NOTES ON GEODESICS ON LIE GROUPS

ROBERT L. BRYANT

ABSTRACT. These are my notes on the calculation of geodesics on Lie groups using the geometric Euler-Lagrange formalism.

Contents

1. Introduction	1
1.1. Tangent bundles	1
1.2. Lagrangians	2
2. Left invariant quadratic Lagrangians	2
2.1. Lie groups and Lie algebras	3
2.2. Left-invariant Lagrangians	3
References	5

1. INTRODUCTION

In this section, I will review the geometric formulation of the Euler-Lagrange equations on a manifold.

1.1. **Tangent bundles.** Let M^n be a smooth *n*-manifold and let TM denote its tangent bundle, with basepoint projection $\pi : TM \to M$. Each fiber of π is a vector space $\pi^{-1}(x) = T_x M$, and, as a consequence, there is a canonical isomorphism

$$T_{\pi(v)}M \to \ker \pi'(v)$$

for each tangent vector $v \in TM$, where ker $\pi'(v) \subset T_v(TM)$ is the kernel of the surjection $\pi'(v): T_v(TM) \to T_{\pi(v)}M$. The composition of $\pi'(v)$ with this isomorphism is then a nilpotent endomorphism

$$\alpha_v: T_v(TM) \to T_v(TM)$$

and this vector bundle endomorphism $\alpha : T(TM) \to T(TM)$ of rank n is an important feature of the geometry of TM. It is natural in the sense that it commutes with the induced action on TM of any diffeomorphism of M with itself.

Another natural object on TM is the radial vector field R on TM. This is the vector field whose time t flow is scalar multiplication by e^t in the fibers of TM. This will be useful below.

Date: March 10, 2013.

¹⁹⁹¹ Mathematics Subject Classification. 70H35.

Key words and phrases. Lagrangian, geometric differential equations.

Thanks to the NSF for its support via DMS-0848131.

This is Draft Version 0.0.

1.2. Lagrangians. A Lagrangian is (smooth) function $L : TM \to \mathbb{R}$. Given a differentiable curve $\gamma : [a, b] \to M$, one defines the associated functional

$$\mathcal{F}_L(\gamma) = \int_a^b L(\gamma'(t)) dt.$$

Let $p, q \in M$ be given, and let $\Omega([a, b], p, q)$ denote the set of differentiable mappings $\gamma : [a, b] \to M$ such that $\gamma(a) = p$ and $\gamma(b) = q$. Then \mathcal{F}_L can be regarded as a function on $\Omega([a, b], p, q)$ and one is interested in its *critical points*, where a curve $\gamma \in \Omega([a, b], p, q)$ is *critical* if the restriction of \mathcal{F}_L to any 1-parameter smooth variation of γ within $\Omega([a, b], p, q)$ has γ as a critical point.

The equations that characterize critical curves of a given Lagrangian can be expressed directly in terms of the geometry of TM.

Given a Lagrangian $L: TM \to \mathbb{R}$, one can define a canonical 1-form

$$\omega_L = \mathrm{d}L \circ \alpha$$

on TM. One says that L is nondegenerate if the 2-form $d\omega_L$ is nondegenerate on TM.

One can also define the associated *energy function* of L, which is the function $E_L: TM \to \mathbb{R}$ defined by

$$E_L = R(L) - L.$$

Remark 1. If $L: TM \to \mathbb{R}$ is a Lagrangian that is a homogeneous quadratic polynomial on each tangent space T_xM (as would be the case for the action Lagrangian of a pseudo-Riemannian metric on M), then, by Euler's Theorem, one has $E_L = L$, which should be born in mind for later purposes.

Using these quantities, one has the following classical result, which is a formulation of the Euler-Lagrange equations for a nondegenerate Lagrangian. For a proof (and a discussion of the notation introduced above), the reader might consult Lecture 4 in [1].

Theorem 1 (Euler-Lagrange). Let $L : TM \to \mathbb{R}$ be a nondegenerate Lagrangian, and let X_L be the unique vector field on TM that satisfies

(1.1)
$$X_L \, \lrcorner \, \mathrm{d}\omega_L = -\mathrm{d}E_L \, .$$

If $\gamma : [a, b] \to M$ is a critical curve for the functional \mathcal{F}_L on the set $\Omega([a, b], \gamma(a), \gamma(b))$, then $\gamma' : [a, b] \to TM$ is an integral curve of X_L . Conversely, every integral curve of X_L , say $\phi : [a, b] \to TM$, is of the form $\phi = \gamma'$ where the curve $\gamma = \pi \circ \phi$ is a critical curve for the functional \mathcal{F}_L on the set $\Omega([a, b], \gamma(a), \gamma(b))$.

Thus, finding the critical curves of the functional \mathcal{F}_L under fixed-endpoint variations is equivalent to finding the integral curves of the vector field X_L , which is called the *Euler-Lagrange vector field* of the nondegenerate Lagrangian L.

2. Left invariant quadratic Lagrangians

This section is an elaboration of Exercises 10 and 11 in Lecture 7 of [1].

2.1. Lie groups and Lie algebras. Now let G be a Lie group, with Lie algebra \mathfrak{g} . (For simplicity, one could keep in mind the case $G = \operatorname{GL}(n, \mathbb{R})$, in which case $\mathfrak{g} = \mathfrak{gl}(n, \mathbb{R})$ is the vector space $M_n(\mathbb{R})$ of n-by-n matrices with real entries.)

Let ζ be the canonical left-invariant \mathfrak{g} -valued 1-form on G. Then, as usual, $d\zeta = -\frac{1}{2} [\zeta, \zeta]$. (In the case $G = \operatorname{GL}(n, \mathbb{R})$ and $g : \operatorname{GL}(n, \mathbb{R}) \hookrightarrow M_n(\mathbb{R})$ is the (vector-valued) inclusion mapping, then $\zeta = g^{-1} dg$. Moreover, in this case, one has the more explicit formula $d\zeta = -\zeta \wedge \zeta$.)

It is important to recognize that ζ can be thought of both as a 1-form on G and as a function on TG (with values in \mathfrak{g} , of course).

To avoid confusion, I will write $z : TG \to \mathfrak{g}$ to denote the *function* on TG that ζ represents. It is not hard to show that one has the identity

(2.1)
$$\pi^* \zeta = \mathrm{d} z \circ \alpha$$

as 1-forms on TG, and this identity will be important in what follows.

2.2. Left-invariant Lagrangians. Now, let $Q : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ be a nondegenerate quadratic form on \mathfrak{g} , and define the Lagrangian $L : TG \to \mathbb{R}$

$$L = \frac{1}{2}Q(z,z).$$

Since L is homogeneous quadratic on each fiber of $\pi : TG \to G$, it follows that $E_L = L$.

Now, by the above formula

$$\omega_L = \mathrm{d}L \circ \alpha = Q(z, \mathrm{d}z) \circ \alpha = Q(z, \mathrm{d}z \circ \alpha) = Q(z, \pi^*\zeta).$$

From this, one computes

$$d\omega_L = Q(dz, \pi^*\zeta) - \frac{1}{2} Q(z, [\pi^*\zeta, \pi^*\zeta]).$$

Since the $\mathfrak{g} \oplus \mathfrak{g}$ -valued form $(\pi^*\zeta, dz)$ defines a coframing on TG, if follows from the nondegeneracy of Q that $d\omega_L$ is nondegenerate as well, so that L is a nondegenerate Lagrangian.

Let X_L be the Euler-Lagrange vector field and define $v: TG \to \mathfrak{g}$ and $a: TG \to \mathfrak{g}$ so that $\pi^*\zeta(X_L) = v$ and $dz(X_L) = a$. Then one computes that

$$X_L \dashv \mathrm{d}\omega_L = Q(a, \pi^*\zeta) - Q(\mathrm{d}z, v) - Q\big(z, [v, \pi^*\zeta]\big).$$

Meanwhile, $-dE_L = -dL = -Q(z, dz)$. Comparing coefficients of dz in the equation $X_L \lrcorner d\omega_L = -dE_L$, one sees that

$$v = z$$

and that, consequently, a must satisfy the equation

$$Q(a,\pi^*\zeta) = Q\big(z,[v,\pi^*\zeta]\big) = Q\big(z,[z,\pi^*\zeta]\big) = Q\big(z,\operatorname{ad}(z)(\pi^*\zeta)\big) = Q\big(\operatorname{ad}_Q^*(z)z,\pi^*\zeta\big),$$

where, for $p \in \mathfrak{g}$, the linear map $\operatorname{ad}_Q^*(p) : \mathfrak{g} \to \mathfrak{g}$ is the adjoint with respect to the quadratic form Q of the linear map $\operatorname{ad}(p) : \mathfrak{g} \to \mathfrak{g}$. Thus, by the nondegeneracy of Q, one see that one must have

$$a = \operatorname{ad}_{O}^{*}(z)z.$$

Thus, X_L satisfies

(2.2) $\pi^*(\zeta)(X_L) = z$ and $dz(X_L) = ad_Q^*(z)z$, which determines X_L uniquely. Now, to find the *L*-geodesics, it suffices to find the integral curves of X_L . It is worthwhile noting that (2.2) can be integrated in two stages: First, one finds the integral curves $z : [a, b] \to \mathfrak{g}$ of the ordinary differential equation

(2.3)
$$\dot{z} = \mathrm{ad}_Q^*(z)z,$$

which is known as the *Euler equation* of the Lagrangian. Then, for each such solution $z : [a, b] \to \mathfrak{g}$, one solves the left-invariant ordinary differential equation for $g : [a, b] \to G$

(2.4)
$$\zeta(\dot{\gamma}(t)) = z(t).$$

This gives the *L*-critical curves on *G*, i.e., the curves that are the geodesics for the left-invariant pseudo-Riemannian metric $ds^2 = Q(\zeta, \zeta)$ on *G*.

Example 1 (Biïnvariant metrics). Suppose that $Q : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ is $\mathrm{Ad}(G)$ -invariant and nondegenerate, so that

$$Q(x, [y, z]) + Q([y, x], z) = 0.$$

In this case, $\operatorname{ad}_Q^*(y) = -\operatorname{ad}(y)$ for all $y \in \mathfrak{g}$, so that (2.3) simplifies to

$$\dot{z} = \operatorname{ad}_Q^*(z)z = -\operatorname{ad}(z)z = -[z, z] = 0,$$

so the solutions of the Euler Equations are simply to have z be a constant z_0 . Then the remaining equation (2.4) becomes

$$\zeta(\dot{\gamma}(t)) = z_0$$

and the general solution of this equation is, of course

$$g(t) = g_0 e^{tz_0}$$

so that the geodesics are the (left) translates of the 1-parameter subgroups of G.

Example 2 (*K*-biinvariant metrics). Suppose that *G* is a connected simple Lie group with maximal compact subgroup $K \subset G$. As is well-known, there exists an involutive automorphism $\sigma: G \to G$ such that *K* is the fixed subgroup of σ .

For example, suppose that $G = \mathrm{SL}(n,\mathbb{R})$, with $K = \mathrm{SO}(n)$. The involutive automorphism in this case is $\sigma(g) = (g^T)^{-1}$.

Let $\sigma' : \mathfrak{g} \to \mathfrak{g}$ denote the map induced on the Lie algebra by σ and write $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$, where $\mathfrak{k} \subset \mathfrak{g}$ is the Lie algebra of K and $\mathfrak{m} \subset \mathfrak{g}$ is the orthogonal complement to \mathfrak{k} under the Killing form $B : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$. Then σ' acts as -1 times the identity on \mathfrak{m} . For any element $x \in \mathfrak{g}$, write $x = x_0 + x_1$, where x_0 lies in \mathfrak{k} and x_1 lies in \mathfrak{m} . Thus, $\sigma'(x) = x_0 - x_1$.

Continuing with the illustrative example, if $(G, K) = (\operatorname{GL}(n, \mathbb{R}), \operatorname{SO}(n))$, then \mathfrak{k} is the space of skew-symmetric *n*-by-*n* matrices while \mathfrak{m} is the space of traceless, symmetric *n*-by-*n* matrices.

Now, let c be a fixed nonzero constant and consider the quadratic form $Q: \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ defined by

$$Q(x_0 + x_1, x_0 + x_1) = B(x_1, x_1) - c B(x_0, x_0)$$

Because of the usual sign convention for the Killing form B, it is negative definite on \mathfrak{k} and positive definite on \mathfrak{m} , so Q is positive definite on \mathfrak{m} and is positive definite on \mathfrak{k} if and only if c > 0. It is nondegenerate as long as $c \neq 0$.

Now, Q is $\operatorname{Ad}(K)$ -invariant, but it is not $\operatorname{Ad}(G)$ -invariant unless c = -1. In particular, the associated Lagrangian $L: TG \to \mathbb{R}$ is left-invariant under the action of G and right-invariant under the action of K.

4

In this case, one finds that (2.3) becomes

$$\dot{z}_0 + \dot{z}_1 = -(1+c) [z_0, z_1].$$

Writing $\lambda = (1+c)$ for simplicity of notation, the solutions of this Euler system can be written as

$$z = z_0 + z_1 = v_0 + \operatorname{Ad}(e^{-\lambda v_0 t})(v_1),$$

where $v = v_0 + v_1$ is a constant in \mathfrak{g} . Thus, the geodesic equation (2.4) becomes

$$\zeta(\dot{\gamma}(t)) = v_0 + \operatorname{Ad}(e^{-\lambda v_0 t})(v_1).$$

Writing $\gamma(t) = s(t) e^{\lambda v_0 t}$ for some curve s in G, this becomes

$$\zeta(\dot{s}(t)) = (1-\lambda)v_0 + v_1,$$

so this is solved by $s(t) = s_0 e^{((1-\lambda)v_0+v_1)t}$ where $s_0 \in G$ is an arbitrary constant. Thus, finally, one has the equation for geodesics in this metric:

$$\gamma(t) = s_0 e^{\left(v_1 + (1-\lambda)v_0\right)t} e^{\lambda v_0 t}.$$

When $s_0 = e$, note that $\gamma'(0) = v_0 + v_1 = v$, so this is the geodesic leaving the identity with initial velocity v.

Note that c = -1 implies $\lambda = 0$, so this reproduces the case of a biinvariant metric on a simple Lie group already done in the first example.

On the other hand, when c = 1, one has $\lambda = 2$, and this gives the geodesics of a positive definite (Riemannian) metric on G that is K-invariant in the expected form

$$\gamma(t) = s_0 e^{(v_1 - v_0)t} e^{2v_0 t}$$

Note that, in the case of $G = SL(n, \mathbb{R})$, this becomes the formula

$$\gamma(t) = \mathrm{e}^{v^T t} \mathrm{e}^{(v - v^T)t}$$

for the geodesic starting at the origin with initial velocity $v \in \mathfrak{g}$.

References

[1] R. Bryant, An introduction to Lie Groups and symplectic geometry, AMS, 1991. 2

MATHEMATICAL SCIENCES RESEARCH INSTITUTE, 17 GAUSS WAY, BERKELEY, CA 94720-5070 E-mail address: bryant@msri.org

URL: http://www.msri.org/~bryant