MATH 411, HW 7 SOLUTIONS

3.24.3. Let \(f : X \to X \) be continuous. Show that if \(X = [0,1] \), there is a point with \(f(x) = x \). What happens if \(X = [0,1] \) or \((0,1)\)?

Consider the continuous function \(g : [0,1] \to [-1,1] \) defined by \(g(x) = f(x) - x \). We have \(g(0) = f(0) \ge 0 \) and \(g(1) = f(1) - 1 \le 0 \). By the intermediate value theorem, there is some \(t \in [0,1] \) such that \(g(t) = 0 \), and hence \(f(t) = t \).

On the other hand, for \(X = [0,1] \) or \((0,1)\), the function \(f(x) = \frac{x+1}{2} \) is continuous, takes values in \(X \), and has no fixed point (if \(\frac{x+1}{2} = x \), then \(x = 1 \)).

3.24.5. Consider the following sets in the dictionary order. Which are linear continua?

 (a) \(\mathbb{Z}_+ \times [0,1] \)

 We claim that this is a linear continuum. Given any \(n \times x \) and \(n' \times x' \) with \(n \times x < n' \times x' \), if \(n = n' \), then \(x < x' \), so \(n \times x < n \times \frac{x+x'}{2} < n \times x' \); and if \(n < n' \), then \(n \times x < n \times \frac{x+1}{2} < n' \times x' \). To prove the least upper bound property, suppose \(A \) is a bounded-above subset of \(\mathbb{Z}_+ \times [0,1] \). The first coordinates of all elements of \(A \) must be bounded above, so there are only finitely many different values; let \(n_0 \) be the largest value that occurs. Let \(B = \{ y \in [0,1] \mid n_0 \times y \in A \} \). Since \(B \) is bounded above, \(\sup(B) \) exists. If \(\sup(B) < 1 \), then \(n_0 \times \sup(B) \) is the least upper bound for \(A \); otherwise, \((n_0 + 1) \times 0 \) is the least upper bound.

 (b) \([0,1] \times \mathbb{Z}_+ \)

 This is not a linear continuum: there is no element between \(x \times n \) and \(x \times n + 1 \).

 (c) \([0,1] \times [0,1] \)

 This is a linear continuum; the proof of Example 1 of §24 follows through almost verbatim. Let \(A \) be a bounded subset of \([0,1] \times [0,1] \); let \(x_0 \times y_0 \) be an upper bound. We must have \(x_0 < 1 \), so \(A \subseteq [0,x_0] \times [0,1] \). Thus, there is no problem in finding \(b = \sup(\pi_1(A)) \).

 (d) \([0,1] \times [0,1] \)

 Let \(A = \{ \frac{1}{2} \} \times [0,1] \). This set is bounded above by any \(x \times 0 \) with \(\frac{1}{2} < x \le 1 \), but not by any \(\frac{1}{2} \times y \). Therefore, there is no least upper bound. Thus, the set is not a linear continuum.

3.24.7.

 (a) Let \(X \) and \(Y \) be ordered sets in the order topology. Show that if \(f : X \to Y \) is order preserving and surjective, then \(f \) is a homeomorphism.

 Note that order-preserving means that \(x < x' \) implies \(f(x) < f(x') \).

 First, we check that \(f \) is injective: For any distinct \(x \neq x' \in X \), either \(x < x' \) (so \(f(x) < f(x') \)) or \(x' < x \), (so \(f(x') < f(x) \)). In either case, we see that \(f(x) \neq f(x') \). Thus, \(f \) has an inverse function \(f^{-1} \). Moreover, the inverse of \(f \) is also order-preserving: if \(y < y' \), we may rewrite this as \(f(f^{-1}(y)) < f(f^{-1}(y')) \), and therefore \(f^{-1}(y) < f^{-1}(y') \) since \(f \) is order preserving.

 To see that \(f \) is continuous, we just observe that \(f^{-1}((a,b)) = (f^{-1}(a), f^{-1}(b)) \), which is open. Likewise, \(f^{-1} \) is also continuous since it is order-preserving.
(b) Let \(X = Y = \mathbb{R}_+ \) (i.e. the set of nonnegative real numbers). Given a positive integer \(n \), show that the function \(f(x) = x^n \) is order preserving and surjective. Conclude that its inverse, the \(n \)th root function, is continuous.

If \(0 \leq x < y \), then
\[
f(y) - f(x) = y^n - x^n = (y - x)(y^{n-1} + y^{n-2}x + \cdots + xy^{n-2} + x^{n-1}) > 0
\]
since each of the two factors is \(> 0 \). Thus, \(f(x) < f(y) \). Thus, \(f \) is order preserving. (You can also prove this using calculus.)

To show that \(f \) is surjective, let \(y \in \mathbb{R}_+ \). There is some positive integer \(m \) such that \(0 \leq y \leq m^n \). By the intermediate value theorem, there exists a real number \(x \in [0, n] \) such that \(x^n = y \), as required.

By part (a), it follows that the inverse function of \(f \) is continuous.

(c) Let \(X = (-\infty, 1) \cup [0, \infty) \subset \mathbb{R} \) with the subspace topology. Show that the function \(f: X \rightarrow \mathbb{R} \) defined by
\[
f(x) = \begin{cases}
 x + 1 & x < -1 \\
 x & x > 0
\end{cases}
\]
is order preserving and surjective. Is \(f \) a homeomorphism?

If \(x < x' \), there are three cases: If \(x < x' < -1 \), then \(f(x) = x + 1 \) and \(f(x') = x' + 1 \). If \(0 \leq x < x' \), then \(f(x) = x \) and \(f(x') = x' \). If \(x < -1 \) and \(0 \leq x' \), then \(f(x) = x + 1 < 0 \) and \(f(x') = x' \geq 0 \). In all three cases, we see that \(f(x) < f(x') \). Moreover, \(f \) is surjective: if \(y \geq 0 \), then \(y = f(y) \), while if \(y < 0 \), then \(y = f(y - 1) \).

However, \(f \) is not a homeomorphism: \(X \) is not connected, while \(Y \) is connected. The point is that the subspace topology on \(X \) is different from the order topology. (See p. 90 in Munkres.) In particular, sets of the form \([0, a)\) are open in the subspace topology but not in the order topology.

3.24.8.

(a) Is a product of path-connected spaces necessarily path-connected?

Yes, assuming that we use the product topology; it’s false otherwise. If \(x = (x_\alpha) \) and \(y = (y_\alpha) \) are points of \(\prod X_\alpha \), choose paths \(f_\alpha: [0, 1] \rightarrow X_\alpha \) with \(f_\alpha(0) = x_\alpha \) and \(f_\alpha(1) = y_\alpha \) for each \(\alpha \). Then the function \(f: [0, 1] \rightarrow \prod X_\alpha \) with coordinate functions \(f_\alpha \) is continuous (since we are using the product topology), so it is a path from \(x \) to \(y \).

(b) If \(A \subset X \) and \(A \) is path-connected, is \(A \) necessarily path-connected?

No: consider the example of the topologist’s sine curve. The set \(S \) is just an embedded copy of \((0, \infty)\), which is path-connected, but \(\bar{S} = S \cup \{0\} \times [-1, 1] \) is not path-connected.

(c) If \(f: X \rightarrow Y \) is continuous and \(X \) is path-connected, is \(f(X) \) necessarily path-connected?

Yes. For any \(y_0, y_1 \in f(X) \), choose points \(x_0, x_1 \in X \) with \(f(x_0) = y_0 \) and \(f(x_1) = y_1 \). There is a path \(\gamma: [0, 1] \rightarrow X \) with \(\gamma(0) = x_0 \) and \(\gamma(1) = x_1 \). Then \(f \circ \gamma \) is a path from \(y_0 \) to \(y_1 \).

(d) If \(\{X_\alpha\} \) is collection of path-connected subspaces of \(X \), and if \(\bigcap A_\alpha \neq \emptyset \), is \(\bigcup A_\alpha \) necessarily path-connected?

Yes. Choose \(x_0 \in \bigcap A_\alpha \). For any points \(x, y \in \bigcup X_\alpha \), assume that \(x \in X_\alpha \) and \(y \in X_\beta \) for some \(\alpha, \beta \). Choose a path from \(x \) to \(x_0 \) in \(X_\alpha \) and from \(x_0 \rightarrow y \) in \(X_\beta \). The concatenation of these paths is then a path from \(x \) to \(y \) in \(\bigcup X_\alpha \).
3.25.1. What are the components and path components of \(\mathbb{R}_t \)? What are the continuous functions \(f : \mathbb{R} \rightarrow \mathbb{R}_t \)?

For any \(x \in \mathbb{R} \), the sets \((-\infty, x) \) and \([x, \infty) \) are both open in \(\mathbb{R}_t \), giving a separation. Thus, for any \(a < b \), we may find a separation (take \(x = \frac{a+b}{2} \)) in which \(a \) and \(b \) are on opposite sides. It follows that the only connected subspaces of \(\mathbb{R}_t \) are the one-point sets. These are therefore the components and path components.

If \(f : \mathbb{R} \rightarrow \mathbb{R}_t \) is continuous, then the image of \(f \) must be connected, hence a one-point set, so \(f \) is a constant function.

3.25.2.

(a) What are the components and path-components of \(\mathbb{R}^\omega \) (in the product topology)?

By problem 3.24.8(a), \(\mathbb{R}^\omega \) is path-connected, so it has only one component and one path-component. To be explicit, for any sequences \(x \) and \(y \), the function

\[
f(t) = (1-t)x + ty = ((1-t)x_1 + ty_1, (1-t)x_2 + ty_2, \ldots)
\]

is a path from \(x \) to \(y \).

(b) Consider \(\mathbb{R}^\omega \) in the uniform topology. Show that \(x \) and \(y \) lie in the same component of \(\mathbb{R}^\omega \) iff the sequence \(x - y = (x_1 - y_1, x_2 - y_2, \ldots) \) is bounded.

First, we prove the statement in the case where \(y = 0 \).

If \(x \) is bounded, then the function \(f(t) = tx \) is continuous, as seen in problem 3.20.4(a) in HW 5, and thus gives a path from \(0 \) to \(x \). (The problem only gave a few examples, but I wrote up a more general proof in the solutions.) Thus, \(x \) is in the same component as \(0 \).

Next, we show that if \(x \) is not bounded, then \(x \) lies in a different component than \(0 \). Let \(B \) be the set of bounded sequences and \(U \) the set of unbounded sequences. We claim that \(B \) and \(U \) are both open in the uniform topology. More generally, let \(u \) and \(v \) be any sequences with \(\bar{\rho}(u, v) = r < 1 \). If one of the two sequences is bounded (say \(|u_i| \leq M \) for some \(M \)), then since \(|u_i - v_i| \leq r \) for all \(i \), we have \(|v_i| \leq |u_i| + |v_i - u_i| \leq M + r \), so the other sequence is bounded as well. Thus, the sets \(B \) and \(U \) are both open:

for any \(x \in B \), \(B(x, 1) \subset B \), and for any \(x \in U \), \(B(x, 1) \subset U \). In particular, if \(x \in U \), then \(\mathbb{R}^\omega = B \cup U \) is a separation of \(\mathbb{R}^\omega \) separating \(0 \) from \(x \), so \(0 \) and \(x \) cannot lie in the same component.

Now, we return to the general case. For any fixed \(y \in \mathbb{R}^\omega \), the function \(g_y : \mathbb{R}^\omega \rightarrow \mathbb{R}^\omega \) given by \(g_y(x) = x - y \) is an isometry with respect to the uniform metric, hence a homeomorphism. (It is also a homeomorphism with respect to the box and product topologies, as was established in problem 2.19.8 on HW 4.) Thus, \(x \) and \(y \) lie in the same component iff \(g_y(x) = x - y \) and \(g_y(y) = 0 \) lie in the same component. By the preceding discussion, this holds iff \(x - y \) is bounded.

(c) Give \(\mathbb{R}^\omega \) the box topology. Show that \(x \) and \(y \) lie in the same component of \(\mathbb{R}^\omega \) iff \(x - y \) is eventually zero.

Just as in the previous problem, it suffices to consider the case where \(y = 0 \), since the functions \(g_y \) are homeomorphisms with respect to the box topology.

If \(x \) is eventually 0, then the function \(f(x) = tx \) is continuous, as seen in my writeup of problem 2.20.4(a), and therefore \(x \) lies in the same component as \(y \).

Suppose \(x \) is not eventually 0. Following the hint, let \(h : \mathbb{R}^\omega \rightarrow \mathbb{R}^\omega \) be the function defined in coordinates by

\[
h_i(u) = \begin{cases} u_i & \text{if } x_i = 0 \\ i(1 - \frac{u_i}{x_i}) & \text{if } x_i \neq 0. \end{cases}
\]
That is, the ith coordinate of $h(\mathbf{u})$ only depends on u_i, as a linear function with nonzero slope. By problem 2.19.8, h is a homeomorphism. Observe that $h(x) = 0$, while $h(0)$ has ith coordinate equal to 0 if $x_i = 0$ and equal to i if $x_i \neq 0$. Thus, if x is not eventually 0, then $h(0)$ is not bounded. The sets B and U from part (b) are open in the uniform topology, hence also in the box topology. Therefore, $h^{-1}(B)$ and $h^{-1}(U)$ form a separation of \mathbb{R}^ω, with $x \in h^{-1}(B)$ and $0 \in h^{-1}(U)$. Thus, x and 0 are not in the same component of \mathbb{R}^ω, as required.

3.25.3. Show that the ordered square I_o^2 is locally connected but not locally path connected. What are the path components of this space?

In Example 1 of §24, it is established that I_o^2 is a linear continuum. For any $x \times y \in I_o^2$, and any open set U containing $x \times y$, there is an open interval or ray V containing $x \times y$ and contained in U. By Theorem 24.1, V is connected. Thus, $I \times I$ is locally connected.

On the other hand, we show that the ordered square is not locally connected at say $(0,0)$. The sets $B = \{ x \times y : 0 < x \leq 1 \}$ and $B' = \{ x \times y : 0 < y \leq 1 \}$ are open in I_o^2 and $B \cap B' = \emptyset$. Then $I_o^2 = B \cup B'$, and we see that I_o^2 is not locally connected at $(0,0)$.

3.26.3. Show that a finite union of compact subspaces of X is compact.

Let $A = A_1 \cup \cdots \cup A_n$, where each A_i is a compact subspace of X. Let \mathcal{U} be any collection of open sets in X covering A. For each $i = 1, \ldots, n$, there is a finite subcollection $U_1^{(i)}, \ldots, U_k_i^{(i)}$ of sets in \mathcal{U} whose union contains A_i. Then

$$A \subset \bigcup_{i=1}^{n} \bigcup_{j=1}^{k_i} U_j^{(i)},$$

which is the union of a finite subcollection of sets in \mathcal{U}.

3.26.4. Show that every compact subspace of a metric space is bounded in that metric and is closed. Find a metric space in which not every closed bounded subspace is compact.

Let (X,d) be a metric space, and A a compact subspace of X. Choose some $x_0 \in X$, and consider the open sets $\{ B(x_0,r) \mid r \in \mathbb{R} \}$. The set A is contained in the union of these sets, so there is some r such that $A \subset B(x_0,r)$. For any $a_1, a_2 \in A$, we have $d(a_1, a_2) \leq d(a_1, x_0) + d(x_0, a_2) < 2r$, so A is bounded.

On the other hand, let \bar{d} be the standard bounded metric on \mathbb{R}: $\bar{d}(x,y) = \min\{|x-y|, 1\}$. We have already established that \bar{d} induces the standard topology on \mathbb{R}; that \mathbb{R} is bounded in this metric; and that \mathbb{R} is not compact.

3.26.5. Let A and B be disjoint compact subspaces of the Hausdorff space X. Show that there exist disjoint open sets U and V containing A and B, respectively.

By Lemma 26.4, for each $b \in B$, there are disjoint open sets U_b, V_b such that $A \subset U_b$ and $b \in V_b$. The sets V_b cover B, so there is a finite subcover: that is, $B \subset V_{b_1} \cup \cdots \cup V_{b_n}$ for some $b_1, \ldots, b_n \in B$. Let $U = U_{b_1} \cap \cdots \cap U_{b_n}$ and $V = V_{b_1} \cup \cdots \cup V_{b_n}$. Then U and V are each open, $A \subset U$, $B \subset V$, and $U \cap V = \emptyset$, as required. (For the final statement, if $x \in U \cap V$, then $x \in V_{b_i}$ for some i, and also $x \in U_{b_i}$; contradiction.)