2.17.6. Let A, B, and A_α denote subsets of a space X.

(a) Show that if $A \subset B$, then $\overline{A} \subset \overline{B}$.

By definition, \overline{A} is the intersection of all closed sets containing A. Since \overline{B} is a closed set that contains B and hence A, it must therefore contain \overline{A}.

(b) Show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

The set $A \cup B$ is a closed set that contains $A \cup B$, so it contains both A and B, and therefore it contains both \overline{A} and \overline{B}. Therefore, $\overline{A \cup B} \supset \overline{A} \cup \overline{B}$.

Conversely, $\overline{A} \cup \overline{B}$ is a closed set (since it is the union of two closed sets) that contains $A \cup B$, so it contains $A \cup B$. (Note that we had to use the fact that finite intersections of closed sets are closed!)

(c) Show that $\bigcup A_\alpha \supset \bigcup \overline{A_\alpha}$; give an example where equality fails.

Just as in (b), the set $\bigcup A_\alpha$ is a closed set that contains each A_α, so it contains each $\overline{A_\alpha}$, and thus it contains $\bigcup \overline{A_\alpha}$. (But we can’t do the converse because an arbitrary union of closures isn’t necessarily closed!)

As a counterexample, let A_i be the closed set $[\frac{1}{i}, 1] \subset \mathbb{R}$. Then $\bigcup_{i \in \mathbb{N}} A_i = \bigcup_{i \in \mathbb{N}} A_i = (0, 1]$, while $\overline{\bigcup_{i \in \mathbb{N}} A_i} = [0, 1]$.

2.17.11. Show that the product of two Hausdorff spaces is Hausdorff.

Let X and Y be Hausdorff spaces. For any two distinct points (x, y) and (x', y') in $X \times Y$, we may assume that they differ in at least one coordinate. If $x \neq x'$, choose disjoint open sets $U, U' \subset X$ with $x \in U$ and $x' \in U'$. Then $U \times Y$ and $U' \times Y$ are disjoint open sets in $X \times Y$ containing (x, y) and (x', y') respectively. Likewise, if $y \neq y'$, choose disjoint open sets $V, V' \subset Y$ with $y \in V$ and $y' \in V'$; then $X \times V$ and $X \times V'$ are the needed open sets.

2.17.12. Show that a subspace of a Hausdorff space is Hausdorff.

Let X be Hausdorff, and let $A \subset X$ be a subspace. For any two distinct points $x, x' \in A$, we may find disjoint open sets U, U' with $x \in U$ and $x' \in U'$. Then $U \cap A$ and $U' \cap A$ are disjoint open sets in A containing x and x' respectively.

2.17.13. Show that X is Hausdorff if and only if the diagonal $\Delta = \{x \times x \mid x \in X\}$ is closed in $X \times X$.

We will show an equivalent condition: that $X \times X - \Delta$ is open.

If X is Hausdorff, then for any $x \times x' \in X \times X - \Delta$, we have $x \neq x'$. Choose disjoint open sets U, U' with $x \in U$ and $x' \in U'$. Then $U \times U'$ is open in $X \times X$, and it does not contain any points of Δ. Therefore, $X \times X - \Delta$ is open.
Conversely, if $X \times X \setminus \Delta$ is open, then for any point $x \times x' \in X \times X - \Delta$, there is a basic open set $U \times U'$ containing $x \times x'$ and disjoint from Δ. Therefore, U and U' are disjoint open sets containing x and x' respectively.

2.17.17. Consider the lower limit topology and the topology given by the basis $\mathcal{C} = \{(a, b) \mid a, b \in \mathbb{Q}, a < b\}$. Determine the closures of the intervals $A = (0, \sqrt{2})$ and $B = (\sqrt{2}, 3)$ in these two topologies.

In the lower limit topology, we claim that the closure of any interval (a, b) is $[a, b)$. If $x < a$ or $x \geq b$, we can easily find an open set $[x, x+\epsilon)$ disjoint from (a, b). On the other hand, a is a limit point: any open set containing a must contain an interval $[a, a+\epsilon)$, which intersects (a, b). Thus, $\bar{A} = [0, \sqrt{2})$ and $\bar{B} = [\sqrt{2}, 3)$.

In the topology given by \mathcal{C}, the only difference is $\sqrt{2}$ is a limit point of A. Indeed, if (a, b) is an element of \mathcal{C} containing $\sqrt{2}$, we must have $a < \sqrt{2}$. Thus, $\bar{A} = [0, \sqrt{2}]$ and $\bar{B} = [\sqrt{2}, 3)$.

2.17.18. Determine the closures of the following subsets of the ordered square:

(a) $A = \left\{ \frac{1}{n} \times 0 \mid n \in \mathbb{Z}_+ \right\}$

We claim that $\bar{A} = A \cup \{0 \times 1\}$. The point 0×1 is a limit point because any open set containing 0×1 must contain $(0, \epsilon) \times [0, 1]$ for some $\epsilon > 0$, and therefore meets A. Any other point $x \times y \in I \times I - A$ can be seen to have a neighborhood (specifically, an interval in the dictionary ordering) that is disjoint from A. Namely, if $x = 0$ and $y < 1$, then we can use $[0 \times 0, 0 \times 1)$. If $0 < x < 1$, then choose $n \in \mathbb{Z}_+$ with $\frac{1}{n+1} < x < \frac{1}{n}$, and take the interval $(\frac{1}{n+1} \times 0, \frac{1}{n} \times 0)$. If $x = 1$ and $y > 0$, then take $(1 \times 0, 1 \times 1)$.

(b) $B = \{(1 - \frac{1}{n}) \times \frac{1}{2} \mid n \in \mathbb{Z}_+ \}$

We claim that $\bar{B} = \bar{B} \cup \{1 \times 0\}$. The argument is similar to the previous example.

(c) $C = \{x \times 0 \mid 0 < x < 1\}$

Any point $x \times y$ with $0 < y < 1$ has a neighborhood distinct from C, as do the points 0×0 and 1×1. On the other hand, any neighborhood of a point $x \times 0$ (with $0 < x \leq 1$) or $x \times 1$ (with $0 \leq x < 1$) must include an entire vertical strip (as in (a)), and thus intersect C. Thus,

$$\bar{C} = (0, 1] \times \{0\} \cup [0, 1) \times \{1\}$$

(d) $D = \{x \times \frac{1}{2} \mid 0 < x < 1\}$

Any point $x \times y$ with $0 < y < \frac{1}{2}$ or $\frac{1}{2} < y < 1$, or with $x = 0$ and $0 \leq y < 1$, or with $x = 1$ and $0 < y \leq 1$, has a neighborhood disjoint from D. On the other hand, any neighborhood of $x \times 0$ (with $0 < x \leq 1$) or of $x \times 1$ (with $0 \leq x < 1$) must include entire vertical segments, and thus intersects D. Thus,

$$\bar{D} = D \cup \{x \times 0 \mid 0 < x \leq 1\} \cup \{x \times 1 \mid 0 \leq x < 1\}.$$

(e) $E = \{\frac{1}{2} \times y \mid 0 < y < 1\}$

Any point $x \times y$ with $0 \leq x < \frac{1}{2}$ or $\frac{1}{2} < x \leq 1$ has a neighborhood disjoint from E. The points $\frac{1}{2} \times 0$ and $\frac{1}{2} \times 1$ are limit points. Therefore, $\bar{E} = \{\frac{1}{2} \times y \mid 0 \leq y \leq 1\}$.

2.18.2. Suppose that \(f: X \to Y \) is continuous. If \(x \) is a limit point of \(A \subset X \), is it necessarily true that \(f(x) \) is a limit point of \(f(A) \)?

Suppose \(f \) is a constant function: \(f(x) = y_0 \) for all \(x \in X \). Then for any limit point \(x \) of \(A \), we have \(f(x) = y_0 \). Since \(f(A) \) has only one point, that point cannot be a limit point.

2.18.7(a). Suppose that \(f: \mathbb{R} \to \mathbb{R} \) is “continuous from the right,” i.e., \(\lim_{x \to a^+} f(x) = f(a) \) for each \(a \in \mathbb{R} \). Show that \(f \) is continuous when considered as a function from \(\mathbb{R}_f \) to \(\mathbb{R} \).

As a review from calculus, we say that \(\lim_{x \to a^+} f(x) = b \) if for all \(\epsilon > 0 \), there is a \(\delta > 0 \) such that for all \(x \) with \(a < x < a + \delta \), we have \(|f(x) - b| < \epsilon \).

Now, assume that \(\lim_{x \to a^+} f(x) = f(a) \) for each \(a \in \mathbb{R} \). Let \(U \subset \mathbb{R} \) be an open set. For any \(a \in f^{-1}(U) \), choose some \(\epsilon > 0 \) such that \((f(a) - \epsilon, f(a) + \epsilon) \subset U \). By assumption, there is a \(\delta > 0 \) such that \(f([a, a + \delta)) \subset (f(a) - \epsilon, f(a) + \epsilon) \subset U \), and therefore \([a, a + \delta) \subset f^{-1}(U) \). Thus, \(f^{-1}(U) \) is open in \(\mathbb{R}_f \).

Note: We will see in Chapter 3 that the only continuous maps from \(\mathbb{R} \) to \(\mathbb{R}_f \) are constant maps.

2.18.8. Let \(Y \) be an ordered set in the order topology. Let \(f, g: X \to Y \) be continuous.

(a) Show that the set \(\{ x \mid f(x) \leq g(x) \} \) is closed in \(X \).

In class we proved the following: Given an ordered set \(Y \), for any two distinct elements \(a, b \in Y \) with \(a < b \), there are open sets \(U, V \) such that \(a \in U \), \(b \in V \), and for all \(c \in U \) and \(d \in V \), \(c < d \).

Now, let us show that the set \(A = \{ x \mid f(x) > g(x) \} \) (which is the complement of the one above) is open in \(X \). Suppose \(x \in A \). We may find open sets \(U \) and \(V \) as above with \(g(x) \in U \) and \(f(x) \in V \). Then \(g^{-1}(U) \) and \(f^{-1}(V) \) are open in \(X \), and \(g^{-1}(U) \cap f^{-1}(V) \) contains \(x \) and is contained in \(A \). Thus, \(A \) is open as required.

(b) Let \(h: X \to Y \) be the function \(h(x) = \min\{f(x), g(x)\} \). Show that \(h \) is continuous.

By the preceding discussion, the sets \(C_1 = \{ x \mid f(x) \leq g(x) \} \) and \(C_2 = \{ x \mid f(x) \geq g(x) \} \) are closed, and their union equals \(X \). The function \(h \) equals \(f \) on \(C_1 \) and \(g \) on \(C_2 \), and these agree on the overlap. Hence, by the pasting lemma, \(h \) is continuous.