1. Read Heath Chapter 2, Sections 2.1–2.3.

2. **Vector norms.** Write C or Fortran routines to carry out the specified calculations:

 (a) The L_p vector norm for $1 \leq p$ for vectors in \mathbb{R}^n. A C routine should have the following declaration:

   ```c
   double vecnormp(double *x, double p, int n);
   ```

 The declaration for a Fortran routine should be analogous. The C built-in function `pow(x, y)` returns x^y, whereas in Fortran you do $x**y$. A naïve algorithm (not one you were asked to propose in Homework 1) will suffice.

 (b) The L_∞ vector norm for vectors in \mathbb{R}^n. A C routine should have the following declaration:

   ```c
   double vecnorminf(double *x, int n);
   ```

 The declaration for a Fortran routine should be analogous.

 (c) Make sure that your routines do what they are supposed to. My programs almost never work the first time they are run. So write a little test program that calls `vecnormp` and `vecnorminf`, and make sure that they return the correct norms.

3. **Matrix norms.** Write C or Fortran routines to carry out the specified calculations:

 (a) The L_1 matrix norm for matrices in $\mathbb{R}^{m \times n}$:

   ```c
   double matnrm1(double **A, int m, int n);
   ```

 (b) The L_∞ matrix norm for matrices in $\mathbb{R}^{m \times n}$:

   ```c
   double matnrminf(double **A, int m, int n);
   ```

 (c) Test the two routines as you did in question (1c).

4. **Matrix-vector products.** The high-level LAPACK routines are based on lower-level BLAS (Basic Linear Algebra Subprograms) routines. The BLAS routine that perform matrix-vector multiplications is `dgemv`.

 (a) *Netlib* is a collection of mathematical software, papers, and databases. It is the site where LAPACK and other useful routines can be downloaded. Go to www.netlib.org and search the Netlib repository for “dgemv.c” You should find that the routine is available in the C language. Download `dgemv.c` and take a look.

 (b) Write a test program that calls `dgemv` using a matrix-vector pair with known product, and make sure that `dgemv` returns the correct product vector. You will be compiling several source files to general an executable. An example command to do this for C is

   ```bash
   gcc -o dgemvtest testprogram.c -llapack
   ```

 and for Fortran replace `g++` with `f77`. Both commands link any necessary routines in the LAPACK library and generate an executable named `dgemvtest`.

Due: Friday, September 17, 2010

5. In this problem, you will use a basic random number generator to carry out Monte Carlo calculations, which are the ultimate in “brute force” computing.

In your program:

- If you are programming in C, add the line `#include <stdlib.h>` to the top of your program.
- The function `drand48()` in C will return a random double number in the interval $0 \leq x < 1$ each time. The analogous function in Fortran is `rand()`. The return values of these functions approximate a uniform random variable on $[0,1)$.

(a) Write a routine to fill the elements of vector $\vec{x} \in \mathbb{R}^n$ with uniform random numbers on the range $[-1,1)$ (note that this range is different from the range provided by the built-in random number generators, so you will need to do some scaling); in C,

```c
void randvec(double *x, int n);
```

In the next step, you will combine this routine with your norm and product functions from earlier questions.

(b) Declare matrix (double array) $A \in \mathbb{R}^{5 \times 5}$:

$$
A = \begin{bmatrix}
1 & 2 & 3 & -2 & -1 \\
4 & 3 & 2 & -3 & -4 \\
-2 & -1 & 0 & 1 & 2 \\
2 & -3 & 4 & -3 & 2 \\
1 & 2 & 3 & 4 & 5
\end{bmatrix}
$$

Let $n = 5$. Generate a random vector $\vec{x} \in \mathbb{R}^n$ using the routine you wrote in (a). Use A and \vec{x} as the inputs to `dgemv`, and call the output \vec{y}. Find the ratio

$$r = \frac{\|\vec{y}\|_p}{\|\vec{x}\|_p}$$

for $p = 1, 2, \infty$.

(c) Put (b) in a loop $k = 1, 2, \ldots, M$ to generate r_k’s, where M is a large number ($> 10^5$). Let R_k be the max of r_1, r_2, \ldots, r_k. Keep track of R_k. For $p = 1$, make a plot of k (logscale-horizontal) against R_k and $\|A\|_1$, where you calculate the matrix norm using your function from question 3. How big does k have to be for R_k to be within 10% of the matrix norm? Within 1%?

(d) Repeat (c) for $p = \infty$.

(e) Repeat (c) for $p = 2$. We don’t have a function to compute $\|A\|_2$, so take $M = 500000$ and report R_M.

7. Turn in

(a) Print-outs of your `vecnormp`, `vecnorminf`, `matnorm1`, `matnorminf`, `randvec` (but not the test programs).

(b) Your typed answers and plots to question 6, parts (c–e).