The Problem. Compute the conjugate locus of $\operatorname{SL}(2, \mathbb{R})$ endowed with the 'natural' left-invariant Riemannian metric as described in my answer to the MathOverflow Question 108280

The geodesic formula: As explained there, the formula for the geodesic leaving $I_{2} \in \operatorname{SL}(2, \mathbb{R})$ with velocity

$$
v=\left(\begin{array}{cc}
v_{1} & v_{2}+v_{3} \\
v_{2}-v_{3} & -v_{1}
\end{array}\right) \in \mathfrak{\mathfrak { l } (2 , \mathbb { R }) , ~ (2)}
$$

is given by $\gamma_{v}(t)=e^{t v^{T}} e^{t\left(v-v^{T}\right)}$. Thus, the $*$ geodesic* exponential mapping for this metric is

$$
E(v)=e^{v^{T}} e^{\left(v-v^{T}\right)}
$$

(Here, ' v^{T} ' denotes the transpose of v.) Meanwhile, since $v^{2}=-\operatorname{det}(v) I_{2}$, it follows that the formula for the Lie group exponential of v is

$$
e^{v}=c(\operatorname{det}(v)) I_{2}+s(\operatorname{det}(v)) v
$$

where c and s are the entire analytic functions defined on the real line that satisfy $c\left(t^{2}\right)=\cos (t)$ and $s\left(t^{2}\right)=\sin (t) / t$ (and hence satisfy $c\left(-t^{2}\right)=\cosh (t)$ and $\left.s\left(-t^{2}\right)=\sinh (t) / t\right)$. Note that, in particular, these functions satisfy the useful identities

$$
c(y)^{2}+y s(y)^{2}=1, \quad c^{\prime}(y)=-\frac{1}{2} s(y), \quad \text { and } \quad s^{\prime}(y)=(c(y)-s(y)) /(2 y)
$$

Using this, the obvious identity $\operatorname{det}(v)=v_{3}^{2}-v_{1}^{2}-v_{2}^{2}$ and the above formulae, we can compute the pullback under E of the canonical left invariant form on $\operatorname{SL}(2, \mathbb{R})$ as follows.

$$
\left.E^{*}\left(g^{-1} \mathrm{~d} g\right)=E(v)^{-1} \mathrm{~d}(E(v))=e^{-\left(v-v^{T}\right)}\left[e^{-v^{T}} \mathrm{~d}\left(e^{v^{T}}\right)+\mathrm{d}\left(e^{\left(v-v^{T}\right)}\right) e^{-\left(v-v^{T}\right)}\right)\right] e^{\left(v-v^{T}\right)}
$$

Expanding this using the above formula for the Lie group exponential and setting

$$
E^{*}\left(g^{-1} \mathrm{~d} g\right)=\left(\begin{array}{cc}
\omega_{1} & \omega_{2}+\omega_{3} \\
\omega_{2}-\omega_{3} & -\omega_{1}
\end{array}\right)
$$

we find, after setting $\operatorname{det}(v)=\delta$ for brevity, that

$$
\omega_{1} \wedge \omega_{2} \wedge \omega_{3}=s(\delta)\left(s(\delta)-2\left(v_{1}^{2}+v_{2}^{2}\right) \frac{(c(\delta)-s(\delta))}{\delta}\right) \mathrm{d} v_{1} \wedge \mathrm{~d} v_{2} \wedge \mathrm{~d} v_{3}
$$

(Note, by the way, that $\frac{c(\delta)-s(\delta)}{\delta}$ is an entire analytic function of δ.)
It follows that the degeneracy locus for the geodesic exponential map $E: \mathfrak{g l}(2, \mathbb{R}) \rightarrow \operatorname{SL}(2, \mathbb{R})$ is the union of the locus described by the two equations

$$
\begin{equation*}
s(\operatorname{det}(v))=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
s(\operatorname{det}(v))-2\left(v_{1}^{2}+v_{2}^{2}\right) \frac{(c(\operatorname{det}(v))-s(\operatorname{det}(v)))}{\operatorname{det}(v)}=0 \tag{2}
\end{equation*}
$$

Now, $s(t) \geq 1$ when $t \leq 0$, while $s(t)=0$ for $t>0$ implies that $t=(k \pi)^{2}$ for some integer $k>0$. Thus, the first locus is given by the hyperboloids

$$
\operatorname{det}(v)=v_{3}^{2}-v_{1}^{2}-v_{2}^{2}=k^{2} \pi^{2}, \quad k=1,2, \ldots
$$

Meanwhile, when $t \leq 0$, the expression $\frac{c(t)-s(t)}{t}$ is strictly negative, while $s(t) \geq 1$, so it follows that the second locus has no points in the region $\operatorname{det}(v) \leq 0$, i.e., no geodesic γ_{v} with $\operatorname{det}(v)<0$ has any conjugate points. Finally, a little elementary analytic geometry shows that the locus described by (2) is a countable union of surfaces Σ_{k} of revolution in $\mathfrak{s l}(2, \mathbb{R})$ that can be described in the form

$$
v_{3}^{2}=\left(v_{1}^{2}+v_{2}^{2}\right)+\left(k+f_{k}\left(v_{1}^{2}+v_{2}^{2}\right)\right)^{2} \pi^{2}, \quad k=1,2, \ldots
$$

where $f_{k}:[0, \infty) \rightarrow\left[0, \frac{1}{2}\right)$ is a strictly increasing real-analytic function on $[0, \infty)$ that satisfies $f_{k}(0)=0$. In particular, it follows that, for a $v \in \Sigma_{k}$, we have $k^{2} \pi^{2} \leq \operatorname{det}(v)<\left(k+\frac{1}{2}\right)^{2} \pi^{2}$.

Consequently, the $*$ first* conjugate locus is the image under E of the hyperboloid $\operatorname{det}(v)=\pi^{2}$. Note that, by the above formulae, this image in $\operatorname{SL}(2, \mathbb{R})$ is simply the subgroup $\operatorname{SO}(2) \subset \operatorname{SL}(2, \mathbb{R})$.

