Mathematics 690 syllabus: Spring 2019
Topics in Algebraic number theory: Modular forms on G_2

1 About the instructor

1. Name: Aaron Pollack
2. Office: Physics 213
3. email: apollack@math.duke.edu
4. course website: https://services.math.duke.edu/~apollack/teachingS19.html

2 Basic course information

1. Class meeting: Tuesdays and Thursdays, 4:40pm-5:55pm, in Physics 227
2. My office hours: TBD, and by appointment
3. Final exam: There will not be a final exam
4. Class presentation: Each enrolled student will prepare one lecture sometime throughout the term (from a list of possibilities)
5. Homework: There will be occasional short homework assignments.

3 Course Synopsis

The study of modular forms on G_2 was initiated by Gan, Gross, and Savin, following work of Gross and Wallach and Wallach on quaternionic discrete series. This course will be an introduction to this circle of ideas. In particular, the course will cover: the octonions and G_2; the arithmetic invariant theory of cubic rings; the explicit Fourier expansion of modular forms on G_2; theta functions and Eisenstein series; and the Dirichlet series for the standard L-function of modular forms. We will begin by discussing analogous facts on GSp_4. For the student only familiar with classical modular forms, the course may serve as an introduction to automorphic forms on larger groups.

4 Material covered

This course is aimed at graduate students in number theory/automorphic forms. Another title for this course could have been “Modular forms: Examples, Fourier expansions, and L-functions”. On the one hand, the goal from this course is to discuss examples, Fourier expansions, and L-functions for modular forms on G_2. However, the other main goal for this course is to introduce you to various techniques and ideas that are prevalent in modern number theory, through some interesting examples and applications. As a consequence, the course will be a bit of a hodge-podge of different things, although hopefully many of these things will be useful for your research or understanding of modern number theory.
A rough plan for the course\footnote{This is subject to change} is as follows:

1. Introduction

2. Review of modular forms on GL_2:

 (a) L-functions on GL_2: Rankin-Selberg and Hecke
 (b) Eisenstein series; Casselman-Shalika

3. Siegel modular forms:

 (a) Definition, examples, basic properties
 (b) Eisenstein series: Siegel, Klingen, constant term; Hecke summation.
 (c) Theta functions and Poisson summation
 (d) Hecke operators; Satake transform; definition of L-functions
 (e) The Spin L-function on GSp_4
 (f) The standard L-function on GSp_4

4. Quaternions, octonions, and G_2

 (a) Review of quaternions
 (b) Octonions; definition of G_2; special subgroups of G_2
 (c) The Lie algebra of G_2
 (d) Parabolic subgroups of G_2; flag varieties;
 (e) Arithmetic invariant theory of binary cubics

5. Modular forms on G_2

 (a) Differential equations for modular forms on GL_2, GSp_4
 (b) Fourier expansion of modular forms on G_2
 (c) Klingen Eisenstein series

6. The standard L-function on G_2

 (a) Spin_8; the Rankin integral
 (b) Satake on G_2; local calculations

7. Time permitting: Bigger exceptional groups

 (a) F_4, E_6, E_7, E_8
 (b) The minimal representation on E_8
 (c) The dual pair $G_2 \times F_4 \subseteq E_8$