
NOTES ON GEODESICS ON LIE GROUPS

ROBERT L. BRYANT

Abstract. These are my notes on the calculation of geodesics on Lie groups
using the geometric Euler-Lagrange formalism.
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1. Introduction

In this section, I will review the geometric formulation of the Euler-Lagrange
equations on a manifold.

1.1. Tangent bundles. Let Mn be a smooth n-manifold and let TM denote its
tangent bundle, with basepoint projection π : TM → M . Each fiber of π is a vector
space π−1(x) = TxM , and, as a consequence, there is a canonical isomorphism

Tπ(v)M → kerπ′(v)

for each tangent vector v ∈ TM , where kerπ′(v) ⊂ Tv(TM) is the kernel of the sur-
jection π′(v) : Tv(TM) → Tπ(v)M . The composition of π′(v) with this isomorphism
is then a nilpotent endomorphism

αv : Tv(TM) → Tv(TM)

and this vector bundle endomorphism α : T (TM) → T (TM) of rank n is an
important feature of the geometry of TM . It is natural in the sense that it commutes
with the induced action on TM of any diffeomorphism of M with itself.

Another natural object on TM is the radial vector field R on TM . This is the
vector field whose time t flow is scalar multiplication by et in the fibers of TM .
This will be useful below.
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2 R. BRYANT

1.2. Lagrangians. A Lagrangian is (smooth) function L : TM → R. Given a
differentiable curve γ : [a, b] → M , one defines the associated functional

FL(γ) =

∫ b

a

L
(

γ′(t)
)

dt.

Let p, q ∈ M be given, and let Ω
(

[a, b], p, q
)

denote the set of differentiable mappings
γ : [a, b] → M such that γ(a) = p and γ(b) = q. Then FL can be regarded as a
function on Ω

(

[a, b], p, q
)

and one is interested in its critical points, where a curve

γ ∈ Ω
(

[a, b], p, q
)

is critical if the restriction of FL to any 1-parameter smooth

variation of γ within Ω
(

[a, b], p, q
)

has γ as a critical point.
The equations that characterize critical curves of a given Lagrangian can be

expressed directly in terms of the geometry of TM .
Given a Lagrangian L : TM → R, one can define a canonical 1-form

ωL = dL ◦ α

on TM . One says that L is nondegenerate if the 2-form dωL is nondegenerate on
TM .

One can also define the associated energy function of L, which is the function
EL : TM → R defined by

EL = R(L)− L.

Remark 1. If L : TM → R is a Lagrangian that is a homogeneous quadratic poly-
nomial on each tangent space TxM (as would be the case for the action Lagrangian
of a pseudo-Riemannian metric on M), then, by Euler’s Theorem, one has EL = L,
which should be born in mind for later purposes.

Using these quantities, one has the following classical result, which is a for-
mulation of the Euler-Lagrange equations for a nondegenerate Lagrangian. For a
proof (and a discussion of the notation introduced above), the reader might consult
Lecture 4 in [1].

Theorem 1 (Euler-Lagrange). Let L : TM → R be a nondegenerate Lagrangian,

and let XL be the unique vector field on TM that satisfies

(1.1) XL dωL = −dEL .

If γ : [a, b] → M is a critical curve for the functional FL on the set Ω
(

[a, b], γ(a), γ(b)
)

,

then γ′ : [a, b] → TM is an integral curve of XL. Conversely, every integral curve

of XL, say φ : [a, b] → TM , is of the form φ = γ′ where the curve γ = π ◦ φ is a

critical curve for the functional FL on the set Ω
(

[a, b], γ(a), γ(b)
)

.

Thus, finding the critical curves of the functional FL under fixed-endpoint vari-
ations is equivalent to finding the integral curves of the vector field XL, which is
called the Euler-Lagrange vector field of the nondegenerate Lagrangian L.

2. Left invariant quadratic Lagrangians

This section is an elaboration of Exercises 10 and 11 in Lecture 7 of [1].
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2.1. Lie groups and Lie algebras. Now let G be a Lie group, with Lie algebra
g. (For simplicity, one could keep in mind the case G = GL(n,R), in which case
g = gl(n,R) is the vector space Mn(R) of n-by-n matrices with real entries.)

Let ζ be the canonical left-invariant g-valued 1-form on G. Then, as usual,
dζ = − 1

2 [ζ, ζ]. (In the case G = GL(n,R) and g : GL(n,R) →֒ Mn(R) is the

(vector-valued) inclusion mapping, then ζ = g−1 dg. Moreover, in this case, one
has the more explicit formula dζ = −ζ∧ζ.)

It is important to recognize that ζ can be thought of both as a 1-form on G and

as a function on TG (with values in g, of course).
To avoid confusion, I will write z : TG → g to denote the function on TG that

ζ represents. It is not hard to show that one has the identity

(2.1) π∗ζ = dz ◦ α,

as 1-forms on TG, and this identity will be important in what follows.

2.2. Left-invariant Lagrangians. Now, let Q : g× g → R be a nondegenerate
quadratic form on g, and define the Lagrangian L : TG → R

L = 1
2 Q(z, z).

Since L is homogeneous quadratic on each fiber of π : TG → G, it follows that
EL = L.

Now, by the above formula

ωL = dL ◦ α = Q(z, dz) ◦ α = Q(z, dz ◦ α) = Q
(

z, π∗ζ
)

.

From this, one computes

dωL = Q(dz, π∗ζ)− 1
2 Q

(

z, [π∗ζ, π∗ζ]
)

.

Since the g⊕ g-valued form
(

π∗ζ, dz
)

defines a coframing on TG, if follows from the
nondegeneracy of Q that dωL is nondegenerate as well, so that L is a nondegenerate
Lagrangian.

LetXL be the Euler-Lagrange vector field and define v : TG → g and a : TG → g

so that π∗ζ(XL) = v and dz(XL) = a. Then one computes that

XL dωL = Q(a, π∗ζ)−Q(dz, v)−Q
(

z, [v, π∗ζ]
)

.

Meanwhile, −dEL = −dL = −Q(z, dz). Comparing coefficients of dz in the equa-
tion XL dωL = −dEL, one sees that

v = z

and that, consequently, a must satisfy the equation

Q(a, π∗ζ) = Q
(

z, [v, π∗ζ]
)

= Q
(

z, [z, π∗ζ]
)

= Q
(

z, ad(z)(π∗ζ)
)

= Q
(

ad∗Q(z)z, π
∗ζ
)

,

where, for p ∈ g, the linear map ad∗Q(p) : g → g is the adjoint with respect to the
quadratic form Q of the linear map ad(p) : g → g. Thus, by the nondegeneracy of
Q, one see that one must have

a = ad∗Q(z)z.

Thus, XL satisfies

(2.2) π∗(ζ)(XL) = z and dz(XL) = ad∗Q(z)z,

which determines XL uniquely.
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Now, to find the L-geodesics, it suffices to find the integral curves of XL. It is
worthwhile noting that (2.2) can be integrated in two stages: First, one finds the
integral curves z : [a, b] → g of the ordinary differential equation

(2.3) ż = ad∗Q(z)z,

which is known as the Euler equation of the Lagrangian. Then, for each such
solution z : [a, b] → g, one solves the left-invariant ordinary differential equation for
g : [a, b] → G

(2.4) ζ
(

γ̇(t)
)

= z(t).

This gives the L-critical curves on G, i.e., the curves that are the geodesics for the
left-invariant pseudo-Riemannian metric ds2 = Q(ζ, ζ) on G.

Example 1 (Bïınvariant metrics). Suppose that Q : g× g → R is Ad(G)-invariant
and nondegenerate, so that

Q(x, [y, z]) +Q([y, x], z) = 0.

In this case, ad∗Q(y) = − ad(y) for all y ∈ g, so that (2.3) simplifies to

ż = ad∗Q(z)z = − ad(z)z = −[z, z] = 0,

so the solutions of the Euler Equations are simply to have z be a constant z0. Then
the remaining equation (2.4) becomes

ζ
(

γ̇(t)
)

= z0

and the general solution of this equation is, of course

g(t) = g0 etz0 ,

so that the geodesics are the (left) translates of the 1-parameter subgroups of G.

Example 2 (K-bïınvariant metrics). Suppose that G is a connected simple Lie group
with maximal compact subgroup K ⊂ G. As is well-known, there exists an involu-
tive automorphism σ : G → G such that K is the fixed subgroup of σ.

For example, suppose that G = SL(n,R), with K = SO(n). The involutive
automorphism in this case is σ(g) = (gT )−1.

Let σ′ : g → g denote the map induced on the Lie algebra by σ and write
g = k⊕m, where k ⊂ g is the Lie algebra of K and m ⊂ g is the orthogonal
complement to k under the Killing form B : g× g → R. Then σ′ acts as −1 times
the identity on m. For any element x ∈ g, write x = x0 + x1, where x0 lies in k and
x1 lies in m. Thus, σ′(x) = x0 − x1.

Continuing with the illustrative example, if (G,K) =
(

GL(n,R), SO(n)
)

, then k

is the space of skew-symmetric n-by-n matrices while m is the space of traceless,
symmetric n-by-n matrices.

Now, let c be a fixed nonzero constant and consider the quadratic form Q :
g× g → R defined by

Q(x0 + x1, x0 + x1) = B(x1, x1)− cB(x0, x0)

Because of the usual sign convention for the Killing form B, it is negative definite
on k and positive definite on m, so Q is positive definite on m and is positive definite
on k if and only if c > 0. It is nondegenerate as long as c 6= 0.

Now, Q is Ad(K)-invariant, but it is not Ad(G)-invariant unless c = −1. In
particular, the associated Lagrangian L : TG → R is left-invariant under the action
of G and right-invariant under the action of K.
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In this case, one finds that (2.3) becomes

ż0 + ż1 = −(1+c) [z0, z1].

Writing λ = (1+c) for simplicity of notation, the solutions of this Euler system can
be written as

z = z0 + z1 = v0 +Ad
(

e−λv0t
)

(v1),

where v = v0 + v1 is a constant in g. Thus, the geodesic equation (2.4) becomes

ζ
(

γ̇(t)
)

= v0 +Ad
(

e−λv0t
)

(v1).

Writing γ(t) = s(t) eλv0t for some curve s in G, this becomes

ζ
(

ṡ(t)
)

= (1−λ)v0 + v1 ,

so this is solved by s(t) = s0 e

(

(1−λ)v0+v1

)

t where s0 ∈ G is an arbitrary constant.
Thus, finally, one has the equation for geodesics in this metric:

γ(t) = s0 e

(

v1+(1−λ)v0

)

teλv0t.

When s0 = e, note that γ′(0) = v0 + v1 = v, so this is the geodesic leaving the
identity with initial velocity v.

Note that c = −1 implies λ = 0, so this reproduces the case of a bïınvariant
metric on a simple Lie group already done in the first example.

On the other hand, when c = 1, one has λ = 2, and this gives the geodesics of
a positive definite (Riemannian) metric on G that is K-invariant in the expected
form

γ(t) = s0 e
(v1−v0)t e2v0t.

Note that, in the case of G = SL(n,R), this becomes the formula

γ(t) = ev
T t e(v−vT )t

for the geodesic starting at the origin with initial velocity v ∈ g.
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