1.5.10. Let A be an $m \times n$ matrix. Prove or give a counterexample: If $Ax = 0$ has only the trivial solution $x = 0$, then $Ax = b$ always has a unique solution.

This is false! The trap is that $Ax = b$ may not have any solutions (and the problem cleverly omitted the assumption $Ax = b$ is consistent). For instance, if

\[
A = \begin{bmatrix}
1 & 0 \\
0 & 1 \\
0 & 0
\end{bmatrix}, \quad b = \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix},
\]

then the equation $Ax = 0$ immediately gives $x_1 = x_2 = 0$ and hence $x = 0$, but $Ax = b$ has no solutions.

1.5.12. In each case, give positive integers m and n and an example of an $m \times n$ matrix A with the stated property, or explain why none can exist.

(a) $Ax = b$ is inconsistent for every $b \in \mathbb{R}^m$.

If $b = 0$, then the solution $Ax = b$ always has at least one solution, namely $x = 0$. Therefore, this can’t happen.

(b) $Ax = b$ has one solution for every $b \in \mathbb{R}^m$.

This will be true for any nonsingular $n \times n$ matrix. The most basic example is $m = n = 1$ and $A = [1]$.

(c) $Ax = b$ has no solutions for some $b \in \mathbb{R}^m$ and one solution for every other $b \in \mathbb{R}^m$.

This definitely can’t happen. For instance, if $Ax = b$ has no solutions, then $Ax = 2b$ also has no solutions, since if x were a solution to $Ax = 2b$, then $\frac{1}{2}x$ would be a solution to $Ax = b$.

(d) $Ax = b$ has infinitely many solutions for every $b \in \mathbb{R}^m$.

This will be true for any $m \times n$ matrix A with $m < n$ and rank(A) = m. An example is $m = 1, n = 2, A = [1 \ 1]$.

(e) $Ax = b$ is inconsistent for some $b \in \mathbb{R}^m$ and has infinitely many solutions whenever it is consistent.

This will be true for any $m \times n$ matrix A where rank(A) < m (which guarantees that it’s sometimes inconsistent) and rank(A) < n (which guarantees that there are infinitely many solutions). For instance, we could take $m = n = 2$ and $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.

(f) There are vectors $b_1, b_2, b_3 \in \mathbb{R}^m$ such that $Ax = b_1$ has no solutions, $Ax = b_2$ has one solution, and $Ax = b_3$ has infinitely many solutions.

We saw in class that this cannot happen.

1.5.13. Suppose A is an $m \times n$ matrix with rank m, and $v_1, \ldots, v_k \in \mathbb{R}^n$ with span(v_1, \ldots, v_k)$= \mathbb{R}^n$. Prove that span(Av_1, \ldots, Av_k)$= \mathbb{R}^m$.

We need to show that every vector in \mathbb{R}^n can be written as a linear combination of Av_1, \ldots, Av_k. Since rank(A) = m, for any $b \in \mathbb{R}^n$, we know that the system $Ax = b$ has a
solution, which means that \(b = Aw \) for some vector \(w \in \mathbb{R}^n \). Since the vectors \(v_1, \ldots, v_k \) span all of \(\mathbb{R}^n \), we can write \(w = c_1v_1 + \cdots + c_kv_k \) for some scalars \(c_1, \ldots, c_k \). We then observe:

\[
\begin{align*}
\mathbf{b} &= \mathbf{A}w \\
&= \mathbf{A}(c_1\mathbf{v}_1 + \cdots + c_k\mathbf{v}_k) \\
&= c_1\mathbf{A}v_1 + \cdots + c_k\mathbf{A}v_k.
\end{align*}
\]

So \(\mathbf{b} \in \text{Span}(\mathbf{A}v_1, \ldots, \mathbf{A}v_k) \), as required. \(\square \)

1.5.14. Let \(A \) be an \(m \times n \) matrix with row vectors \(A_1, \ldots, A_m \). (a) Suppose \(A_1 + \cdots + A_m = 0 \). Deduce that \(\text{rank}(A) < m \).

First proof: For any vector \(\mathbf{x} = (x_1, \ldots, x_n) \), we have \(0 = (A_1 + \cdots + A_m) \cdot \mathbf{x} = A_1 \cdot \mathbf{x} + \cdots + A_m \cdot \mathbf{x} \), which is the sum of the entries of \(\mathbf{A} \mathbf{x} \). This means that if \(\mathbf{A} \mathbf{x} = \mathbf{b} \) has solutions, then the sum of the entries in \(\mathbf{b} \) must be zero. Equivalently, if \(\mathbf{b} \) is any vector whose sum of entries is nonzero, then \(\mathbf{A} \mathbf{x} = \mathbf{b} \) has no solutions. This implies that \(\text{rank}(A) < m \).

Second proof: Let’s perform some row operations to \(A \). First, add a multiple of each of the first \(m-1 \) rows to the last row, and call the resulting matrix \(B \). By assumption, the new \(m^\text{th} \) row will be all zeros. If we then perform Gaussian elimination to obtain any echelon form of \(B \) (which is an echelon form of \(A \)), there will be at least one row of zeros at the bottom, and therefore \(\text{rank}(A) < m \). \(\square \)

(b) More generally suppose there is some linear combination \(c_1A_1 + \cdots + c_mA_m = 0 \), where some \(c_i \neq 0 \). Show that \(\text{rank}(A) < m \).

We can easily adapt the first proof from above to show that if \(\mathbf{A} \mathbf{x} = \mathbf{b} \) has solutions, then \(c_1b_1 + \cdots + c_mb_m = 0 \). If we choose \(\mathbf{b} = (0, \ldots, 1, \ldots, 0) \), where the 1 is in the \(i^\text{th} \) entry, then we see there are no solutions. \(\square \)

1.6.9. A circle \(C \) passes through the points \((2, 6), (-1, 7), \) and \((-4, -2)\). Find the center and radius of \(C \).

To begin, the equation of a circle is \((x - x_0)^2 + (y - y_0)^2 = r^2\). This can also be written as

\[
x^2 - 2x_0x + x_0^2 + y^2 - 2y_0y + y_0^2 = r^2,
\]
or equivalently as

\[
x^2 + y^2 + ax + by + c = 0,
\]

where \(a = -2x_0 \), \(b = -2y_0 \), and \(c = x_0^2 + y_0^2 - r^2 \).

Now, if the circle contains the given points, we must have:

\[
\begin{align*}
2a + 6b + c &= -4 - 36 = -40 \\
-a + 7b + c &= -1 - 49 = -50 \\
-4a - 2b + c &= -16 - 4 = -20.
\end{align*}
\]

If we solve this by Gaussian elimination, which I leave up to you, we see that \(a = 2 \), \(b = -4 \), and \(c = -20 \). Hence, we must have \(x_0 = -1 \), \(y_0 = -2 \), and \(r^2 = x_0^2 + y_0^2 - c = 25 \), so \(r = 5 \). Thus, the points all lie on a circle of radius 5 about \((-1, 2)\) (which you can easily check).
1.6.11. Let \(P_i = (x_i, y_i) \in \mathbb{R}^2 \) for \(i = 1, 2, 3 \). Let
\[
A = \begin{bmatrix}
 x_1 & y_1 & 1 \\
 x_2 & y_2 & 1 \\
 x_3 & y_3 & 1
\end{bmatrix}.
\]

(a) Show that the points \(P_1, P_2, P_3 \) are collinear if and only if the equation \(Ax = 0 \) has a nontrivial solution.

As the hint suggests, a general line in \(\mathbb{R}^2 \) has the Cartesian equation \(ax + by + c = 0 \), where \(a \) and \(b \) are not both zero. The condition that \(P_1, P_2, \) and \(P_3 \) all lie on a particular line is precisely that \(ax_i + by_i + c = 0 \) for each \(i \), or in other words
\[
\begin{bmatrix}
 x_1 & y_1 & 1 \\
 x_2 & y_2 & 1 \\
 x_3 & y_3 & 1
\end{bmatrix} \begin{bmatrix}
 a \\
 b \\
 c
\end{bmatrix} = \begin{bmatrix}
 0 \\
 0 \\
 0
\end{bmatrix}.
\]

If such a line exists, then those values of \((a, b, c)\) provide a nonzero solution to the equation \(Ax = 0 \). Conversely, if there is a nonzero vector \(x = (a, b, c) \) with \(Ax = 0 \), this vector must have either first or second entry nonzero because
\[
\begin{bmatrix}
 x_1 & y_1 & 1 \\
 x_2 & y_2 & 1 \\
 x_3 & y_3 & 1
\end{bmatrix} \begin{bmatrix}
 0 \\
 0 \\
 c
\end{bmatrix} = \begin{bmatrix}
 c \\
 c \\
 c
\end{bmatrix}.
\]

Thus, the line \(ax + by + c = 0 \) contains all three points.

(b) Deduce that if the three given points are not collinear, then there is a unique circle passing through them.

According to problem 9, finding a circle through the three points is equivalent to finding \(a, b, \) and \(c \) for which we have
\[
x_1^2 + y_1^2 + ax_1 + by_1 + c = 0 \\
x_2^2 + y_2^2 + ax_2 + by_2 + c = 0 \\
x_3^2 + y_3^2 + ax_3 + by_3 + c = 0.
\]

Bringing the square terms over the the right, we can write this condition as \(Ax = b \), where
\[
x = \begin{bmatrix}
 a \\
 b \\
 c
\end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix}
 -x_1^2 - y_1^2 \\
 -x_2^2 - y_2^2 \\
 -x_3^2 - y_3^2
\end{bmatrix}.
\]

By part (a), if the points are non-collinear, then the matrix \(A \) is nonsingular. By Proposition 5.5, this implies that \(Ax = b \) has a unique solution, as required.