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1. Introduction 
 
One important property of a good single-winner election method is that it 

minimizes the number of “overruled” voters (according to some heuristic). 
Because of this reason, the Simpson-Kramer method, that always chooses 
that alternative whose worst pairwise defeat is the weakest, was very popular 
over a long time. However, in recent years, the Simpson-Kramer method has 
been criticized by many social choice theorists. Smith (1973) criticizes that 
this method doesn’t choose from the top-set of alternatives. Tideman (1987) 
complains that this method is vulnerable to the strategic nomination of a 
large number of similar alternatives, so-called clones. And Saari (1994) 
rejects this method for violating reversal symmetry. A violation of reversal 
symmetry can lead to strange situations where still the same alternative is 
chosen when all ballots are reversed, meaning that the same alternative is 
identified as best one and simultaneously as worst one. 

 
In this paper, we will show that only a slight modification (section 4.8) of 

the Simpson-Kramer method is needed so that the resulting method satisfies 
the criteria proposed by Smith (section 4.7), Tideman (section 4.6), and Saari 
(section 4.4). The resulting method will be called Schulze method. Random 
simulations by Wright (2009) confirmed that, in almost 99% of all instances, 
the Schulze method conforms with the Simpson-Kramer method (table 9.1). 
In this paper, we will prove that, nevertheless, the Schulze method still 
satisfies all important criteria that are also satisfied by the Simpson-Kramer 
method, like resolvability (section 4.2), Pareto (section 4.3), monotonicity 
(section 4.5), and prudence (section 4.9). Because of these reasons, already 
several private organizations have adopted the Schulze method. 

 
1997 – 2006: In 1997, I proposed the Schulze method to a large number of 

people, who are interested in mathematical aspects of election 
methods. In January 2003, the “Software in the Public Interest” (SPI) 
project, a software developer organization with about 500 eligible 
members, adopted this method. In June 2003, the Debian project, a 
software developer organization with about 900 eligible members, 
adopted this method in a referendum with 144 against 16 votes; 
Debian GNU/Linux is the largest and most popular non-commercial 
Linux distribution. In May 2005, the Gentoo Foundation, a software 
developer organization with about 300 eligible members, adopted this 
method; Gentoo Linux is another wide-spread Linux distribution. In 
December 2005, the French Wikipedia section (about 1,200,000 
registered users) adopted this method for polls among its users. 

 
2007 – 2010: In May 2008, the Wikimedia Foundation, a non-profit 

charitable organization with about 43,000 eligible members, adopted 
the proposed method for the election of its Board of Trustees; the 
Wikimedia Foundation is the umbrella organization e.g. for 
Wikipedia, Wiktionary, Wikiquote, Wikibooks, Wikisource, 
Wikinews, Wikiversity, and Wikispecies; it is, therefore, the fifth most 
important Internet corporation (after Google/YouTube, Facebook, 
Yahoo!, and Baidu). In October 2009, the “Pirate Party of Sweden” 
(about 8,000 eligible members) adopted this method. In May 2010, the 
“Pirate Party of Germany” (about 12,000 eligible members) adopted 
this method. 
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Today (September 2011), the proposed method is used by more than 50 
organizations with more than 70,000 eligible members in total. Furthermore, 
the fact that the proposed method is an integral part of Debian’s voting 
software (Debian Vote Engine) means that this method is the standard 
election method in all Debian user groups and in many other Linux user 
groups. Therefore, the proposed method is more wide-spread than all other 
Condorcet-consistent single-winner election methods together. 

 
There has been some debate about an appropriate name for this method. 

Some people suggested names like “beatpath”, “beatpaths”, “beatpath 
method”, “beatpath winner”, “beatpath power ranking” (BeatPower), 
“beatpaths power ranking” (BeatPower), “path method”, “path voting”, “path 
winner”, “Schwartz sequential dropping” (SSD), and “cloneproof Schwartz 
sequential dropping” (CSSD or CpSSD). Brearley (1999) suggested names 
like “descending minimum gross score” (DminGS), “descending minimum 
augmented gross score” (DminAGS), and “descending minimum doubly 
augmented gross score” (DminDAGS), depending on how the strength of a 
pairwise link is measured. Heitzig suggested names like “strong immunity 
from binary arguments” (SImA) and “sequential dropping towards a spanning 
tree” (SDST). However, I prefer the name “Schulze method”, not because of 
academic arrogance, but because the other names do not refer to the method 
itself but to specific heuristics for implementing it, and so may mislead 
readers into believing that no other method for implementing it is possible. 

 
In section 2 of this paper, the Schulze method is defined. In section 3, this 

method is applied to concrete examples. In section 4, this method is 
analyzed. Short descriptions of this method can also be found in publications 
by Tideman (2006, page 228–232), Stahl and Johnson (2007, page 119–129), 
Camps (2008), McCaffrey (2008), and Börgers (2009, page 37–42). This 
method is also discussed in papers by Yue (2007), Wright (2009), and Rivest 
and Shen (2010). 
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2. Definition of the Schulze Method 
 
2.1. Preliminaries 
 

We presume that A is a finite and non-empty set of alternatives. C ∈  
with 1 < C < ∞ is the number of alternatives in A. 

 
A binary relation  on A is asymmetric if it has the following property: 
 

∀ a,b ∈ A, exactly one of the following three statements is valid: 
 

1. a  b. 
2. b  a. 
3. a ≈ b (where “a ≈ b” means “neither a  b nor b  a”). 

 
A binary relation  on A is irreflexive if it has the following property: 
 

∀ a ∈ A: a ≈ a. 
 
A binary relation  on A is transitive if it has the following property: 
 

∀ a,b,c ∈ A: ( a  b and b  c ⇒ a  c ). 
 

A binary relation  on A is negatively transitive if it has the following 
property (where “a  b” means “not b  a”): 

 
∀ a,b,c ∈ A: ( a  b and b  c ⇒ a  c ). 
 

A binary relation  on A is linear if it has the following property: 
 

∀ a,b ∈ A: ( b ∈ A \ {a} ⇒ a  b or b  a ). 
 
A strict partial order is an asymmetric, irreflexive, and transitive relation. 

A strict weak order is a strict partial order that is also negatively transitive. 
A linear order is a strict weak order that is also linear. A profile is a finite 
and non-empty list of strict weak orders each on A. 

 
Input of the proposed method is a profile V. N ∈  with 0 < N < ∞ is the 

number of strict weak orders in V : = { 1, ..., N }. These strict weak orders 
will sometimes be called “voters” or “ballots”. 

 
“a v b” means “voter v ∈ V strictly prefers alternative a ∈ A to 

alternative b”. “a ≈v b” means “voter v ∈ V is indifferent between alternative 
a and alternative b”. “a v b” means “a v b or a ≈v b”. 

 
Output of the proposed method are (1) a strict partial order  on A and 

(2) a set ∅ ≠  ⊆ A of winners. 
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A possible implementation of the Schulze method looks as follows: 
 

Each voter gets a complete list of all alternatives and ranks these 
alternatives in order of preference. The individual voter may give the 
same preference to more than one alternative and he may keep 
alternatives unranked. When a given voter does not rank all 
alternatives, then this means (1) that this voter strictly prefers all 
ranked alternatives to all not ranked alternatives and (2) that this voter 
is indifferent between all not ranked alternatives. 

 
Suppose N[e,f] : = ║{ v ∈ V | e v f }║ is the number of voters who 

strictly prefer alternative e to alternative f. We presume that the strength of 
the link ef depends only on N[e,f] and N[f,e]. Therefore, the strength of the 
link ef can be denoted (N[e,f],N[f,e]). We presume that a binary relation D 
on 0 × 0 is defined such that the link ef is stronger than the link gh if and 
only if (N[e,f],N[f,e]) D (N[g,h],N[h,g]). N[e,f] is the support for the link ef; 
N[f,e] is its opposition. 

 
Example 1 (margin): 
 

When the strength of the link ef is measured by margin, then its 
strength is the difference N[e,f] – N[f,e] between its support N[e,f] and 
its opposition N[f,e]. 

 
(N[e,f],N[f,e]) margin (N[g,h],N[h,g]) if and 
only if N[e,f] – N[f,e] > N[g,h] – N[h,g]. 

 
Example 2 (ratio): 
 

When the strength of the link ef is measured by ratio, then its strength is 
the ratio N[e,f] / N[f,e] between its support N[e,f] and its opposition N[f,e]. 

 
(N[e,f],N[f,e]) ratio (N[g,h],N[h,g]) if and only if at 
least one of the following conditions is satisfied: 

 
1. N[e,f] > N[f,e] and N[g,h] ≤ N[h,g]. 
2. N[e,f] ≥ N[f,e] and N[g,h] < N[h,g]. 
3. N[e,f] ∙ N[h,g] > N[f,e] ∙ N[g,h]. 
4*. N[e,f] > N[g,h] and N[f,e] ≤ N[h,g]. 
5*. N[e,f] ≥ N[g,h] and N[f,e] < N[h,g]. 
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Example 3 (winning votes): 
 

When the strength of the link ef is measured by winning votes, then its 
strength is measured primarily by its support N[e,f]. 

 
(N[e,f],N[f,e]) win (N[g,h],N[h,g]) if and only if at 
least one of the following conditions is satisfied: 
 

1. N[e,f] > N[f,e] and N[g,h] ≤ N[h,g]. 
2. N[e,f] ≥ N[f,e] and N[g,h] < N[h,g]. 
3. N[e,f] > N[f,e] and N[g,h] > N[h,g] and N[e,f] > N[g,h]. 
4. N[e,f] > N[f,e] and N[g,h] > N[h,g] and N[e,f] = N[g,h] and N[f,e] < N[h,g]. 
5*. N[e,f] < N[f,e] and N[g,h] < N[h,g] and N[e,f] > N[g,h]. 
6*. N[e,f] < N[f,e] and N[g,h] < N[h,g] and N[e,f] = N[g,h] and N[f,e] < N[h,g]. 

 
Example 4 (losing votes): 
 

When the strength of the link ef is measured by losing votes, then its 
strength is measured primarily by its opposition N[f,e]. 

 
(N[e,f],N[f,e]) los (N[g,h],N[h,g]) if and only if at 
least one of the following conditions is satisfied: 

 
1. N[e,f] > N[f,e] and N[g,h] ≤ N[h,g]. 
2. N[e,f] ≥ N[f,e] and N[g,h] < N[h,g]. 
3. N[e,f] > N[f,e] and N[g,h] > N[h,g] and N[f,e] < N[h,g]. 
4. N[e,f] > N[f,e] and N[g,h] > N[h,g] and N[f,e] = N[h,g] and N[e,f] > N[g,h]. 
5*. N[e,f] < N[f,e] and N[g,h] < N[h,g] and N[f,e] < N[h,g]. 
6*. N[e,f] < N[f,e] and N[g,h] < N[h,g] and N[f,e] = N[h,g] and N[e,f] > N[g,h]. 

 
Those conditions, that are marked with an asterisk (*), are actually 

superfluous for the definition of the Schulze method. But they make it easier 
to prove that D satisfies property (2.1.1). 

 
Conditions 4 and 5 in the definition of ratio are needed e.g. to say that a 

pairwise victory of (N[e,f],N[f,e]) = (5,0) is stronger than a pairwise victory 
of (N[g,h],N[h,g]) = (1,0). This does not follow from conditions 1–3 in the 
definition of ratio. However, as it is not possible that there is a directed cycle 
that consists only of unanimous pairwise victories, unanimous pairwise 
victories cannot contradict each other. Therefore, the definition for the 
strength of an unanimous pairwise victory cannot have any impact on the 
result of an election. But conditions 4 and 5 in the definition of ratio make it 
easier to prove that ratio satisfies property (2.1.1). 

 
Conditions 5 and 6 in the definitions for win and los are superfluous 

because, for each pair of alternatives a,b ∈ A, there is a path from alternative 
a to alternative b or a path from alternative b to alternative a that contains no 
pairwise defeats. Condition 2 in the definitions for win and los guarantees 
that a path that contains no pairwise defeats is always stronger than a path 
that contains a pairwise defeat. Therefore, the definition for the strength of a 
pairwise defeat cannot have any impact on the result of an election. 
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The most intuitive definitions for the strength of a link are its margin and 
its ratio. However, we only presume that D is a strict weak order on 0 × 0 
with at least the following properties: 

 
(2.1.1) ∀ (x1,x2),(y1,y2) ∈ 0 × 0: 

( ( x1 > y1 and x2 ≤ y2 ) or ( x1 ≥ y1 and x2 < y2 ) ) ⇒ (x1,x2) D (y1,y2). 
 

(2.1.2) ∀ (x1,x2),(y1,y2) ∈ 0 × 0: 
( ( x1 > x2 and y1 ≤ y2 ) or ( x1 ≥ x2 and y1 < y2 ) ) ⇒ (x1,x2) D (y1,y2). 

 
(2.1.3) ∀ (x1,x2),(y1,y2) ∈ 0 × 0 ∀ c1,c2 ∈ : 

(c1·x1,c1·x2) D (c1·y1,c1·y2) ⇒ (c2·x1,c2·x2) D (c2·y1,c2·y2). 
 
The presumption, that the strength of the link ef depends only on N[e,f] 

and N[f,e], guarantees (1) that the proposed method satisfies anonymity and 
neutrality, (2) that adding a ballot, on which all alternatives are ranked 
equally, cannot change the result of the elections, and (3) that the proposed 
method is a C2 Condorcet social choice function (CSCF) according to 
Fishburn’s (1977) terminology. 

 
(2.1.1) says that, when the support of a link increases and its opposition 

doesn’t increase or when its opposition decreases and its support doesn’t 
decrease, then the strength of this link increases. So (2.1.1) says that the 
strength of a link responses to a change of its support or its opposition in the 
correct manner. (2.1.1) guarantees that the proposed method satisfies 
resolvability (section 4.2), Pareto (section 4.3), and monotonicity (section 
4.5). When each voter v ∈ V casts a linear order v on A, then all definitions 
for D, that satisfy (2.1.1), are identical. 

 
(2.1.2) says that every pairwise victory is stronger than every pairwise tie 

and that every pairwise tie is stronger than every pairwise defeat. (2.1.2) 
guarantees that the proposed method satisfies the Smith criterion (section 4.7). 

 
Homogeneity means that the result depends only on the proportion of 

ballots of each type, not on their absolute numbers. (2.1.3) guarantees that 
the proposed method satisfies homogeneity. 

 
Suppose ∅ ≠  ⊂ 0 × 0 is finite and non-empty. Then “maxD”, the 

set of maximum elements of , and “minD”, the set of minimum elements 
of , are defined as follows: (β1,β2) ∈ maxD if and only if (1) (β1,β2) ∈  
and (2) (β1,β2) D (δ1,δ2) ∀ (δ1,δ2) ∈ . (γ1,γ2) ∈ minD if and only if      
(1) (γ1,γ2) ∈  and (2) (γ1,γ2) D (δ1,δ2) ∀ (δ1,δ2) ∈ . 

 
We write “(β1,β2) : = maxD” and “(γ1,γ2) : = minD” for “(β1,β2) is an 

arbitrarily chosen element of maxD” and “(γ1,γ2) is an arbitrarily chosen 
element of minD”. 
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2.2. Basic Definitions 
 
In this section, the Schulze method is defined. Concrete examples can be 

found in section 3. 
 
Basic idea of the Schulze method is that the strength of the indirect 

comparison “alternative a vs. alternative b” is the strength of the strongest 
path a ≡ c(1),...,c(n) ≡ b from alternative a ∈ A to alternative b ∈ A \ {a} and 
that the strength of a path is the strength (N[c(i),c(i+1)],N[c(i+1),c(i)]) of its 
weakest link c(i),c(i+1). 

 
The Schulze method is defined as follows: 

 
A path from alternative x ∈ A to alternative y ∈ A is a sequence of 
alternatives c(1),...,c(n) ∈ A with the following properties: 
 

1. x ≡ c(1). 
2. y ≡ c(n). 
3. 2 ≤ n < ∞. 
4. For all i = 1,...,(n–1): c(i) ≢ c(i+1). 

 
The strength of the path c(1),...,c(n) is 

minD { (N[c(i),c(i+1)],N[c(i+1),c(i)]) | i = 1,...,(n–1) }. 
 
In other words: The strength of a path is the strength of its weakest link. 
 
When a path c(1),...,c(n) has the strength z ∈ 0 × 0, then the critical 
links of this path are the links with (N[c(i),c(i+1)],N[c(i+1),c(i)]) ≈D z. 
 
PD[a,b] : = maxD { minD { (N[c(i),c(i+1)],N[c(i+1),c(i)]) | i = 1,...,(n–1) } 

| c(1),...,c(n) is a path from alternative a to alternative b }. 
 
In other words: PD[a,b] ∈ 0 × 0 is the strength of the strongest path 
from alternative a ∈ A to alternative b ∈ A \ {a}. 
 
(2.2.1) The binary relation  on A is defined as follows: 

ab ∈  : ⇔ PD[a,b] D PD[b,a]. 
 

(2.2.2)  : = { a ∈ A | ∀ b ∈ A \ {a}: ba ∉  } is the set of winners. 
 
As the link ab is already a path from alternative a to alternative b of 

strength (N[a,b],N[b,a]), we get 
 
(2.2.3) ∀ a,b ∈ A: PD[a,b] D (N[a,b],N[b,a]). 
 
With (2.2.1) and (2.2.3), we get 
 
(2.2.4) (N[a,b],N[b,a]) D PD[b,a] ⇒ ab ∈ . 

 
Furthermore, we get 

 
(2.2.5) ∀ a,b,c ∈ A: minD { PD[a,b], PD[b,c] } D PD[a,c]. 
 
Otherwise, if minD { PD[a,b], PD[b,c] } was strictly larger than PD[a,c], 

then this would be a contradiction to the definition of PD[a,c] since there 
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would be a path from alternative a to alternative c via alternative b with a 
strength of more than PD[a,c]. 

 
Furthermore, we get 

 
(2.2.6) ∀ a,b ∈ A: PD[a,b] D maxD { (N[a,c],N[c,a]) | c ∈ A \ {a} }. 
 
(2.2.7) ∀ a,b ∈ A: PD[a,b] D maxD { (N[c,b],N[b,c]) | c ∈ A \ {b} }. 
 
The asymmetry of  follows directly from the asymmetry of D. The 

irreflexivity of  follows directly from the irreflexivity of D. Furthermore, 
in section 4.1, we will see that the binary relation  is transitive. This 
guarantees that there is always at least one winner. 

 
Suppose ∅ ≠ B ⊊ A. Then we get 
 
(2.2.8) ∀ a ∈ B ∀ b ∉ B: PD[a,b] D maxD { (N[c,d],N[d,c]) | c ∈ B and d ∉ B }. 
 

2.3. Implementation 
 
The strength PD[i,j] of the strongest path from alternative i ∈ A to 

alternative j ∈ A \ {i} can be calculated with the Floyd (1962) algorithm. The 
runtime to calculate the strengths of all strongest paths is O(C^3), where C is 
the number of alternatives in A. 
 
Input: N[i,j] ∈ 0 is the number of voters who strictly prefer alternative    

i ∈ A to alternative j ∈ A \ {i}. 
 
Output: PD[i,j] ∈ 0 × 0 is the strength of the strongest path from 

alternative i ∈ A to alternative j ∈ A \ {i}. 
 
pred[i,j] ∈ A \ {j} is the predecessor of alternative j in the strongest 
path from alternative i ∈ A to alternative j ∈ A \ {i}. 
 
 is the binary relation as defined in (2.2.1). 
 
“winner[i] = true” if and only if i ∈ . 

 
Stage 1 (initialization): 
 

1 for i : = 1 to C 
2 begin 
3 for j : = 1 to C 
4 begin 
5 if ( i ≠ j ) then 
6 begin 
7 PD[i,j] : = (N[i,j],N[j,i]) 
8 pred[i,j] : = i 
9 end 

10 end 
11 end 
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Stage 2 (calculation of the strengths of the strongest paths): 
 

12 for i : = 1 to C 
13 begin 
14 for j : = 1 to C 
15 begin 
16 if ( i ≠ j ) then 
17 begin 
18 for k : = 1 to C 
19 begin 
20 if ( i ≠ k ) then 
21 begin 
22 if ( j ≠ k ) then 
23 begin 
24 if ( PD[j,k] D minD { PD[j,i], PD[i,k] } ) then 
25 begin 
26 PD[j,k] : = minD { PD[j,i], PD[i,k] } 
27 pred[j,k] : = pred[i,k] 
28 end 
29 end 
30 end 
31 end 
32 end 
33 end 
34 end 

 
Stage 3 (calculation of the binary relation  and the winners): 
 

35 for i : = 1 to C 
36 begin 
37 winner[i] : = true 
38 for j : = 1 to C 
39 begin 
40 if ( i ≠ j ) then 
41 begin 
42 if ( PD[j,i] D PD[i,j] ) then 
43 begin 
44 ji ∈  
45 winner[i] : = false 
46 end 
47 if ( PD[j,i] D PD[i,j] ) then 
48 begin 
49 ji ∉  
50 end 
51 end 
52 end 
53 end 
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3. Examples 
 

3.1. Example 1 
 
Example 1: 

 
8 voters a v c v d v b 
2 voters b v a v d v c 
4 voters c v d v b v a 
4 voters d v b v a v c 
3 voters d v c v b v a 
 
N[i,j] ∈ 0 is the number of voters who strictly prefer alternative i ∈ A to 

alternative j ∈ A \ {i}. In example 1, the pairwise matrix N looks as follows: 
 

 N[*,a] N[*,b] N[*,c] N[*,d] 

N[a,*] --- 8 14 10 

N[b,*] 13 --- 6 2 

N[c,*] 7 15 --- 12 

N[d,*] 11 19 9 --- 

 
The following digraph illustrates the graph theoretic interpretation of 

pairwise elections. If N[i,j] > N[j,i], then there is a link from vertex i to 
vertex j of strength (N[i,j],N[j,i]): 

 
 
 

 
  

a b 

c d 

(13,8) 

(14,7) 

(15,6) 

(12,9) 

(11,10) 

(19,2) 
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The above digraph can be used to determine the strengths of the strongest 
paths. In the following, “x, (Z1,Z2), y” means “(N[x,y],N[y,x]) = (Z1,Z2)”. 

 
a → b: There are 2 paths from alternative a to alternative b. 
 

Path 1: a, (14,7), c, (15,6), b 
with a strength of minD { (14,7), (15,6) } ≈D (14,7). 

 
Path 2: a, (14,7), c, (12,9), d, (19,2), b 

  with a strength of minD { (14,7), (12,9), (19,2) } ≈D (12,9). 
 

So the strength of the strongest path from alternative a to alternative b 
is maxD { (14,7), (12,9) } ≈D (14,7). 
 

a → c: There is only one path from alternative a to alternative c. 
 

Path 1: a, (14,7), c with a strength of (14,7). 
 
a → d: There is only one path from alternative a to alternative d. 
 

Path 1: a, (14,7), c, (12,9), d 
  with a strength of minD { (14,7), (12,9) } ≈D (12,9). 
 
b → a: There is only one path from alternative b to alternative a. 
 

Path 1: b, (13,8), a with a strength of (13,8). 
 
b → c: There is only one path from alternative b to alternative c. 
 

Path 1: b, (13,8), a, (14,7), c 
with a strength of minD { (13,8), (14,7) } ≈D (13,8). 

 
b → d: There is only one path from alternative b to alternative d. 
 

Path 1: b, (13,8), a, (14,7), c, (12,9), d 
with a strength of minD { (13,8), (14,7), (12,9) } ≈D (12,9). 

 
c → a: There are 3 paths from alternative c to alternative a. 
 

Path 1: c, (15,6), b, (13,8), a 
with a strength of minD { (15,6), (13,8) } ≈D (13,8). 

 
Path 2: c, (12,9), d, (11,10), a 

  with a strength of minD { (12,9), (11,10) } ≈D (11,10). 
 

Path 3: c, (12,9), d, (19,2), b, (13,8), a 
  with a strength of minD { (12,9), (19,2), (13,8) } ≈D (12,9). 
 

So the strength of the strongest path from alternative c to alternative a 
is maxD { (13,8), (11,10), (12,9) } ≈D (13,8). 
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c → b: There are 2 paths from alternative c to alternative b. 
 

Path 1: c, (15,6), b with a strength of (15,6). 
 

Path 2: c, (12,9), d, (19,2), b 
  with a strength of minD { (12,9), (19,2) } ≈D (12,9). 
 

So the strength of the strongest path from alternative c to alternative b 
is maxD { (15,6), (12,9) } ≈D (15,6). 
 

c → d: There is only one path from alternative c to alternative d. 
 

Path 1: c, (12,9), d with a strength of (12,9). 
 
d → a: There are 2 paths from alternative d to alternative a. 
 

Path 1: d, (11,10), a with a strength of (11,10). 
 

Path 2: d, (19,2), b, (13,8), a 
  with a strength of minD { (19,2), (13,8) } ≈D (13,8). 
 

So the strength of the strongest path from alternative d to alternative a 
is maxD { (11,10), (13,8) } ≈D (13,8). 
 

d → b: There are 2 paths from alternative d to alternative b. 
 

Path 1: d, (11,10), a, (14,7), c, (15,6), b 
  with a strength of minD { (11,10), (14,7), (15,6) } ≈D (11,10). 
 

Path 2: d, (19,2), b with a strength of (19,2). 
 

So the strength of the strongest path from alternative d to alternative b 
is maxD { (11,10), (19,2) } ≈D (19,2). 

 
d → c: There are 2 paths from alternative d to alternative c. 
 

Path 1: d, (11,10), a, (14,7), c 
with a strength of minD { (11,10), (14,7) } ≈D (11,10). 

 
Path 2: d, (19,2), b, (13,8), a, (14,7), c 

  with a strength of minD { (19,2), (13,8), (14,7) } ≈D (13,8). 
 

So the strength of the strongest path from alternative d to alternative c 
is maxD { (11,10), (13,8) } ≈D (13,8). 
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The following table lists the strongest paths. The critical links of the 
strongest paths are underlined: 
 

 ... to a ... to b ... to c ... to d 

from a ... --- a, (14,7), c, 
(15,6), b a, (14,7), c a, (14,7), c, 

(12,9), d 

from b ... b, (13,8), a --- b, (13,8), a, 
(14,7), c 

b, (13,8), a, 
(14,7), c, 
(12,9), d 

from c ... c, (15,6), b, 
(13,8), a c, (15,6), b --- c, (12,9), d 

from d ... d, (19,2), b, 
(13,8), a d, (19,2), b 

d, (19,2), b, 
(13,8), a, 
(14,7), c 

--- 

 
The strengths of the strongest paths are: 

 
 PD[*,a] PD[*,b] PD[*,c] PD[*,d] 

PD[a,*] --- (14,7) (14,7) (12,9) 

PD[b,*] (13,8) --- (13,8) (12,9) 

PD[c,*] (13,8) (15,6) --- (12,9) 

PD[d,*] (13,8) (19,2) (13,8) --- 

 
xy ∈  if and only if PD[x,y] D PD[y,x]. So in example 1, we get            

 = {ab, ac, cb, da, db, dc}. 
 
x ∈  if and only if yx ∉  for all y ∈ A \ {x}. So in example 1, we get   

 = {d}. 
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3.2. Example 2 
 
Example 2: 

 
3 voters a v b v c v d 
2 voters c v b v d v a 
2 voters d v a v b v c 
2 voters d v b v c v a 
 
The pairwise matrix N looks as follows: 
 

 N[*,a] N[*,b] N[*,c] N[*,d] 

N[a,*] --- 5 5 3 

N[b,*] 4 --- 7 5 

N[c,*] 4 2 --- 5 

N[d,*] 6 4 4 --- 

 
The corresponding digraph looks as follows: 
 
 

a b

cd

(5,4)

(5,4)

(7,2)

(5,4)

(6,3)

(5,4)
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The strongest paths are: 
 

 ... to a ... to b ... to c ... to d 

from a ... --- a, (5,4), b a, (5,4), c a, (5,4), b, 
(5,4), d 

from b ... b, (5,4), d, 
(6,3), a --- b, (7,2), c b, (5,4), d 

from c ... c, (5,4), d, 
(6,3), a 

c, (5,4), d, 
(6,3), a, 
(5,4), b 

--- c, (5,4), d 

from d ... d, (6,3), a d, (6,3), a, 
(5,4), b 

d, (6,3), a, 
(5,4), c --- 

 
Therefore, the strengths of the strongest paths are: 

 
 PD[*,a] PD[*,b] PD[*,c] PD[*,d] 

PD[a,*] --- (5,4) (5,4) (5,4) 

PD[b,*] (5,4) --- (7,2) (5,4) 

PD[c,*] (5,4) (5,4) --- (5,4) 

PD[d,*] (6,3) (5,4) (5,4) --- 

 
We get  = {bc, da} and  = {b, d}. 

 
3.3. Example 3 

 
Example 3: 

 
6 voters a v b v c v d 
12 voters a v c v d v b 
21 voters b v c v a v d 
9 voters c v d v b v a 
15 voters d v b v a v c 

 
The pairwise matrix N looks as follows: 

 
 N[*,a] N[*,b] N[*,c] N[*,d] 

N[a,*] --- 18 33 39 

N[b,*] 45 --- 42 27 

N[c,*] 30 21 --- 48 

N[d,*] 24 36 15 --- 
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The corresponding digraph looks as follows: 
 

a b

cd

(45,18)

(33,30)

(42,21)

(48,15)

(39,24)

(36,27)

 
 

The strongest paths are: 

 ... to a ... to b ... to c ... to d 

from a ... --- a, (39,24), d, 
(36,27), b 

a, (39,24), d, 
(36,27), b, 
(42,21), c 

a, (39,24), d 

from b ... b, (45,18), a --- b, (42,21), c b, (42,21), c, 
(48,15), d 

from c ... 
c, (48,15), d, 
(36,27), b, 
(45,18), a 

c, (48,15), d, 
(36,27), b --- c, (48,15), d 

from d ... d, (36,27), b, 
(45,18), a d, (36,27), b d, (36,27), b, 

(42,21), c --- 

Therefore, the strengths of the strongest paths are: 

 PD[*,a] PD[*,b] PD[*,c] PD[*,d] 

PD[a,*] --- (36,27) (36,27) (39,24) 

PD[b,*] (45,18) --- (42,21) (42,21) 

PD[c,*] (36,27) (36,27) --- (48,15) 

PD[d,*] (36,27) (36,27) (36,27) --- 
 
We get  = {ad, ba, bc, bd, cd} and  = {b}. 
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3.4. Example 4 
 
3.4.1. Situation #1 

 
Example 4 (old): 

 
3 voters a v d v e v b v c v f 
3 voters b v f v e v c v d v a 
4 voters c v a v b v f v d v e 
1 voter d v b v c v e v f v a 
4 voters d v e v f v a v b v c 
2 voters e v c v b v d v f v a 
2 voters f v a v c v d v b v e 

 
The pairwise matrix Nold looks as follows: 
 

 Nold[*,a] Nold[*,b] Nold[*,c] Nold[*,d] Nold[*,e] Nold[*,f] 

Nold[a,*] --- 13 9 9 9 7 

Nold[b,*] 6 --- 11 9 10 13 

Nold[c,*] 10 8 --- 11 7 10 

Nold[d,*] 10 10 8 --- 14 10 

Nold[e,*] 10 9 12 5 --- 10 

Nold[f,*] 12 6 9 9 9 --- 
 

The corresponding digraph looks as follows: 
 
 

a b

c

d

(13,6)

(14,5)

(11,8)

e

f

(10,9)

(12,7)

(10,9)

(10,9) (10,9)

(10,9)

(10,9)

(10,9)

(10,9) (11,8)

(12,7)

(13,6)
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The strongest paths are: 
 

 ... to a ... to b ... to c ... to d ... to e ... to f 

from a ... --- a, (13,6), b a, (13,6), b, 
(11,8), c 

a, (13,6), b, 
(11,8), c, 
(11,8), d 

a, (13,6), b, 
(11,8), c, 
(11,8), d, 
(14,5), e 

a, (13,6), b, 
(13,6), f 

from b ... b, (13,6), f, 
(12,7), a --- b, (11,8), c b, (11,8), c, 

(11,8), d 

b, (11,8), c, 
(11,8), d, 
(14,5), e 

b, (13,6), f 

from c ... c, (10,9), a c, (10,9), a, 
(13,6), b --- c, (11,8), d c, (11,8), d, 

(14,5), e c, (10,9), f 

from d ... d, (10,9), a d, (10,9), b d, (14,5), e, 
(12,7), c --- d, (14,5), e d, (10,9), f 

from e ... e, (10,9), a e, (10,9), a, 
(13,6), b e, (12,7), c e, (12,7), c, 

(11,8), d --- e, (10,9), f 

from f ... f, (12,7), a f, (12,7), a, 
(13,6), b 

f, (12,7), a, 
(13,6), b, 
(11,8), c 

f, (12,7), a, 
(13,6), b, 
(11,8), c, 
(11,8), d 

f, (12,7), a, 
(13,6), b, 
(11,8), c, 
(11,8), d, 
(14,5), e 

--- 

 
We get old = {ab, ac, ad, ae, af, bc, bd, be, bf, dc, de, ec, fc, fd, fe} and 

old = {a}. 



Markus Schulze, “Part 1 of 5: A New Monotonic, Clone-Independent, ...” 

 21 

3.4.2. Situation #2 
 
When 2 a v e v f v c v b v d ballots are added, then the pairwise 

matrix Nnew looks as follows: 
 

 Nnew[*,a] Nnew[*,b] Nnew[*,c] Nnew[*,d] Nnew[*,e] Nnew[*,f] 

Nnew[a,*] --- 15 11 11 11 9 

Nnew[b,*] 6 --- 11 11 10 13 

Nnew[c,*] 10 10 --- 13 7 10 

Nnew[d,*] 10 10 8 --- 14 10 

Nnew[e,*] 10 11 14 7 --- 12 

Nnew[f,*] 12 8 11 11 9 --- 

 
The corresponding digraph looks as follows: 

 
 

a b

c

d

(15,6)

(14,7)

(11,10)

e

f

(11,10)

(14,7)

(11,10)

(11,10) (11,10)

(11,10)

(11,10)

(11,10)

(12,9) (13,8)

(12,9)

(13,8)
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The strongest paths are: 
 

 ... to a ... to b ... to c ... to d ... to e ... to f 

from a ... --- a, (15,6), b a, (11,10), c a, (11,10), d a, (11,10), e a, (15,6), b, 
(13,8), f  

from b ... b, (13,8), f, 
(12,9), a --- b, (11,10), c b, (11,10), d b, (11,10), d, 

(14,7), e b, (13,8), f 

from c ... 

c, (13,8), d, 
(14,7), e, 
(12,9), f, 
(12,9), a 

c, (13,8), d, 
(14,7), e, 
(12,9), f, 
(12,9), a, 
(15,6), b 

--- c, (13,8), d c, (13,8), d, 
(14,7), e 

c, (13,8), d, 
(14,7), e, 
(12,9), f 

from d ... 
d, (14,7), e, 

(12,9), f, 
(12,9), a 

d, (14,7), e, 
(12,9), f, 
(12,9), a, 
(15,6), b 

d, (14,7), e, 
(14,7), c --- d, (14,7), e d, (14,7), e, 

(12,9), f 

from e ... e, (12,9), f, 
(12,9), a 

e, (12,9), f, 
(12,9), a, 
(15,6), b 

e, (14,7), c e, (14,7), c, 
(13,8), d --- e, (12,9), f 

from f ... f, (12,9), a f, (12,9), a, 
(15,6), b f, (11,10), c f, (11,10), d f, (12,9), a, 

(11,10), e --- 

 
We get new = {ab, af, bf, ca, cb, cf, da, db, dc, de, df, ea, eb, ec, ef} and 

new = {d}. 
 
Thus the 2 a v e v f v c v b v d voters change the winner from 

alternative a to alternative d. 
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3.5. Example 5 
 

Suppose an alternative e is added with N[d,e] > 0 and N[e,d] = 0 for at 
least one already running alternative d. Then independence from Pareto-
dominated alternatives (IPDA) says that we must get: 

 
(3.5.1) ∀ x,y ∈ A \ {e}: xy ∈ old ⇔ xy ∈ new. 

 
(3.5.2) ∀ x ∈ A \ {e}: x ∈ old ⇔ x ∈ new. 
 
The following example demonstrates that the Schulze method, as defined 

in section 2.2, does not satisfy IPDA. 
 

3.5.1. Situation #1 
 
Example 5 (old): 

 
3 voters a v b v d v c 
5 voters a v d v b v c 
1 voter a v d v c v b 
2 voters b v a v d v c 
2 voters b v d v c v a 
4 voters c v a v b v d 
6 voters c v b v a v d 
2 voters d v b v c v a 
5 voters d v c v a v b 
 
The pairwise matrix Nold looks as follows: 
 

 Nold[*,a] Nold[*,b] Nold[*,c] Nold[*,d] 

Nold[a,*] --- 18 11 21 

Nold[b,*] 12 --- 14 17 

Nold[c,*] 19 16 --- 10 

Nold[d,*] 9 13 20 --- 

 
The corresponding digraph looks as follows: 
 

 

 
  

a b 

c d 

(18,12) 

(19,11) 

(16,14) 

(20,10) 

(21,9) 

(17,13) 
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The strongest paths are: 
 

 ... to a ... to b ... to c ... to d 

from a ... --- a, (18,12), b a, (21,9), d, 
(20,10), c a, (21,9), d 

from b ... 
b, (17,13), d, 

(20,10), c, 
(19,11), a 

--- b, (17,13), d, 
(20,10), c b, (17,13), d 

from c ... c, (19,11), a c, (19,11), a, 
(18,12), b --- c, (19,11), a, 

(21,9), d 

from d ... d, (20,10), c, 
(19,11), a 

d, (20,10), c, 
(19,11), a, 
(18,12), b 

d, (20,10), c --- 

 
We get old = {ab, ac, ad, cb, db, dc} and old = {a}. 
 

3.5.2. Situation #2 
 
Suppose alternative e is added as follows: 

 
Example 5 (new): 

 
3 voters a v b v d v e v c 
5 voters a v d v e v b v c 
1 voter a v d v e v c v b 
2 voters b v a v d v e v c 
2 voters b v d v e v c v a 
4 voters c v a v b v d v e 
6 voters c v b v a v d v e 
2 voters d v b v e v c v a 
5 voters d v e v c v a v b 
 
The pairwise matrix Nnew looks as follows: 
 

 Nnew[*,a] Nnew[*,b] Nnew[*,c] Nnew[*,d] Nnew[*,e] 

Nnew[a,*] --- 18 11 21 21 

Nnew[b,*] 12 --- 14 17 19 

Nnew[c,*] 19 16 --- 10 10 

Nnew[d,*] 9 13 20 --- 30 

Nnew[e,*] 9 11 20 0 --- 

  



Markus Schulze, “Part 1 of 5: A New Monotonic, Clone-Independent, ...” 

 25 

The corresponding digraph looks as follows: 
 
 

a b

c

d

(18,12)

(19,11)

(16,14)

(20,10)

(21,9)

(19,11)

e

(20,10)(30,0)

(17,13)(21,9)

 
 
 

The strongest paths are: 
 

 ... to a ... to b ... to c ... to d ... to e 

from a ... --- a, (18,12), b a, (21,9), d, 
(20,10), c a, (21,9), d a, (21,9), e 

from b ... 
b, (19,11), e, 
(20,10), c, 
(19,11), a 

--- b, (19,11), e, 
(20,10), c 

b, (19,11), e, 
(20,10), c, 
(19,11), a, 
(21,9), d 

b, (19,11), e 

from c ... c, (19,11), a c, (19,11), a, 
(18,12), b --- c, (19,11), a, 

(21,9), d 
c, (19,11), a, 

(21,9), e 

from d ... d, (20,10), c, 
(19,11), a 

d, (20,10), c, 
(19,11), a, 
(18,12), b 

d, (20,10), c --- d, (30,0), e 

from e ... e, (20,10), c, 
(19,11), a 

e, (20,10), c, 
(19,11), a, 
(18,12), b 

e, (20,10), c 
e, (20,10), c, 
(19,11), a, 
(21,9), d 

--- 

 
We get new = {ac, ad, ae, ba, bc, bd, be, dc, de, ec} and new = {b}. 
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3.6. Example 6 
 
When each voter v ∈ V casts a linear order v on A, then all definitions 

for D, that satisfy presumption (2.1.1), are equivalent. However, when some 
voters cast non-linear orders, then there are many possible definitions for the 
strength of a link. The following example illustrates how the different 
definitions for the strength of a link can lead to different winners. 
 
Example 6: 

 
6 voters a v b v c v d 
8 voters a ≈v b v c ≈v d 
8 voters a ≈v c v b ≈v d 
18 voters a ≈v c v d v b 
8 voters a ≈v c ≈v d v b 
40 voters b v a ≈v c ≈v d 
4 voters c v b v d v a 
9 voters c v d v a v b 
8 voters c ≈v d v a ≈v b 
14 voters d v a v b v c 
11 voters d v b v c v a 
4 voters d v c v a v b 
 
The pairwise matrix N looks as follows: 
 

 N[*,a] N[*,b] N[*,c] N[*,d] 

N[a,*] --- 67 28 40 

N[b,*] 55 --- 79 58 

N[c,*] 36 59 --- 45 

N[d,*] 50 72 29 --- 
 
The corresponding digraph looks as follows: 
 
 

a b

cd

(67,55)

(36,28)

(79,59)

(45,29)

(50,40)

(72,58)
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a) margin 
 

We get: (N[b,c],N[c,b]) margin (N[c,d],N[d,c]) margin (N[d,b],N[b,d]) 
margin (N[a,b],N[b,a]) margin (N[d,a],N[a,d]) margin (N[c,a],N[a,c]). 
 
The pairwise victories are: 
 

bc with a margin of N[b,c] – N[c,b] = 20 
cd with a margin of N[c,d] – N[d,c] = 16 
db with a margin of N[d,b] – N[b,d] = 14 
ab with a margin of N[a,b] – N[b,a] = 12 
da with a margin of N[d,a] – N[a,d] = 10 
ca with a margin of N[c,a] – N[a,c] = 8 

 
The strongest paths are: 

 
 ... to a ... to b ... to c ... to d 

from a ... --- a, (67,55), b a, (67,55), b, 
(79,59), c 

a, (67,55), b, 
(79,59), c, 
(45,29), d 

from b ... 
b, (79,59), c, 
(45,29), d, 
(50,40), a 

--- b, (79,59), c b, (79,59), c, 
(45,29), d 

from c ... c, (45,29), d, 
(50,40), a 

c, (45,29), d, 
(72,58), b --- c, (45,29), d 

from d ... d, (50,40), a d, (72,58), b d, (72,58), b, 
(79,59), c --- 

 
We get margin = {ab, ac, ad, bc, bd, cd} and margin = {a}. 

 
b) ratio 

 
We get: (N[c,d],N[d,c]) ratio (N[b,c],N[c,b]) ratio (N[c,a],N[a,c]) ratio 
(N[d,a],N[a,d]) ratio (N[d,b],N[b,d]) ratio (N[a,b],N[b,a]). 
 
The pairwise victories are: 
 

cd with a ratio of N[c,d] / N[d,c] = 1.552 
bc with a ratio of N[b,c] / N[c,b] = 1.339 
ca with a ratio of N[c,a] / N[a,c] = 1.286 
da with a ratio of N[d,a] / N[a,d] = 1.250 
db with a ratio of N[d,b] / N[b,d] = 1.241 
ab with a ratio of N[a,b] / N[b,a] = 1.218 
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The strongest paths are: 
 

 ... to a ... to b ... to c ... to d 

from a ... --- a, (67,55), b a, (67,55), b, 
(79,59), c 

a, (67,55), b, 
(79,59), c, 
(45,29), d 

from b ... b, (79,59), c, 
(36,28), a --- b, (79,59), c b, (79,59), c, 

(45,29), d 

from c ... c, (36,28), a c, (45,29), d, 
(72,58), b --- c, (45,29), d 

from d ... d, (50,40), a d, (72,58), b d, (72,58), b, 
(79,59), c --- 

 
We get ratio = {ba, bc, bd, ca, cd, da} and ratio = {b}. 
 

c) winning votes 
 

We get: (N[b,c],N[c,b]) win (N[d,b],N[b,d]) win (N[a,b],N[b,a]) win 
(N[d,a],N[a,d]) win (N[c,d],N[d,c]) win (N[c,a],N[a,c]). 
 
The pairwise victories are: 
 

bc with a support of N[b,c] = 79 
db with a support of N[d,b] = 72 
ab with a support of N[a,b] = 67 
da with a support of N[d,a] = 50 
cd with a support of N[c,d] = 45 
ca with a support of N[c,a] = 36 
 

The strongest paths are: 
 

 ... to a ... to b ... to c ... to d 

from a ... --- a, (67,55), b a, (67,55), b, 
(79,59), c 

a, (67,55), b, 
(79,59), c, 
(45,29), d 

from b ... 
b, (79,59), c, 
(45,29), d, 
(50,40), a 

--- b, (79,59), c b, (79,59), c, 
(45,29), d 

from c ... c, (45,29), d, 
(50,40), a 

c, (45,29), d, 
(72,58), b --- c, (45,29), d 

from d ... d, (50,40), a d, (72,58), b d, (72,58), b, 
(79,59), c --- 

 
We get win = {ab, ac, bc, da, db, dc} and win = {d}. 
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d) losing votes 
 

We get: (N[c,a],N[a,c]) los (N[c,d],N[d,c]) los (N[d,a],N[a,d]) los 
(N[a,b],N[b,a]) los (N[d,b],N[b,d]) los (N[b,c],N[c,b]). 
 
The pairwise victories are: 
 

ca with an opposition of N[a,c] = 28 
cd with an opposition of N[d,c] = 29 
da with an opposition of N[a,d] = 40 
ab with an opposition of N[b,a] = 55 
db with an opposition of N[b,d] = 58 
bc with an opposition of N[c,b] = 59 

 
The strongest paths are: 

 
 ... to a ... to b ... to c ... to d 

from a ... --- a, (67,55), b a, (67,55), b, 
(79,59), c 

a, (67,55), b, 
(79,59), c, 
(45,29), d 

from b ... b, (79,59), c, 
(36,28), a --- b, (79,59), c b, (79,59), c, 

(45,29), d 

from c ... c, (36,28), a c, (36,28), a, 
(67,55), b --- c, (45,29), d 

from d ... d, (50,40), a d, (50,40), a 
(67,55), b 

d, (50,40), a 
(67,55), b, 
(79,59), c 

--- 

 
We get los = {ab, ca, cb, cd, da, db} and los = {c}. 
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4. Analysis of the Schulze Method 
 
4.1. Transitivity 
 

In this section, we will prove that the binary relation , as defined in 
(2.2.1), is transitive. This means: If ab ∈  and bc ∈ , then ac ∈ . This 
guarantees that the set  of winners, as defined in (2.2.2), is non-empty. 
When we interpret the Schulze method as a method to find a set  of 
winners, rather than a method to generate a binary relation , then the proof 
of the transitivity of  is an essential part of the proof that the Schulze 
method is well defined. 
 
Definition: 
 

An election method satisfies transitivity if the following holds for all 
a,b,c ∈ A: 

 
Suppose: 

 
(4.1.1) ab ∈ . 
 
(4.1.2) bc ∈ . 

 
Then: 

 
(4.1.3) ac ∈ . 
 

Claim: 
 

The binary relation , as defined in (2.2.1), is transitive. 
 
Proof: 

 
With (4.1.1), we get 

 
(4.1.4) PD[a,b] D PD[b,a]. 
 
With (4.1.2), we get 
 
(4.1.5) PD[b,c] D PD[c,b]. 
 
With (2.2.5), we get 

(4.1.6) minD { PD[a,b], PD[b,c] } D PD[a,c]. 

(4.1.7) minD { PD[b,c], PD[c,a] } D PD[b,a]. 

(4.1.8) minD { PD[c,a], PD[a,b] } D PD[c,b]. 

Case 1: Suppose 

(4.1.9a) PD[a,b] D PD[b,c]. 

Combining (4.1.5) and (4.1.9a) gives 

(4.1.10a) PD[a,b] D PD[c,b]. 
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Combining (4.1.8) and (4.1.10a) gives 

(4.1.11a) PD[c,a] D PD[c,b]. 

Combining (4.1.6) and (4.1.9a) gives 

(4.1.12a) PD[b,c] D PD[a,c]. 

Combining (4.1.11a), (4.1.5), and (4.1.12a) gives 

(4.1.13a) PD[c,a] D PD[c,b] D PD[b,c] D PD[a,c]. 

With (4.1.13a), we get (4.1.3). 

Case 2: Suppose 

(4.1.9b) PD[a,b] D PD[b,c]. 

Combining (4.1.4) and (4.1.9b) gives 

(4.1.10b) PD[b,a] D PD[b,c]. 

Combining (4.1.7) and (4.1.10b) gives 

(4.1.11b) PD[c,a] D PD[b,a]. 

Combining (4.1.6) and (4.1.9b) gives 

(4.1.12b) PD[a,b] D PD[a,c]. 

Combining (4.1.11b), (4.1.4), and (4.1.12b) gives 

(4.1.13b) PD[c,a] D PD[b,a] D PD[a,b] D PD[a,c]. 

With (4.1.13b), we get (4.1.3).      □ 

The following corollary says that the set  of winners, as defined in 
(2.2.2), is non-empty: 

Corollary: 

For the Schulze method, as defined in section 2.2, we get 

(4.1.14) ∀ b ∉  ∃ a ∈ : ab ∈ . 

Proof of the corollary: 

As b ∉ , there must be a c(1) ∈ A with c(1),b ∈ . 

If c(1) ∈ , then the corollary is proven. If c(1) ∉ , then there must be a 
c(2) ∈ A with c(2),c(1) ∈ . With the asymmetry and the transitivity of , 
we get c(2),b ∈  and c(2) ∉ {b, c(1)}. 

We now proceed as follows: If c(i) ∈ , then the corollary is proven. If 
c(i) ∉ , then there must be a c(i+1) ∈ A with c(i+1),c(i) ∈ . With the 
asymmetry and the transitivity of , we get c(i+1),b ∈  and c(i+1) ∉ {b, 
c(1), ..., c(i)}. 

We proceed until c(i) ∈  for some i ∈ . Such an i ∈  exists because A 
is finite.            □ 
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In example 2, we have ba ∉  and ac ∉  and bc ∈ . This shows that 
the Schulze relation, as defined in (2.2.1), is not necessarily negatively 
transitive. 

 
4.2. Resolvability 

Resolvability basically says that usually there is a unique winner  = {a}. 
There are two different versions of the resolvability criterion. We will prove 
that the Schulze method, as defined in section 2.2, satisfies both. 

4.2.1. Formulation #1 
 
Definition: 

An election method satisfies the first version of the resolvability criterion 
if ( for every given number of alternatives ) the proportion of profiles 
without a unique winner tends to zero as the number of voters in the profile 
tends to infinity. 

Claim: 

If D satisfies (2.1.1), then the Schulze method, as defined in section 2.2, 
satisfies the first version of the resolvability criterion. 

Proof (overview): 

Suppose (x1,x2),(y1,y2) ∈ 0 × 0. Then, according to (2.1.1), there is a v1 
∈ 0 such that for all w1 ∈ 0: 

1. w1 < v1 ⇒ (x1,x2) D (w1,y2). 

2. w1 > v1 ⇒ (x1,x2) D (w1,y2). 

When the number of voters tends to infinity ( i.e. when x1, x2, y1, and y2 
become large ), then the proportion of profiles, where the condition “y1 = v1” 
happens to be satisfied, tends to zero. Therefore, when the number of voters 
tends to infinity, then the proportion of profiles, where two links ef and gh 
happen to have equivalent strengths (N[e,f],N[f,e]) ≈D (N[g,h],N[h,g]), tends 
to zero. 

Therefore, we will prove that, unless there are links ef and gh of 
equivalent strengths, there is always a unique winner. We will prove this by 
showing that, when we simultaneously presume (a) that there is more than 
one winner and (b) that there are no links ef and gh of equivalent strengths, 
then we necessarily get to a contradiction. 

Proof (details): 

Suppose that there is more than one winner. Suppose alternative a ∈ A 
and alternative b ∈ A are winners. Then 

(4.2.1.1) ∀ i ∈ A \ {a}: PD[a,i] D PD[i,a]. 

(4.2.1.2) ∀ j ∈ A \ {b}: PD[b,j] D PD[j,b]. 

(4.2.1.3) PD[a,b] ≈D PD[b,a]. 
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Suppose there are no links ef and gh of equivalent strengths (N[e,f],N[f,e]) 
≈D (N[g,h],N[h,g]). Then PD[a,b] ≈D PD[b,a] means that the weakest link in 
the strongest path from alternative a to alternative b and the weakest link in 
the strongest path from alternative b to alternative a must be the same link, 
say cd. Therefore, the strongest paths have the following structure: 

 

 

 

As cd is the weakest link in the strongest path from alternative a to 
alternative b, we get 

(4.2.1.4) PD[a,d] ≈D PD[a,b]. 

(4.2.1.5) PD[d,b] D PD[a,b]. 

As cd is the weakest link in the strongest path from alternative b to 
alternative a, we get 

(4.2.1.6) PD[b,d] ≈D PD[b,a]. 

(4.2.1.7) PD[d,a] D PD[b,a]. 
 
With (4.2.1.7), (4.2.1.3), and (4.2.1.4), we get 

(4.2.1.8) PD[d,a] D PD[b,a] ≈D PD[a,b] ≈D PD[a,d]. 

But (4.2.1.8) contradicts (4.2.1.1). 

Similarly, with (4.2.1.5), (4.2.1.3), and (4.2.1.6), we get 

(4.2.1.9) PD[d,b] D PD[a,b] ≈D PD[b,a] ≈D PD[b,d]. 

But (4.2.1.9) contradicts (4.2.1.2).       □ 

  

a b

c

d

P b cD[ , ]

( [ , ], [ , ])N c d N d c

P a cD[ , ]

P d aD[ , ] P d bD[ , ]
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4.2.2. Formulation #2 
 
The second version of the resolvability criterion says that, when there is 

more than one winner, then, for every alternative a ∈ , it is sufficient to 
add a single ballot w so that alternative a becomes the unique winner. 

 
Definition: 

 
An election method satisfies the second version of the resolvability 
criterion if the following holds: 
 

∀ a ∈ old: It is possible to construct a strict weak order w such 
that new = {a} for Vnew : = Vold + {w}. 

 
Claim: 

 
If D satisfies (2.1.1), then the Schulze method, as defined in section 2.2, 

satisfies the second version of the resolvability criterion. 
 

Proof: 
 

Suppose a ∈ old. Then we get 
 

(4.2.2.1) ∀ b ∈ A \ {a}: P old
D [a,b] D P old

D [b,a]. 
 

Suppose the strict weak order w is chosen as follows: 
 
(4.2.2.2) ∀ f ∈ A \ {a}: predold[a,f] w f. 
 
(4.2.2.3) ∀ e,f ∈ A \ {a}: ( P old

D [e,a] D P old
D [f,a] ⇒ e w f ). 

 
With (4.2.2.2), we get 
 
(4.2.2.4) ∀ f ∈ A \ {a}: a w f. 
 
We will prove the following three claims: 

 
Claim #1: It is not possible that (4.2.2.2) requires e w f 
and that simultaneously (4.2.2.3) requires f w e. 
 
Claim #2: ∀ g ∈ A \ {a}: P new

D [a,g] D P old
D [a,g]. 

 
Claim #3: ∀ g ∈ A \ {a}: P new

D [g,a] D P old
D [a,g]. 

 
With claim #2 and claim #3, we get 

 
P new

D [a,g] D P new
D [g,a] for all g ∈ A \ {a} 

 
so that ag ∈ new for all g ∈ A \ {a} 
 
so that new = {a}. 
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Proof of claim #1: 
 

Suppose e,f ∈ A \ {a}. With (2.2.3), we get 
 
(4.2.2.5) P old

D [e,f] D (Nold[e,f],Nold[f,e]). 
 
With (2.2.5), we get 
 
(4.2.2.6) minD { P old

D [e,f], P old
D [f,a] } D P old

D [e,a]. 
 
With (4.2.2.1), we get 
 
(4.2.2.7) P old

D [a,f] D P old
D [f,a]. 

 
Suppose (4.2.2.2) requires e w f. Then e = predold[a,f]. Therefore, the link 

ef was in the strongest path from alternative a to alternative f. Thus, we get 
 
(4.2.2.8) P old

D [a,f] D (Nold[e,f],Nold[f,e]). 
 

Suppose (4.2.2.3) requires f w e. Then 
 
(4.2.2.9) P old

D [f,a] D P old
D [e,a]. 

 
With (4.2.2.5), (4.2.2.8), (4.2.2.7), and (4.2.2.9), we get 
 
(4.2.2.10) P old

D [e,f] D (Nold[e,f],Nold[f,e]) D P old
D [a,f] D P old

D [f,a] D P old
D [e,a]. 

 
But (4.2.2.9) and (4.2.2.10) together contradict (4.2.2.6). 
 

Proof of claim #2: 
 

With (2.1.1) and (4.2.2.2), we get: The strength of each link of the 
strongest paths from alternative a to each other alternative g ∈ A \ {a} is 
increased. Therefore 

 
(4.2.2.11) ∀ g ∈ A \ {a}: P new

D [a,g] D P old
D [a,g]. 

  



Markus Schulze, “Part 1 of 5: A New Monotonic, Clone-Independent, ...” 

 36 

Proof of claim #3: 
 

Suppose g ∈ A \ {a}. Suppose 
 
(4.2.2.12) T(g) : = ( {a} ∪ { h ∈ A \ {a} | P old

D [h,a] D P old
D [a,g] } ). 

 
With (4.2.2.1) and (4.2.2.12), we get 
 
(4.2.2.13) g ∉ T(g) and a ∈ T(g) 
 
and, therefore, ∅ ≠ T(g) ⊊ A. Furthermore, we get 
 
(4.2.2.14) ∀ i ∉ T(g) ∀ j ∈ T(g): (Nold[i,j],Nold[j,i]) D P old

D [a,g]. 
 
Otherwise, there was a path from alternative i to alternative a via 

alternative j with a strength of more than P old
D [a,g]. But ( as i ∉ T(g) ) this 

would contradict the definition of T(g). 
 

With (4.2.2.3), (4.2.2.4), and (4.2.2.12), we get 
 
(4.2.2.15) ∀ i ∉ T(g) ∀ j ∈ T(g): j w i. 
 
With (2.1.1) and (4.2.2.15), we get 
 
(4.2.2.16) ∀ i ∉ T(g) ∀ j ∈ T(g): (Nnew[i,j],Nnew[j,i]) D (Nold[i,j],Nold[j,i]). 
 
With (4.2.2.14) and (4.2.2.16), we get 
 
(4.2.2.17) ∀ i ∉ T(g) ∀ j ∈ T(g): (Nnew[i,j],Nnew[j,i]) D P old

D [a,g]. 
 
With (4.2.2.13) and (4.2.2.17), we get 
 
(4.2.2.18) P new

D [g,a] D P old
D [a,g].        □ 

 
In example 3, we have  = {ad, ba, bc, bd, cd} and  = {b}. So we have 

ac ∉  and ca ∉ , although there are no links of equivalent strengths. This 
non-linearity of  cannot be resolved by adding a single ballot w, since the 
difference between two different entries of the pairwise matrix N is always at 
least 3 votes. This demonstrates that the proofs of section 4.2 cannot be 
generalized to . 
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4.3. Pareto 
 

The Pareto criterion says that the election method must respect 
unanimous opinions. There are two different versions of the Pareto criterion. 
The first version addresses situations with “ a v b for all v ∈ V ”, while the 
second version addresses situations with “ a v b for all v ∈ V ” ( for some 
pair of alternatives a,b ∈ A ). The first version says that, when every voter 
strictly prefers alternative a to alternative b ( i.e. a v b for all v ∈ V ), then 
alternative a must perform better than alternative b. The second version says 
that, when no voter strictly prefers alternative b to alternative a ( i.e. a v b 
for all v ∈ V ), then alternative b must not perform better than alternative a. 
We will prove that the Schulze method, as defined in section 2.2, satisfies 
both versions of the Pareto criterion. 

 
4.3.1. Formulation #1 
 
Definition: 
 

An election method satisfies the first version of the Pareto criterion if the 
following holds: 

 
Suppose: 

 
(4.3.1.1) ∀ v ∈ V: a v b. 

 
Then: 

 
(4.3.1.2) ab ∈ . 
 
(4.3.1.3) b ∉ . 

 
Claim: 

 
If D satisfies (2.1.1), then the Schulze method, as defined in section 2.2, 

satisfies the first version of the Pareto criterion. 
 

Proof: 
 

With (2.1.1) and (4.3.1.1), we get 
 
(4.3.1.4) ∀ e,f ∈ A: (N[a,b],N[b,a]) D (N[e,f],N[f,e]). 
 
(4.3.1.5) [ (N[a,b],N[b,a]) ≈D (N[e,f],N[f,e]) ] ⇔ [ ∀ v ∈ V: e v f ]. 
 
With (2.2.4), we get: ab ∈ , unless the link ab is in a directed cycle that 

consists of links of which each is at least as strong as the link ab. 
 
However, as we presumed that the individual ballots v are transitive and 

negatively transitive, it is not possible that there is a directed cycle of 
unanimous opinions. Therefore, it is not possible that the link ab is in a 
directed cycle that consists of links of which each is at least as strong as the 
link ab. Therefore, with (2.2.4), (4.3.1.4), and (4.3.1.5), we get (4.3.1.2). 
With (4.3.1.2), we get (4.3.1.3).        □ 
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4.3.2. Formulation #2 
 
Definition: 
 

An election method satisfies the second version of the Pareto criterion if 
the following holds: 

 
Suppose: 

 
(4.3.2.1) ∀ v ∈ V: a v b. 

 
Then: 

 
(4.3.2.2) ba ∉ . 
 
(4.3.2.3) ∀ f ∈ A \ {a,b}: bf ∈  ⇒ af ∈ . 
 
(4.3.2.4) ∀ f ∈ A \ {a,b}: fa ∈  ⇒ fb ∈ . 
 
(4.3.2.5) b ∈  ⇒ a ∈ . 
 

Claim: 
 
If D satisfies (2.1.1), then the Schulze method, as defined in section 2.2, 

satisfies the second version of the Pareto criterion. 
 

Proof: 
 

With (4.3.2.1), we get 
 
(4.3.2.6) ∀ e ∈ A \ {a,b}: N[a,e] ≥ N[b,e]. 
 
With (4.3.2.1), we get 
 
(4.3.2.7) ∀ e ∈ A \ {a,b}: N[e,b] ≥ N[e,a]. 
 
With (2.1.1), (4.3.2.6), and (4.3.2.7), we get 
 
(4.3.2.8) ∀ e ∈ A \ {a,b}: (N[a,e],N[e,a]) D (N[b,e],N[e,b]). 
 
With (2.1.1), (4.3.2.6), and (4.3.2.7), we get 
 
(4.3.2.9) ∀ e ∈ A \ {a,b}: (N[e,b],N[b,e]) D (N[e,a],N[a,e]). 

 
Suppose c(1),...,c(n) ∈ A is the strongest path from alternative b to 

alternative a. With (4.3.2.8) and (4.3.2.9), we get: a,c(2),...,c(n–1),b is a path 
from alternative a to alternative b with at least the same strength. Therefore 

 
(4.3.2.10) PD[a,b] D PD[b,a]. 
 
With (4.3.2.10), we get (4.3.2.2). 

 
Suppose c(1),...,c(n) ∈ A is the strongest path from alternative b to 

alternative f ∈ A \ {a,b}. With (4.3.2.8), we get: a,c(m+1),...,c(n), where c(m) 



Markus Schulze, “Part 1 of 5: A New Monotonic, Clone-Independent, ...” 

 39 

is the last occurrence of an alternative of the set {a,b}, is a path from 
alternative a to alternative f with at least the same strength. Therefore 

 
(4.3.2.11) ∀ f ∈ A \ {a,b}: PD[a,f] D PD[b,f]. 

Suppose c(1),...,c(n) ∈ A is the strongest path from alternative                   
f ∈ A \ {a,b} to alternative a. With (4.3.2.9), we get: c(1),...,c(m–1),b, where 
c(m) is the first occurrence of an alternative of the set {a,b}, is a path from 
alternative f to alternative b with at least the same strength. Therefore 

(4.3.2.12) ∀ f ∈ A \ {a,b}: PD[f,b] D PD[f,a]. 

Part 1: Suppose f ∈ A \ {a,b}. Suppose 

(4.3.2.13a) bf ∈ . 

With (4.3.2.13a), we get 

(4.3.2.14a) PD[b,f] D PD[f,b]. 

With (4.3.2.11), (4.3.2.14a), and (4.3.2.12), we get 

(4.3.2.15a) PD[a,f] D PD[b,f] D PD[f,b] D PD[f,a]. 

With (4.3.2.15a), we get (4.3.2.3). 

Part 2: Suppose f ∈ A \ {a,b}. Suppose 

(4.3.2.13b) fa ∈ . 

With (4.3.2.13b), we get 

(4.3.2.14b) PD[f,a] D PD[a,f]. 

With (4.3.2.12), (4.3.2.14b), and (4.3.2.11), we get 

(4.3.2.15b) PD[f,b] D PD[f,a] D PD[a,f] D PD[b,f]. 

With (4.3.2.15b), we get (4.3.2.4). 

Part 3: Suppose 

(4.3.2.13c) b ∈ . 

With (4.3.2.13c), we get 

(4.3.2.14c) ∀ f ∈ A \ {b}: fb ∉ . 

With (4.3.2.4) and (4.3.2.14c), we get 

(4.3.2.15c) ∀ f ∈ A \ {a,b}: fa ∉ . 

With (4.3.2.2) and (4.3.2.15c), we get 

(4.3.2.16c) ∀ f ∈ A \ {a}: fa ∉ . 

With (4.3.2.16c), we get (4.3.2.5).      □ 
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4.4. Reversal Symmetry 
 
Reversal symmetry as a criterion for single-winner election methods has 

been proposed by Saari (1994). This criterion says that, when v is reversed 
for all v ∈ V, then also the result of the elections must be reversed; see 
(4.4.2). When alternative a ∈ A was the unique winner in the original 
situation ( i.e. old = {a} ), then alternative a ∈ A should not be a winner in 
the reversed situation ( i.e. a ∉ new ); see (4.4.3). It should not be possible 
that the same alternatives are elected in the original situation and in the 
reversed situation, unless all alternatives are tied; see (4.4.4). 

 
Basic idea of this criterion is that, when there is a vote on the best 

alternatives and then there is a vote on the worst alternatives and when in 
both cases the same alternatives are chosen, then this questions the logic of 
the underlying heuristic of the used election method. 

 
Definition: 

 
An election method satisfies reversal symmetry if the following holds: 

 
Suppose: 
 

(4.4.1) ∀ e,f ∈ A ∀ v ∈ V: e  v
old  f ⇔ f  v

new  e. 
 

Then: 
 

(4.4.2) ∀ a,b ∈ A: ab ∈ old ⇔ ba ∈ new. 
 
(4.4.3) ( ∃ i ∈ A: i ∈ old and i ∉ new ) ⇔ 

( ∃ j ∈ A: j ∉ old and j ∈ new ). 
 
(4.4.4) old = new ⇔ old = A. 
 

Claim: 
 
The Schulze method, as defined in section 2.2, satisfies reversal symmetry. 
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Proof: 
 
With (4.4.1), we get 

(4.4.5) ∀ e,f ∈ A: Nold[e,f] = Nnew[f,e]. 

With (4.4.5), we get 

(4.4.6) ∀ e,f ∈ A: (Nold[e,f],Nold[f,e]) ≈D (Nnew[f,e],Nnew[e,f]). 

With (4.4.6), we get: When c(1),...,c(n) ∈ A was a path from alternative  
g ∈ A to alternative h ∈ A \ {g}, then c(n),...,c(1) is a path from alternative h 
to alternative g with the same strength. Therefore 

(4.4.7) ∀ g,h ∈ A: P old
D [g,h] ≈D P new

D [h,g]. 

With (4.4.7), we get (4.4.2). 

Part 1: 
 

Suppose ∃ i ∈ A: i ∈ old and i ∉ new. With i ∉ new and (4.1.14), we get 
that there is a j ∈ new with ji ∈ new. With (4.4.2), we get ij ∈ old and, 
therefore, j ∉ old. With j ∉ old and j ∈ new, we get the “⇒” direction of 
(4.4.3). The proof for the “⇐” direction of (4.4.3) is analogous. 

 
Part 2: 
 

Suppose old = A. Then we get old = ∅. Otherwise, if there was an         
ij ∈ old, we would immediately get j ∉ old and, therefore, old ≠ A. With 
old = ∅ and (4.4.2), we get new = ∅ and, therefore, new = A. With old = A 
and new = A, we get old = new. 

 
Part 3: 

Suppose old ≠ A. Then there is a j ∉ old. With (4.1.14), we get that there 
is an i ∈ old with ij ∈ old. With (4.4.2), we get ji ∈ new and, therefore,       
i ∉ new. With i ∈ old and i ∉ new, we get old ≠ new. With part 2 and part 
3, we get (4.4.4).          □ 
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4.5. Monotonicity 
 
Monotonicity says that, when some voters rank alternative a ∈ A higher 

[see (4.5.1) and (4.5.2)] without changing the order in which they rank the 
other alternatives relatively to each other [see (4.5.3)], then this must not 
hurt alternative a [see (4.5.6)]. Monotonicity is also known as mono-raise 
and non-negative responsiveness. 

 
Definition: 
 

An election method satisfies monotonicity if the following holds: 
 

Suppose a ∈ A. Suppose the ballots are modified in such a manner 
that the following three statements are satisfied: 
 

(4.5.1) ∀ f ∈ A \ {a} ∀ v ∈ V: a  v
old  f ⇒ a  v

new  f. 
 
(4.5.2) ∀ f ∈ A \ {a} ∀ v ∈ V: a  v

old  f ⇒ a  v
new  f. 

 
(4.5.3) ∀ e,f ∈ A \ {a} ∀ v ∈ V: e  v

old  f ⇔ e  v
new  f. 

 
Then: 

 
(4.5.4) ∀ b ∈ A \ {a}: ab ∈ old ⇒ ab ∈ new. 
 
(4.5.5) ∀ b ∈ A \ {a}: ba ∉ old ⇒ ba ∉ new. 
 
(4.5.6) a ∈ old ⇒ a ∈ new ⊆ old. 
 

Claim: 
 
If D satisfies (2.1.1), then the Schulze method, as defined in section 2.2, 

satisfies monotonicity. 
 

Proof: 
 

Part 1: 
 
With (4.5.1), we get 
 
(4.5.7) ∀ f ∈ A \ {a}: Nold[a,f] ≤ Nnew[a,f]. 
 
With (4.5.2), we get 
 
(4.5.8) ∀ f ∈ A \ {a}: Nold[f,a] ≥ Nnew[f,a]. 
 
With (4.5.3), we get 
 
(4.5.9) ∀ e,f ∈ A \ {a}: Nold[e,f] = Nnew[e,f]. 
 
With (2.1.1), (4.5.7), and (4.5.8), we get 
 
(4.5.10) ∀ f ∈ A \ {a}: (Nold[a,f],Nold[f,a]) D (Nnew[a,f],Nnew[f,a]). 
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With (2.1.1), (4.5.7), and (4.5.8), we get 

(4.5.11) ∀ f ∈ A \ {a}: (Nold[f,a],Nold[a,f]) D (Nnew[f,a],Nnew[a,f]). 

With (4.5.9), we get 

(4.5.12) ∀ e,f ∈ A \ {a}: (Nold[e,f],Nold[f,e]) ≈D (Nnew[e,f],Nnew[f,e]). 

Suppose c(1),...,c(n) ∈ A was the strongest path from alternative a to 
alternative b ∈ A \ {a}. Then with (4.5.10) and (4.5.12), we get: c(1),...,c(n) 
is a path from alternative a to alternative b with at least the same strength. 
Therefore 

(4.5.13) ∀ b ∈ A \ {a}: P new
D [a,b] D P old

D [a,b]. 

Suppose c(1),...,c(n) ∈ A is the strongest path from alternative b ∈ A \ {a} 
to alternative a. Then with (4.5.11) and (4.5.12), we get: c(1),...,c(n) was a 
path from alternative b to alternative a with at least the same strength. 
Therefore 

(4.5.14) ∀ b ∈ A \ {a}: P old
D [b,a] D P new

D [b,a]. 

With (4.5.13) and (4.5.14), we get (4.5.4) and (4.5.5). 

Part 2: 

It remains to prove (4.5.6). Suppose a ∈ old. Then “ a ∈ new ” follows 
directly from (4.5.5). To prove “ new ⊆ old ”, we have to prove: h ∉ old ⇒ 
h ∉ new. 

As a ∈ old, we get 

(4.5.15) ∀ b ∈ A \ {a}: P old
D [a,b] D P old

D [b,a]. 

Suppose h ∉ old. Then there must have been an alternative g ∈ A \ {h} 
with 

(4.5.16) P old
D [g,h] D P old

D [h,g]. 

With (4.5.10) – (4.5.12) and (4.5.16), we get: P new
D [g,h] D P new

D [h,g], 
unless at least one of the following two cases occurred. 

Case 1: xa was a weakest link in the strongest path from 
alternative g to alternative h. 

Case 2: ay was the weakest link in the strongest path from 
alternative h to alternative g. 

With (4.5.15), we get: P old
D [a,h] D P old

D [h,a]. For P old
D [a,h] D P old

D [h,a], 

we would, with (4.5.4), immediately get P new
D [a,h] D P new

D [h,a], so that 
alternative h is still not a winner. Therefore, without loss of generality, we 
can presume g ∈ A \ {a,h} and 

(4.5.17) P old
D [a,h] ≈D P old

D [h,a].  
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With (4.5.15), we get 

(4.5.18) P old
D [a,g] D P old

D [g,a]. 

With (2.2.5), we get 

(4.5.19) minD { P old
D [g,h], P old

D [h,a] } D P old
D [g,a]. 

(4.5.20) minD { P old
D [h,a], P old

D [a,g] } D P old
D [h,g]. 

Case 1: Suppose xa was a weakest link in the strongest path from 
alternative g to alternative h. Then 

(4.5.21a)  P old
D [g,h] ≈D P old

D [g,a] and 

(4.5.22a)  P old
D [a,h] D P old

D [g,h]. 

Now (4.5.18), (4.5.21a), and (4.5.16) give 

(4.5.23a)  P old
D [a,g] D P old

D [g,a] ≈D P old
D [g,h] D P old

D [h,g], 

while (4.5.17), (4.5.22a), and (4.5.16) give 

(4.5.24a)  P old
D [h,a] ≈D P old

D [a,h] D P old
D [g,h] D P old

D [h,g]. 

But (4.5.23a) and (4.5.24a) together contradict (4.5.20). 

Case 2: Suppose ay was the weakest link in the strongest path from 
alternative h to alternative g. Then 

(4.5.21b)  P old
D [h,g] ≈D P old

D [a,g] and 

(4.5.22b)  P old
D [h,a] D P old

D [h,g]. 

Now (4.5.22b), (4.5.21b), and (4.5.18) give 

(4.5.23b)  P old
D [h,a] D P old

D [h,g] ≈D P old
D [a,g] D P old

D [g,a], 

while (4.5.16), (4.5.21b), and (4.5.18) give 

(4.5.24b)  P old
D [g,h] D P old

D [h,g] ≈D P old
D [a,g] D P old

D [g,a]. 

But (4.5.23b) and (4.5.24b) together contradict (4.5.19). 

We have proven that neither case 1 nor case 2 is possible. Therefore 

(4.5.25) P new
D [g,h] D P new

D [h,g]. 

With (4.5.25), we get: h ∉ new.       □ 
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4.6. Independence of Clones 
 

Independence of clones as a criterion for single-winner election methods 
has been proposed by Tideman (1987). This criterion says that running a 
large number of similar alternatives, so-called clones, must not have any 
impact on the result of the elections. 

 
The precise definition for a set of clones stipulates that every voters ranks 

all the alternatives of this set in a consecutive manner; see (4.6.1) and 
(4.6.2). Replacing an alternative d ∈ Aold by a set of clones K should not 
change the winner; see (4.6.7) and (4.6.8). 

 
This criterion is very desirable especially for referendums because, while 

it might be difficult to find several candidates who are simultaneously 
sufficiently popular to campaign with them and sufficiently similar to misuse 
them for this strategy, it is usually very simple to formulate a large number 
of almost identical proposals. For example: In 1969, when the Canadian city 
that is now known as Thunder Bay was amalgamating, there was some 
controversy over what the name should be. In opinion polls, a majority of the 
voters preferred the name The Lakehead to the name Thunder Bay. But when 
the polls opened, there were three names on the referendum ballot: Thunder 
Bay, Lakehead, and The Lakehead. As the ballots were counted using 
plurality voting, it was not a surprise when Thunder Bay won. The votes 
were as follows: Thunder Bay 15870, Lakehead 15302, The Lakehead 8377. 
 
Definition: 
 

An election method is independent of clones if the following holds: 
 
Suppose d ∈ Aold. Suppose Anew : = ( Aold ∪ K ) \ {d}. 
 
Suppose alternative d is replaced by the set of alternatives K in 
such a manner that the following three statements are satisfied: 
 

(4.6.1) ∀ e ∈ Aold \ {d} ∀ g ∈ K ∀ v ∈ V: e  v
old  d ⇔ e  v

new  g. 
 
(4.6.2) ∀ f ∈ Aold \ {d} ∀ g ∈ K ∀ v ∈ V: d  v

old  f ⇔ g  v
new  f. 

 
(4.6.3) ∀ e,f ∈ Aold \ {d} ∀ v ∈ V: e  v

old  f ⇔ e  v
new  f. 

 
Then the following statements are satisfied: 

 
(4.6.4) ∀ a ∈ Aold \ {d} ∀ g ∈ K: ad ∈ old ⇔ ag ∈ new. 
 
(4.6.5) ∀ b ∈ Aold \ {d} ∀ g ∈ K: db ∈ old ⇔ gb ∈ new. 
 
(4.6.6) ∀ a,b ∈ Aold \ {d}: ab ∈ old ⇔ ab ∈ new. 
 
(4.6.7) d ∈ old ⇔ new ∩ K ≠ ∅. 
 
(4.6.8) ∀ a ∈ Aold \ {d}: a ∈ old ⇔ a ∈ new. 
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Claim: 

The Schulze method, as defined in section 2.2, is independent of clones. 

Proof: 

With (4.6.1), we get 

(4.6.9) ∀ e ∈ Aold \ {d} ∀ g ∈ K: Nold[e,d] = Nnew[e,g]. 

With (4.6.2), we get 

(4.6.10) ∀ f ∈ Aold \ {d} ∀ g ∈ K: Nold[d,f] = Nnew[g,f]. 

With (4.6.3), we get 

(4.6.11) ∀ e,f ∈ Aold \ {d}: Nold[e,f] = Nnew[e,f]. 

With (4.6.9) and (4.6.10), we get 

(4.6.12) ∀ e ∈ Aold \ {d} ∀ g ∈ K: (Nold[e,d],Nold[d,e]) ≈D (Nnew[e,g],Nnew[g,e]). 

With (4.6.9) and (4.6.10), we get 

(4.6.13) ∀ f ∈ Aold \ {d} ∀ g ∈ K: (Nold[d,f],Nold[f,d]) ≈D (Nnew[g,f],Nnew[f,g]). 

With (4.6.11), we get 

(4.6.14) ∀ e,f ∈ Aold \ {d}: (Nold[e,f],Nold[f,e]) ≈D (Nnew[e,f],Nnew[f,e]). 

Suppose c(1),...,c(n) ∈ Aold was the strongest path from alternative           
a ∈ Aold \ {d} to alternative d. Then with (4.6.12) and (4.6.14), we get: 
c(1),...,c(n–1),g is a path from alternative a to alternative g ∈ K with the 
same strength. Therefore 

(4.6.15) ∀ a ∈ Aold \ {d} ∀ g ∈ K: P new
D [a,g] D P old

D [a,d]. 

Suppose c(1),...,c(n) ∈ Anew is the strongest path from alternative              
a ∈ Anew \ K to alternative g ∈ K. Then with (4.6.12) and (4.6.14), we get: 
c(1),...,c(m–1),d, where c(m) is the first occurrence of an alternative of the 
set K, was a path from alternative a to alternative d with at least the same 
strength. Therefore 

(4.6.16) ∀ a ∈ Anew \ K ∀ g ∈ K: P old
D [a,d] D P new

D [a,g]. 

Suppose c(1),...,c(n) ∈ Aold was the strongest path from alternative d to 
alternative b ∈ Aold \ {d}. Then with (4.6.13) and (4.6.14), we get: 
g,c(2),...,c(n) is a path from alternative g ∈ K to alternative b with the same 
strength. Therefore 

(4.6.17) ∀ b ∈ Aold \ {d} ∀ g ∈ K: P new
D [g,b] D P old

D [d,b]. 

Suppose c(1),...,c(n) ∈ Anew is the strongest path from alternative g ∈ K to 
alternative b ∈ Anew \ K. Then with (4.6.13) and (4.6.14), we get: 
d,c(m+1),...,c(n), where c(m) is the last occurrence of an alternative of the set 
K, was a path from alternative d to alternative b with at least the same 
strength. Therefore 

(4.6.18) ∀ b ∈ Anew \ K ∀ g ∈ K: P old
D [d,b] D P new

D [g,b]. 
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(α) Suppose the strongest path c(1),...,c(n) ∈ Aold from alternative              
a ∈ Aold \ {d} to alternative b ∈ Aold \ {a,d} did not contain alternative d. 
Then with (4.6.14), we get: c(1),...,c(n) is still a path from alternative a to 
alternative b with the same strength. Therefore: P new

D [a,b] D P old
D [a,b]. 

(β) Suppose the strongest path c(1),...,c(n) ∈ Aold from alternative             
a ∈ Aold \ {d} to alternative b ∈ Aold \ {a,d} contained alternative d. Then 
with (4.6.12), (4.6.13), and (4.6.14), we get: c(1),...,c(n), with alternative d 
replaced by an arbitrarily chosen alternative g ∈ K, is still a path from 
alternative a to alternative b with the same strength. Therefore:                     
P new

D [a,b] D P old
D [a,b]. 

With (α) and (β), we get 

(4.6.19) ∀ a,b ∈ Aold \ {d}: P new
D [a,b] D P old

D [a,b]. 

(γ) Suppose the strongest path c(1),...,c(n) ∈ Anew from alternative            
a ∈ Anew \ K to alternative b ∈ Anew \ ( K ∪ {a} ) does not contain 
alternatives of the set K. Then with (4.6.14), we get: c(1),...,c(n) was a path 
from alternative a to alternative b with the same strength. Therefore:            
P old

D [a,b] D P new
D [a,b]. 

(δ) Suppose the strongest path c(1),...,c(n) ∈ Anew from alternative            
a ∈ Anew \ K to alternative b ∈ Anew \ ( K ∪ {a} ) contains some alternatives 
of the set K. Then with (4.6.12), (4.6.13), and (4.6.14), we get:      
c(1),...,c(s–1),d,c(t+1),...,c(n), where c(s) is the first occurrence of an 
alternative of the set K and c(t) is the last occurrence of an alternative of the 
set K, was a path from alternative a to alternative b with at least the same 
strength. Therefore: P old

D [a,b] D P new
D [a,b]. 

With (γ) and (δ), we get 

(4.6.20) ∀ a,b ∈ Anew \ K: P old
D [a,b] D P new

D [a,b]. 

Combining (4.6.15) and (4.6.16) gives 

(4.6.21) ∀ a ∈ Aold \ {d} ∀ g ∈ K: P old
D [a,d] ≈D P new

D [a,g]. 

Combining (4.6.17) and (4.6.18) gives 

(4.6.22) ∀ b ∈ Aold \ {d} ∀ g ∈ K: P old
D [d,b] ≈D P new

D [g,b]. 

Combining (4.6.19) and (4.6.20) gives 

(4.6.23) ∀ a,b ∈ Aold \ {d}: P old
D [a,b] ≈D P new

D [a,b]. 

With (4.6.21) – (4.6.23), we get (4.6.4) – (4.6.6). 

Part 1: 

Suppose d ∈ old. Then 

(4.6.24) ∀ a ∈ Aold \ {d}: ad ∉ old. 

With (4.6.4) and (4.6.24), we get 

(4.6.25) ∀ a ∈ Anew \ K ∀ g ∈ K: ag ∉ new. 
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Since the binary relation new, as defined in (2.2.1), is asymmetric and 
transitive, there must be an alternative k ∈ K with 

(4.6.26) ∀ l ∈ K \ {k}: lk ∉ new. 

With (4.6.25) and (4.6.26), we get k ∈ new ∩ K and, therefore, new ∩ K ≠ ∅. 

Part 2: 

Suppose d ∉ old. Then 

(4.6.27) ∃ a ∈ Aold \ {d}: ad ∈ old. 

With (4.6.4) and (4.6.27), we get 

(4.6.28) ∃ a ∈ Anew \ K ∀ g ∈ K: ag ∈ new. 

With (4.6.28), we get: new ∩ K = ∅. 

With part 1 and part 2, we get (4.6.7).  

Part 3: 

Suppose a ∈ Aold \ {d} and a ∈ old. Then 

(4.6.29) da ∉ old. 

(4.6.30) ∀ b ∈ Aold \ {a,d}: ba ∉ old. 

With (4.6.5) and (4.6.29), we get 

(4.6.31) ∀ g ∈ K: ga ∉ new. 

With (4.6.6) and (4.6.30), we get 

(4.6.32) ∀ b ∈ Anew \ ( K ∪ {a} ): ba ∉ new. 

With (4.6.31) and (4.6.32), we get: a ∈ new. 

Part 4: 

Suppose a ∈ Aold \ {d} and a ∉ old. Then at least one of the following 
two statements must have been valid: 

(4.6.33a) da ∈ old. 

(4.6.33b) ∃ b ∈ Aold \ {a,d}: ba ∈ old. 

With (4.6.5), (4.6.6), and (4.6.33), we get that at least one of the 
following two statements must be valid: 

(4.6.34a) ∀ g ∈ K: ga ∈ new. 

(4.6.34b) ∃ b ∈ Anew \ ( K ∪ {a} ): ba ∈ new. 

With (4.6.34), we get: a ∉ new. 
 
With part 3 and part 4, we get  (4.6.8).       □ 
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4.7. Smith 
 

The Smith criterion and Smith-IIA (where IIA means “independence of 
irrelevant alternatives”) say that weak alternatives should have no impact on 
the result of the elections. 

 
Suppose: 
 
(4.7.1) ∅ ≠ B1 ⊊ A, ∅ ≠ B2 ⊊ A, B1 ∪ B2 = A, B1 ∩ B2 = ∅. 
 
(4.7.2) ∀ a ∈ B1 ∀ b ∈ B2: N[a,b] > N[b,a]. 
 
Then a weak alternative in the Smith paradigm is an alternative b ∈ B2. 

Adding or removing a weak alternative b ∈ B2 should have no impact on the 
set  of winners. 
 
Definition: 

An election method satisfies the Smith criterion if the following holds: 
 
Suppose (4.7.1) and (4.7.2). Then: 
 
(4.7.3) ∀ a ∈ B1 ∀ b ∈ B2: ab ∈ . 
 
(4.7.4)  ⊆ B1. 
 

Remark: 

If B1 consists of only one alternative a ∈ A, then this is the so-called 
Condorcet criterion. If B2 consists of only one alternative b ∈ A, then this is 
the so-called Condorcet loser criterion. 

Claim: 
 
If D satisfies (2.1.2), then the Schulze method, as defined in section 2.2, 

satisfies the Smith criterion. 
 

Proof: 
  
The proof is trivial. Presumption (2.1.2) guarantees that any pairwise 

victory is stronger than any pairwise defeat. If a ∈ B1 and b ∈ B2, then already 
the link ab is a path from alternative a to alternative b that consists only of a 
pairwise victory. On the other side, (4.7.2) says that there cannot be a path 
from alternative b to alternative a that contains no pairwise defeat. So already 
the link ab is stronger than any path from alternative b to alternative a.      □ 
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Definition: 

An election method satisfies Smith-IIA if the following holds: 
 
Suppose (4.7.1) and (4.7.2). Then: 
 
(4.7.5) If d ∈ B2 is removed, then 
 

(a) ∀ e,f ∈ B1: ef ∈ old ⇔ ef ∈ new. 
 
(b) old = new. 
 

(4.7.6) If d ∈ B1 is removed, then 
∀ e,f ∈ B2: ef ∈ old ⇔ ef ∈ new. 

 
Claim: 

If D satisfies (2.1.2), then the Schulze method, as defined in section 2.2, 
satisfies Smith-IIA. 

Proof: 

We will prove (4.7.5)(a). The proof for (4.7.6) is analogous. 

(4.7.5)(b) follows directly from (4.7.4) and (4.7.5)(a). 

Part 1: Suppose e,f ∈ B1. Suppose ef ∈ old. Then 

(4.7.7) P old
D [e,f] D P old

D [f,e]. 

With (2.2.3), we get 

(4.7.8) P old
D [e,f] D (N[e,f],N[f,e]). 

With (4.7.7) and (2.2.3), we get 

(4.7.9) P old
D [e,f] D P old

D [f,e] D (N[f,e],N[e,f]). 

With (4.7.8) and (4.7.9), we get 
 
(4.7.10) P old

D [e,f] D maxD { (N[e,f],N[f,e]), (N[f,e],N[e,f]) }. 
 
With (4.7.2), we get: Any path from alternative e ∈ B1 to alternative         

f ∈ B1 that contained alternative d ∈ B2 necessarily contained a pairwise 
defeat. 

 
As it is not possible that the link ef is a pairwise defeat and that 

simultaneously the link fe is a pairwise defeat, maxD { (N[e,f],N[f,e]), (N[f,e], 
N[e,f]) } is stronger than any pairwise defeat [ because of (2.1.2) ]. Therefore, 
with (4.7.2) and (4.7.10), we get: The strongest path from alternative e ∈ B1 
to alternative f ∈ B1 did not contain alternative d ∈ B2. Therefore 

 
(4.7.11) P new

D [e,f] ≈D P old
D [e,f]. 

  



Markus Schulze, “Part 1 of 5: A New Monotonic, Clone-Independent, ...” 

 51 

As the elimination of alternative d ∈ B2 only removes paths, we get 
 
(4.7.12) P new

D [f,e] D P old
D [f,e]. 

 
With (4.7.11), (4.7.7), and (4.7.12), we get 
 
(4.7.13) P new

D [e,f] ≈D P old
D [e,f] D P old

D [f,e] D P new
D [f,e]. 

 
With (4.7.13), we get: ef ∈ new. 
 
Part 2: The proof “ ef ∉ old ⇒ ef ∉ new ” is analogous.    □ 
 
The majority criterion for solid coalitions says that, when a majority of 

the voters strictly prefers every alternative of a given set of alternatives to 
every alternative outside this set of alternatives, then the winner must be 
chosen from this set. In short, an election method satisfies the majority 
criterion for solid coalitions if the following holds: 

Suppose (4.7.1). 
Suppose ║{ v ∈ V | ∀ a ∈ B1 ∀ b ∈ B2: a v b }║ > N/2. 
Then  ⊆ B1. 

 
If B1 consists of only one alternative a ∈ A, then this is the so-called 

majority criterion. If B2 consists of only one alternative b ∈ A, then this is 
the so-called majority loser criterion. 

Participation says that adding a list W of ballots, on which every 
alternative of a given set of alternatives is strictly preferred to every 
alternative outside this set, must not hurt the alternatives of this set. In short, 
an election method satisfies participation if the following holds: 

 
Suppose (4.7.1). 
Suppose ∀ a ∈ B1 ∀ b ∈ B2 ∀ w ∈ W: a w b. 
Suppose Vnew : = Vold + W. 
 
Then (4.7.14) ∀ e ∈ B1 ∀ f ∈ B2: ef ∈ old ⇒ ef ∈ new. 
 (4.7.15) ∀ e ∈ B1 ∀ f ∈ B2: fe ∉ old ⇒ fe ∉ new. 
 (4.7.16) old ∩ B1 ≠ ∅ ⇒ new ∩ B1 ≠ ∅. 

(4.7.17) old ∩ B2 = ∅ ⇒ new ∩ B2 = ∅. 
 

The Smith criterion implies the majority criterion for solid coalitions, the 
Condorcet criterion, and the Condorcet loser criterion. The majority criterion 
for solid coalitions implies the majority criterion and the majority loser 
criterion. The Condorcet criterion implies the majority criterion. The 
Condorcet loser criterion implies the majority loser criterion. Unfortunately, 
the Condorcet criterion is incompatible with the participation criterion 
(Moulin, 1988). Example 4 shows a drastic violation of the participation 
criterion. 
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4.8. MinMax Set 
 
For all ∅ ≠ B ⊊ A, we define 
 
(4.8.1) ΓD(B) : = maxD { (N[y,x],N[x,y]) | y ∉ B, x ∈ B }. 
 
Furthermore, we define 
 
(4.8.2) βD : = minD { ΓD(B) | ∅ ≠ B ⊊ A }. 
 
(4.8.3) BD : =  { ∅ ≠ B ⊊ A | ΓD(B) ≈D βD }. 
 
BD is the MinMax set. BD has the following properties: 
 

1. BD ≠ ∅. 
 
2. If BD consists of only one alternative a ∈ A, then alternative a is 

the unique Simpson-Kramer winner ( i.e. that alternative a ∈ A 
with minimum maxD { (N[b,a],N[a,b]) | b ∈ A \ {a} } ). 

 
3. If d ∈ BD is replaced by a set of alternatives K as described in 

(4.6.1) – (4.6.3), then B new
D  = ( BD ∪ K ) \ {d}. 

 
4. If d ∉ BD is replaced by a set of alternatives K as described in 

(4.6.1) – (4.6.3), then B new
D  = BD. 

 
So, in some sense, the MinMax set BD is a clone-proof generalization of 

the Simpson-Kramer winner. 
 
When we want primarily that the used election method is independent of 

clones and secondarily that the strongest link ef, that is overruled when 
determining the winner, is minimized, then we have to demand that the 
winner is always chosen from the MinMax set BD. 

 
Claim: 

 
The Schulze method, as defined in section 2.2, has the following 

properties: 
 
(4.8.4) ∀ a ∈ BD ∀ b ∉ BD: ab ∈ . 
 
(4.8.5)  ⊆ BD. 
 

Proof: 
 
Suppose a ∈ BD. Then we get 
 
(4.8.6) ∃ ∅ ≠ B ⊊ A: ΓD(B) ≈D βD and a ∈ B. 

 
Suppose b ∉ BD. Then we get 
 
(4.8.7) γD : = minD { ΓD(B) | ∅ ≠ B ⊊ A and b ∈ B } D βD. 
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We will prove the following claims: 
 

Claim #1: PD[b,a] D βD. 
Claim #2: PD[a,b] D γD. 

With claim #1, claim #2, and (4.8.7), we get 

(4.8.8) PD[a,b] D γD D βD D PD[b,a]. 

With (4.8.8), we get (4.8.4). With (4.8.4), we get (4.8.5). 

Proof of claim #1: 

With (4.8.6) and (4.8.7), we get 

(4.8.9) ∃ ∅ ≠ B ⊊ A: ΓD(B) ≈D βD and a ∈ B and b ∉ B. 

Suppose c(1),...,c(n) ∈ A is the strongest path from alternative b to 
alternative a. Suppose c(i) is the last alternative with c(i) ∉ B. Then we get 
(N[c(i),c(i+1)],N[c(i+1),c(i)]) D βD. Therefore, we get 

(4.8.10) PD[b,a] D βD. 

Proof of claim #2: 

We can construct a path from alternative a to alternative b with a strength 
of at least γD as follows: 

(1) We start with E1 : = {a} and i : = 1. Trivially, we get b ∉ E1 and 
PD[a,h] D γD for all h ∈ E1 \ {a}. 

(2) At each stage, we consider the set Bi : = A \ Ei. 

With b ∈ Bi and with (4.8.7), we get 

(4.8.11)  ΓD(Bi) ≈D maxD { (N[y,x],N[x,y]) | y ∉ Bi, x ∈ Bi } D γD. 

We choose f ∈ Ei and g ∈ Bi with 

(4.8.12)  (N[f,g],N[g,f]) ≈D maxD { (N[y,x],N[x,y]) | y ∉ Bi, x ∈ Bi } D γD. 

We define Ei+1 : = Ei ∪ {g}. 

With f ∈ Ei, with PD[a,h] D γD for all h ∈ Ei \ {a}, with (N[f,g], 
N[g,f]) D γD, and with Ei+1 : = Ei ∪ {g}, we get 

(4.8.13)  PD[a,h] D γD for all h ∈ Ei+1 \ {a}. 

(3) We repeat stage 2 with i → i+1, until g ≡ b. 
 
Therefore, we get 
 
(4.8.14) PD[a,b] D γD.        □ 
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Example 5 shows that IPDA and the desideratum, that the winner is 
always chosen from the MinMax set BD, are incompatible. In example 
5(old), we get B old

D  = {a, c, d}. In example 5(new), we get B new
D  = {b}. 

Therefore, B old
D  ∩ B new

D  = ∅. Thus, the desideratum, that the winner is 
always chosen from the MinMax set BD, implies that the winner is changed. 

 
Actually, the Schulze method can be described completely with the 

desideratum to find a binary relation  on A that, primarily, is independent 
of clones (as defined in section 4.6) and that, secondarily, tries to rank the 
alternatives according to their worst defeats. 

 
For all a,b ∈ A, we define 
 
(4.8.15) γD[a,b] : = minD { ΓD(B) | ∅ ≠ B ⊊ A and a ∉ B and b ∈ B }. 
 
(4.8.16) ab ∈  : ⇔ γD[a,b] D γD[b,a]. 

 
To prove that (4.8.16) is identical to (2.2.1), we have to prove γD[a,b] = 

PD[a,b]. This proof is identical to the proof for (4.8.4). 
 

4.9. Prudence 
 
Prudence as a criterion for single-winner election methods has been 

popularized mainly by Arrow and Raynaud (1986). This criterion says that 
the strength λD of the strongest link ef, that is not supported by the binary 
relation , should be as small as possible. So λD : = maxD { (N[e,f],N[f,e]) | 
ef ∉  } should be minimized. 

 
When there is a directed cycle c(1),...,c(n) ∈ A with c(1) ≡ c(n), then it is 

obvious that the strongest link, that is not supported by the binary relation , 
is at least as strong as the weakest link c(i),c(i+1) of this directed cycle. So 
we get: 

 
(4.9.1) λD D minD { (N[c(i),c(i+1)],N[c(i+1),c(i)]) | i = 1,...,(n–1) }. 
 
As we have to make this consideration for all directed cycles, the 

maximum, that we can ask for, is the following criterion. 
 

Definition: 
 
Suppose λD ∈ 0 × 0 is the strength of the strongest directed cycle. 
 
(4.9.2) λD : = maxD { minD { (N[c(i),c(i+1)],N[c(i+1),c(i)]) | i = 1,...,(n–1) } 

| c(1),...,c(n) is a path with c(1) ≡ c(n) }. 
 

Then an election method is prudent if the following holds: 
 
(4.9.3) ∀ a,b ∈ A: (N[a,b],N[b,a]) D λD ⇒ ab ∈ . 
 
(4.9.4) ∀ a,b ∈ A: (N[a,b],N[b,a]) D λD ⇒ b ∉ . 
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Claim: 
 
The Schulze method, as defined in section 2.2, is prudent. 
 

Proof: 
 
The proof is trivial. With (2.2.4), we get: ab ∈ , unless the link ab is in 

a directed cycle that consists of links of which each is at least as strong as 
the link ab.          □ 

 
4.10. Schwartz 

 
A chain from alternative x ∈ A to alternative y ∈ A is a sequence of 

alternatives c(1),...,c(n) ∈ A with the following properties: 
 

1. x ≡ c(1). 
2. y ≡ c(n). 
3. 2 ≤ n < ∞. 
4. For all i = 1,...,(n–1): c(i) ≢ c(i+1). 
5. For all i = 1,...,(n–1): N[c(i),c(i+1)] > N[c(i+1),c(i)]. 

 
Definition: 

An election method satisfies the Schwartz criterion if the following holds: 
 

Suppose there is a chain from alternative a ∈ A to alternative b ∈ A 
and no chain from alternative b to alternative a. Then: 

 
(4.10.1) ab ∈ . 
 
(4.10.2) b ∉ . 
 

Remark: 

The Schwartz criterion has been proposed by Schwartz (1986). The 
Schwartz criterion implies the Smith criterion. 

Claim: 
 
If D satisfies (2.1.2), then the Schulze method, as defined in section 2.2, 

satisfies the Schwartz criterion. 
 

Proof: 
  
The proof is trivial.         □ 
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5. Tie-Breaking 
 

The Schulze relation , as defined in (2.2.1), is only a strict partial order. 
However, sometimes, a linear order is needed. In this section, we will show 
how the Schulze relation  can be completed to a linear order without 
having to sacrifice any of the desired criteria. 
 
Stage 1: 

A Tie-Breaking Ranking of the Candidates (TBRC), a linear order 
TBRC on A, is calculated as follows: 

 
a) In the beginning: a ≈TBRC b ∀ a,b ∈ A. 
b) Pick a random ballot v ∈ V and use its rankings. ( That means: 

∀ a,b ∈ A: If a ≈TBRC b and a v b, then replace “a ≈TBRC b” by 
“a TBRC b”. ) 

c) Continue picking ballots randomly from those that have not yet 
been picked and use their rankings. 

d) If you go through all ballots and there are still alternatives      
a,b ∈ A with b ∈ A \ {a} and a ≈TBRC b, then proceed as follows: 

 
d1) Pick a random alternative j and complete the TBRC in its 

favor. ( That means: For all alternatives k ∈ A \ {j} with     
j ≈TBRC k: Replace “j ≈TBRC k” by “j TBRC k”. ) 

d2) Continue picking alternatives randomly from those that 
have not yet been picked and complete the TBRC in their 
favor. 

 
When the bylaws require that the chairperson decides in the case of a 
tie, then the rules to create the TBRC have to be modified in such a 
manner that it is guaranteed that the ballot of the chairperson is always 
chosen first. 
 

Stage 2: 
A linear order second of the C·(C–1) pairwise links is calculated. 
 
Variant 1: ij second mn if and only if at least one of the following 
conditions is satisfied: 
 

1. (N[i,j],N[j,i]) D (N[m,n],N[n,m]). 
2. (N[i,j],N[j,i]) ≈D (N[m,n],N[n,m]) and i TBRC j and n TBRC m. 
3. (N[i,j],N[j,i]) ≈D (N[m,n],N[n,m]) and i TBRC j and m TBRC n and i TBRC m. 
4. (N[i,j],N[j,i]) ≈D (N[m,n],N[n,m]) and j TBRC i and n TBRC m and i TBRC m. 
5. (N[i,j],N[j,i]) ≈D (N[m,n],N[n,m]) and i ≡ m and n TBRC j. 
6. (N[i,j],N[j,i]) ≈D (N[m,n],N[n,m]) and j ≡ n and i TBRC m. 

 
Variant 2: Alternatively, ij second mn if and only if at least one of the 
following conditions is satisfied: 
 

1. (N[i,j],N[j,i]) D (N[m,n],N[n,m]). 
2. (N[i,j],N[j,i]) ≈D (N[m,n],N[n,m]) and i TBRC j and n TBRC m. 
3. (N[i,j],N[j,i]) ≈D (N[m,n],N[n,m]) and i TBRC j and m TBRC n and n TBRC j. 
4. (N[i,j],N[j,i]) ≈D (N[m,n],N[n,m]) and j TBRC i and n TBRC m and n TBRC j. 
5. (N[i,j],N[j,i]) ≈D (N[m,n],N[n,m]) and i ≡ m and n TBRC j. 
6. (N[i,j],N[j,i]) ≈D (N[m,n],N[n,m]) and j ≡ n and i TBRC m. 
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The definition of second is chosen in such a manner that e.g. when the 
TBRC TBRC is abcdefg then links of otherwise equal strength, i.e. 
links with (N[i,j],N[j,i]) ≈D (N[m,n],N[n,m]), are sorted ag, af, ae, ad, 
ac, ab, bg, bf, be, bd, bc, cg, cf, ce, cd, dg, df, de, eg, ef, fg, ba, cb, ca, 
dc, db, da, ed, ec, eb, ea, fe, fd, fc, fb, fa, gf, ge, gd, gc, gb, ga in 
variant 1 resp. ag, bg, cg, dg, eg, fg, af, bf, cf, df, ef, ae, be, ce, de, ad, 
bd, cd, ac, bc, ab, gf, fe, ge, ed, fd, gd, dc, ec, fc, gc, cb, db, eb, fb, gb, 
ba, ca, da, ea, fa, ga in variant 2, so that links that are in accordance 
with the TBRC are always stronger than links that are of otherwise 
equal strength and in contradiction with the TBRC. 
 

Stage 3: 
Suppose 1 and 2 are two linear orders. Then we write “1 second 2” 
for “maxsecond { xy ∈ 1 and xy ∉ 2 } second maxsecond { xy ∉ 1 and 
xy ∈ 2 }”. 
 
Suppose  is the Schulze relation as defined in (2.2.1). Then the final 
Schulze ranking is that linear order final with 
 

(1)  ⊆ final and 
 

(2) final second linear for every other linear order linear with  ⊆ linear. 
 

In example 3, we have  = {ad, ba, bc, bd, cd}. The only linear orders, 
that contain , are 1 = {ac, ad, ba, bc, bd, cd} and 2 = {ad, ba, bc, bd, ca, 
cd}. We get maxD { xy ∈ 1 and xy ∉ 2 } = (N[a,c],N[c,a]) = (33,30) and 
maxD { xy ∉ 1 and xy ∈ 2 } = (N[c,a],N[a,c]) = (30,33). Therefore, the 
final Schulze ranking is 1 = {ac, ad, ba, bc, bd, cd}. 

 
6. Definition of the Strength of a Pairwise Link 
 

There has been some debate about how to define D when it is presumed 
that on the one side each voter has a sincere linear order of the alternatives, 
but on the other side some voters cast only a strict weak order because of 
strategic considerations. We got to the conclusion that the strength (N[e,f], 
N[f,e]) of the pairwise link ef ∈ A × A should be measured by winning votes, 
i.e. primarily by the support N[e,f] of this link and secondarily by the 
opposition N[f,e] to this link. 

 
(N[e,f],N[f,e]) win (N[g,h],N[h,g]) if and only if at 
least one of the following conditions is satisfied: 
 

1. N[e,f] > N[f,e] and N[g,h] ≤ N[h,g]. 
2. N[e,f] ≥ N[f,e] and N[g,h] < N[h,g]. 
3. N[e,f] > N[f,e] and N[g,h] > N[h,g] and N[e,f] > N[g,h]. 
4. N[e,f] > N[f,e] and N[g,h] > N[h,g] and N[e,f] = N[g,h] and N[f,e] < N[h,g]. 
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Suppose a,b ∈ A. Suppose R1[a] : = ║{ v ∈ V | ∀ c ∈ A \ {a}: a v c }║ 
is the number of voters who strictly prefer alternative a to every other 
alternative. Suppose R2[b] : = ║{ v ∈ V | ∃ c ∈ A \ {b}: b v c }║ is the 
number of voters who strictly prefer alternative b to at least one other 
alternative. Suppose R1[a] > R2[b]. Then Woodall’s plurality criterion says: 
b ∉ . Woodall (1997) writes: “If some candidate b has strictly fewer votes 
in total than some other candidate a has first-preference votes, then 
candidate b should not be elected.” 
 
Claim: 

 
If win is being used, then the Schulze method satisfies Woodall’s 

plurality criterion. 
 
Proof: 

 
Suppose 
 
(6.1) R1[a] > R2[b]. 
 
With (6.1) and the definition for win, we get 
 
(6.2) (R1[a],R2[b]) win (R2[b],0). 
 
With the definitions for R1[a] and R2[b], we get 
 
(6.3) N[a,b] ≥ R1[a]. 
 
(6.4) N[b,a] ≤ R2[b]. 
 
With (6.3), (6.4), and the definition for win, we get 
 
(6.5) (N[a,b],N[b,a]) win (R1[a],R2[b]). 
 
With the definition for R2[b], we get 
 
(6.6) ∀ c ∈ A \ {b}: N[b,c] ≤ R2[b]. 
 
With (6.6) and the definition for win, we get 
 
(6.7) ∀ c ∈ A \ {b}: (N[b,c],N[c,b]) win (R2[b],0). 
 
With (2.2.6) and (6.7), we get 
 
(6.8) Pwin[b,a] win (R2[b],0). 
 
With (2.2.3), (6.5), (6.2), and (6.8), we get 
 
(6.9) Pwin[a,b] win (N[a,b],N[b,a]) win (R1[a],R2[b]) 

win (R2[b],0) win Pwin[b,a] 
 
so that ab ∈ .         □ 
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7. Supermajority Requirements 
 
When preferential ballots are being used in referendums, then sometimes 

alternatives have to fulfill some supermajority requirements to qualify. 
Typical supermajority requirements define some M1 ∈  or some 1 ≤ M2 ∈  
and say that N[a,b] must be strictly larger than max { N[b,a], M1 } or that 
N[a,b] must be strictly larger than M2∙N[b,a] to replace alternative b ∈ A by 
alternative a ∈ A. Or they say that N[a,b] must be strictly larger than N[b,a] 
not only in the electorate as a whole, but also in a majority of its geographic 
parts or even in each of its geographic parts. It is also possible that in the 
same referendum the voters have to choose between alternatives that have to 
fulfill different supermajority requirements to qualify. In this section, we 
discuss a possible way to combine the Schulze method with supermajority 
requirements. Suppose s ∈ A is the status quo. 

 
These are the two tasks of supermajority requirements: 
 

Task #1 (protecting the status quo): 
 

Supermajority requirements protect the status quo from 
accidental majorities. They make it more difficult to replace the 
status quo s by alternative a ∈ A \ {s}. Therefore, an important 
property of all supermajority requirements is that, when s had 
won in the absence of these requirements, then it also wins in 
the presence of these requirements. 

 
Task #2 (preventing the status quo from cycling): 
 

Supermajority requirements prevent the status quo from 
cycling. Suppose s(0) is the starting status quo. Suppose s(k+1) 
is the new status quo when the method is applied to the same set 
of alternatives A, to the same set of ballots V, and to the status 
quo s(k). Then we would expect that ( for every possible set of 
alternatives A, for every possible set of ballots V, and for every 
possible starting status quo s(0) ∈ A ) there is an m < C such 
that s(k) ≡ s(m) for all k ≥ m. 

 
We recommend the following method: 

The Schulze relation , as defined in (2.2.1), and the final 
Schulze ranking final, as defined in section 5, are calculated. 
 
Alternative a ∈ A \ {s} is attainable if and only if N[a,s] > N[s,a] 
and (a) there is no supermajority requirement to replace the status 
quo s by alternative a or (b) alternative a has the supermajority 
required to replace the status quo s by alternative a. 
 
Alternative a ∈ A is eligible if and only if ( a ≡ s ) or ( ( a is 
attainable ) and ( as ∈  ) ). 
 
A winner is an alternative a ∈ A with (1) alternative a is eligible 
and (2) ab ∈ final for every other eligible alternative b. 

 
The condition “as ∈ ” in the definition of eligibility implies that 

alternative a can win only if it had disqualified the status quo s in the 
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absence of supermajority requirements. This guarantees that, if s had won in 
the absence of supermajority requirements, then s also wins in the presence 
of these supermajority requirements. 

 
In the above suggestion, the status quo s can only be replaced by an 

alternative a with as ∈ . As  is transitive, it is guaranteed that the status 
quo cannot be changed in a cyclic manner. 

 
8. Electoral College 

There has been some debate about how to combine the Schulze method 
with the Electoral College for the elections of the President of the USA. In 
our opinion, the Electoral College serves two important purposes: 

Purpose #1: The Electoral College gives more power to the smaller 
states. 

The Senate, where each state has the same voting power 
regardless of its population, is more powerful than the House of 
Representatives, where each state has a voting power in 
proportion of its population. This is true especially for decisions 
that are close to the executive. For example, the President needs 
the consent of the Senate for treaties and for the appointment of 
officers and judges. Because of this reason, it is more important 
that the President has a reliable support in the Senate than that 
he has a reliable support in the House of Representatives. 

Purpose #2: The Electoral College makes it possible to count the 
ballots on the state levels and then to add the electoral votes up. 

The Electoral College makes it possible that, to guarantee 
that all voters are treated in an equal manner, it is only 
necessary to guarantee that all voters in the same state are 
treated in an equal manner. However, if the ballots were added 
up on the national level, it would be necessary to guarantee that 
all voters all over the USA are treated in an equal manner. In the 
latter case, many provisions (e.g. the rules to gain suffrage and 
to be excluded from suffrage, the ballot access rules, the rules 
for postal voting, the opening hours of the polling places) would 
have to be harmonized all over the USA, leading to a very 
powerful central election authority. 

This property is desirable especially for the elections to the 
National Conventions for the nominations of the presidential 
candidates. Here, the election rules and the set of candidates 
differ significantly from state to state. 

To combine the Schulze method with the Electoral College without 
losing any of its purposes, we recommend that, for each pair of candidates a 
and b separately, we should determine, how many electoral votes Nelectors[a,b] 
candidate a would get and how many electoral votes Nelectors[b,a] candidate b 
would get when only these two candidates were running. We then apply the 
Schulze method to the matrix Nelectors. 
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So we recommend the following method: 

Stage 1: 
Suppose AX ⊆ A is the set of candidates who are running in state X. 

For a,b ∈ AX: NX[a,b] ∈ 0 is the number of voters in state X who 
strictly prefer candidate a to candidate b. 

Stage 2: 
Suppose y ∈  with y > 0. Then “smaller(y)” is the largest integer that 
is smaller than or equal to y. In other words: “smaller(y)” is that 
integer z ∈ 0 with z ≤ y < ( z + 1 ). 

Suppose y ∈  with y > 0. Then “strictlysmaller(y)” is the largest 
integer that is strictly smaller than y. In other words: 
“strictlysmaller(y)” is that integer z ∈ 0 with z < y ≤ ( z + 1 ). 

Suppose EX ∈  is the number of electors of state X. 

Suppose: 

• FX[a,b] : = EX, if { a ∈ AX and b ∉ AX } or { a,b ∈ AX and NX[a,b] > NX[b,a] = 0 }. 

• FX[a,b] : = 0, if { a ∉ AX and b ∈ AX } or { a,b ∈ AX and NX[b,a] > NX[a,b] = 0 }. 

• FX[a,b] : = EX / 2, if { a,b ∉ AX } or { a,b ∈ AX and NX[a,b] = NX[b,a] }. 

• FX[a,b] : = 0.01 · smaller (
],[],[

)1001(],[
ab

b
bNaN

EaN
XX

XX

+
⋅+⋅ ), 

if a,b ∈ AX and NX[a,b] > NX[b,a] > 0. 

• FX[a,b] : = 0.01 · strictlysmaller (
],[],[

)1001(],[
ab

b
bNaN

EaN
XX

XX

+
⋅+⋅ ), 

if a,b ∈ AX and NX[b,a] > NX[a,b] > 0. 

Nelectors[a,b] : = ∑X FX[a,b]. 

Stage 3: 
The Schulze method, as defined in section 2.2, is applied to Nelectors. 
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9. Comparison with other Methods 
 

Table 9.2 compares the Schulze method with its main contenders. 
Extensive descriptions of the different methods can be found in publications 
by Fishburn (1977), Nurmi (1987), Kopfermann (1991), Levin and Nalebuff 
(1995), and Tideman (2006). As most of these methods only generate a set  
of winners and don’t generate a binary relation , only that part of the 
different criteria is considered that refers to the set  of winners. 

 
In terms of satisfied and violated criteria, that election method, that 

comes closest to the Schulze method, is Tideman’s ranked pairs method 
(Tideman, 1987). The only difference is that the ranked pairs method doesn’t 
choose from the MinMax set BD. 

The ranked pairs method works from the strongest to the weakest link. 
The link xy is locked if and only if it doesn’t create a directed cycle with 
already locked links. Otherwise, this link is locked in its opposite direction. 

In example 1, the ranked pairs method locks db. Then it locks cb. Then it 
locks ac. Then it locks ab, since locking ba in its original direction would 
create a directed cycle with the already locked links ac and cb. Then it locks 
cd. Then it locks ad, since locking da in its original direction would create a 
directed cycle with the already locked links ac and cd. 

The winner of the ranked pairs method is alternative a ∉ BD = {d}, 
because there is no locked link that ends in alternative a. 

 
Although Tideman’s ranked pairs method is that election method that 

comes closest to the Schulze method in terms of satisfied and violated criteria, 
random simulations by Wright (2009) showed that that election method, that 
agrees the most frequently with the Schulze method, is the Simpson-Kramer 
method (table 9.1). 
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number of 
alternatives A B C 

3 100.0 % 100.0 % 100.0 % 
4 99.7 % 98.5 % 98.2 % 
5 99.2 % 96.0 % 95.3 % 
6 99.1 % 93.0 % 92.3 % 
7 98.9 % 90.0 % 89.1 % 

 
Table 9.1: Simulations by Wright (2009) 

A: Probability that the Schulze method conforms with the 
Simpson-Kramer method 

B: Probability that the Schulze method conforms with the 
ranked pairs method 

C: Probability that the ranked pairs method conforms with 
the Simpson-Kramer method 
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Baldwin Y Y N N N Y N Y Y Y Y Y N N N Y 
Black Y Y Y Y N N N Y Y N Y Y N N N Y 
Borda Y Y Y Y N N N N Y N N Y Y N N Y 
Bucklin Y Y N Y N N N N N Y Y Y N N N Y 
Copeland N Y Y Y N Y Y Y Y Y Y Y N N N Y 
Dodgson Y Y N N N N N Y N N Y N N N N N 
instant runoff Y Y N N Y N N N Y Y Y Y N N N Y 
Kemeny-Young Y Y Y Y N Y Y Y Y Y Y Y N N N N 
Nanson Y Y Y N N Y N Y Y Y Y Y N N N Y 
plurality Y Y N Y N N N N N N Y N Y N N Y 
ranked pairs Y Y Y Y Y Y Y Y Y Y Y Y N N Y Y 
Schulze Y Y Y Y Y Y Y Y Y Y Y Y N Y Y Y 
Simpson-Kramer Y Y N Y N N N Y N N Y N N N Y Y 
Slater N Y Y Y N Y Y Y Y Y Y Y N N N N 
Young Y Y N Y N N N Y N N Y N N N N N 
 
Table 9.2: Comparison of Election Methods 
 
“Y” = compliance 
“N” = violation 
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10. Discussion 
 
Suppose ΛD(a) : = maxD { (N[b,a],N[a,b]) | b ∈ A \ {a} } is the Simpson-

Kramer score of alternative a ∈ A. Then the Simpson-Kramer method is 
defined as follows: 

 
(10.1)  a ∈ SK : ⇔ ΛD(a) D ΛD(b) for all b ∈ A \ {a}. 

 
Over a long period of time, this method was the most popular election 

method among Condorcet activists, because this method minimizes the 
number of overruled voters. However, a very serious problem of this method 
is that it is not independent of clones, because it can happen that, when 
alternative a ∈ A is replaced by a set of clones K as described in (4.6.1) – 
(4.6.3), then the alternatives of the set K disqualify each other in such a 
manner that for some alternative b ∈ A \ {a}: 

 
(10.2)  Λ old

D (a) D Λ
old
D (b) and Λ new

D (b) D Λ
new
D (g) ∀ g ∈ K. 

 
To make the Simpson-Kramer method clone-proof, the concept of 

Simpson-Kramer scores has to be generalized from individual alternatives    
a ∈ A to sets of alternatives ∅ ≠ B ⊊ A: 

 
(10.3)  ΓD(B) : = maxD { (N[b,a],N[a,b]) | b ∉ B, a ∈ B }. 

 
We get 
 
(10.4)  ∀ a ∈ A: ΛD(a) ≈D ΓD({a}). 

 
The ΓD scores are clone-proof because, when alternative a ∈ A is 

replaced by a set of clones K, then we get for all ∅ ≠ B ⊊ A: 
 
(10.5a) a ∈ B ⇒ Γ new

D ( ( B ∪ K ) \ {a} ) ≈D Γ old
D (B). 

(10.5b) a ∉ B ⇒ Γ new
D (B) ≈D Γ old

D (B). 
 

Suppose βD : = minD { ΓD(B) | ∅ ≠ B ⊊ A } and BD : =  { ∅ ≠ B ⊊ A | 
ΓD(B) ≈D βD }. Then when we want primarily that the used election method 
is clone-proof and secondarily that it minimizes the number of overruled 
voters, then the maximum, that we can ask for, is 

 
(10.6)   ⊆ BD. 
 
In this paper, we propose a new single-winner election method (Schulze 

method) that is clone-proof (section 4.6) and that always chooses from the 
MinMax set BD (section 4.8). The latter property is the most characteristic 
property of the Schulze method, since this is the first time that an election 
method with this property is proposed. 

 
The Schulze method also satisfies many other criteria; some of them are 

also satisfied by the Simpson-Kramer method, like the Pareto criterion 
(section 4.3), resolvability (section 4.2), monotonicity (section 4.5), and 
prudence (section 4.9); some of them are violated by the Simpson-Kramer 
method, like the Smith criterion (section 4.7) and reversal symmetry (section 
4.4). Because of this large number of satisfied criteria, we consider the 
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Schulze method to be a promising alternative to the Simpson-Kramer 
method for actual implementations, especially when manipulation through 
clones or weak alternatives is an issue. 
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