Homework 1: Float-point Numbers and Round-off Errors

Due: Friday, September 10, 2010

1. Read Heath Chapter 1. Also, check out http://www.nsc.liu.se/wg25/book/ch1/ on some dramatic pitfalls in scientific computing.

2. Write C or Fortran programs to determine ϵ_{mach}. Turn in your programs for (a), (b), and answer (c).

 (a) First, for float- (in C) or real- (in Fortran) type variables: Declare two variables: x, ϵ_{psilon}. Initialize $\epsilon = 1.0$. Create a loop, each time through the loop, assign $x = 1.0 + \epsilon$ and print-out the values of $x - 1.0$ and ϵ. Then, each time through the loop, also halve the value of ϵ. Repeat until the value of $x - 1$ is no longer positive.

 (b) Repeat for double-type variables (double precision if working in Fortran). If you are working in Fortran, remember to write the floating-point number 1.0, for example, as 1.0d0 to get double precision.

 (c) Use the results of (a) and (b) to determine number of bits in the mantissa of the two floating-point data types.

3. Write C or Fortran programs to determine the overflow level:

 (a) First, the determine the largest possible float-type variables: Declare a float or real variable r and initialize $r = 1.0$. Create a loop, each time through the loop, print-out the values of r and log(r)/log(2). (What is the meaning of the second quantity?) Then, each time through the loop, also double the value of r. Repeat until the value of r overflows the range of floats. In C, the function isinf(x), which tests if a number has overflowed and become “infini,” may be useful—it returns logical (integer) values 1 (TRUE) if “$x = \infty$” else 0 (FALSE). I am not aware of an analogous Fortran subroutine on our system, although you can do $x \cdot \text{eq. } x/0$ to check if “$x = \infty$.” Admittedly ad hoc, but it should work.

 Find the value k for the largest 2^k before overflow.

 (b) Repeat for double-type variables.

 (c) Use the results of (a) and (b) to determine number of bits in the exponent of the two floating-point data types, and the overall total number of bits for each floating-point type number based on this question and on (2).

4. Use Taylor approximations to avoid the loss-of-significance error in the following computations for small x:

 (a) $f(x) = \frac{e^x - e^{-x}}{2x}$

 (b) $f(x) = \frac{\ln(1 - x) + xe^{x/2}}{x^3}$

Box your final answers. In both cases, what is $\lim_{x \to 0} f(x)$?\footnote{The boxed items in homework questions are the final answer for each part—please box them on your problem sets to make things easier to grade.}