (y)/u (¥} is a meromorphic functlon of z at z =0 iff

h(z) has a pole of order o worse than 2 at z = 0 . We Tegard u o, v; now as (possi-

bly double-valued} functions of z and we compute that
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v “(B+1)/2  zoh(z)/2{8+1)

A (6+1) (B+1)/2

Because det G = 1, it easily follows that ul‘and U, are linearly independent solu-

tions of the equation {(on A:)
zzu" + zu' - ((B+l)2/4 + zzh(z)/Z)u =0.

Now r = uzful is meromorphic on AZ and is non-constant. Suppose that r
extends meromorphically to z = 0 . Then, im particular, r'"/r' is meromerphic at
z = 0 and has a simple pole at z = 0 . It follows that the Schwarzian of r ,
5(r) = ("/c")' - %(t"/r')2 has a double pole at z = 0 . On the other hand, we
compute from r = u2/ul that s() = (1 - (B+1)2)/2z2 - h{z). Thus,h{z) cannot have
worse than a double pole at z = 0 .

Now suppose that h(z)z2 is holomorphic at z = 0 . Then the above equation

for u, and u, has a regular singular point at z = 0 . If ¢ = +1 , so that Uy and

u, are single valued on A* , the theory of regular singular points implies that u

I

and u, are meromorphic at z = 0, and hence r = u2/ul is meromorphic. If o = = 1,

then z”zu1 and 21/2

is meromorphic at z = 0 . W

u, are known to be meromorphic at z = 0 , so again r = u2/u1

-2 =1

Remark : It is not difficult to see that, if h(z) = h-ZZ + h_lz + ... , then
we must have (B+l)2 + 2h_2 = (n+l)2 where n 1is the branching order of the Gauss
map at z = 0 . In particular, note that h_2 must be real.

COROLLARY : If F : € - S2(2,L) is a holomorphic null immersion for which f = th

is complete and of finite total curvature,and for which the Gauss map extends holo-—

morphically across z = Q0 , then f(E) c H3 is a horosphere.

Proof : If f were not totally umbilic, them § O and is a meromorphic quadratie
form on P = T U{=} with a pole of some order at z = = and holomorphic elsewhere.
However, the total degree of the divisor of § is —4 by Riemann's relation, so the

Gauss map cannot extend across z = = by Proposition 6 . =

Remark : This corollary is due to Gary Kerbaugh (private communication).
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