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CHAPTER 1

Introduction

1. Motivations

Evolutions in time with random influences/random dynamics. Let Nptq be the
“number of rabbits in some population” or “the price of a stock”. Then one might want to make a
model of the dynamics which includes “random influences”. A (very) simple example is

dNptq

dt
“ aptqNptq where aptq “ rptq ` “noise” . (1.1)

Making sense of “noise” and learning how to make calculations with it is one of the principal
objectives of this course. This will allow us predict, in a probabilistic sense, the behavior of Nptq .
Examples of situations like the one introduced above are ubiquitous in nature:

i) The gambler’s ruin problem We play the following game: We start with 3$ in our
pocket and we flip a coin. If the result is tail we loose one dollar, while if the result is
positive we win one dollar. We stop when we have no money to bargain, or when we reach
9$. We may ask: what is the probability that I end up broke?

ii) Population dynamics/Infectious diseases As anticipated, (1.1) can be used to model
the evolution in the number of rabbits in some population. Similar models are used to
model the number of genetic mutations an animal species. We may also think about
Nptq as the number of sick individuals in a population. Reasonable and widely applied
models for the spread of infectious diseases are obtained by modifying (1.1), and observing
its behavior. In all these cases, one may be interested in knowing if it is likely for the
disease/mutation to take over the population, or rather to go extinct.

iii) Stock prices We may think about a set of M risky investments (e.g. a stock), where the
price Niptq for i P t1, . . .Mu per unit at time t evolves according to (1.1). In this case, one

one would like to optimize his/her choice of stocks to maximize the total value
řM
i“1 αiNiptq

at a later time T .

Connections with diffusion theory and PDEs. There exists a deep connection between
noisy processes such as the one introduced above and the deterministic theory of partial differential
equations. This starling connection will be explored and expanded upon during the course, but we
anticipate some examples below:

i) Dirichlet problem Let upxq be the solution to the pde given below with the noted

boundary conditions. Here ∆ “ B2

Bx2 `
B2

By2 . The amazing fact is the following: If we start a

Brownian motion diffusing from a point px0, y0q inside the domain then the probability
that it first hits the boundary in the darker region is given by upx0, y0q.

ii) Black Scholes Equation Suppose that at time t “ 0 the person in iii) is offered the
right (without obligation) to buy one unit of the risky asset at a specified price S and at
a specified future time t “ T . Such a right is called a European call option. How much
should the person be willing to pay for such an option? This question can be answered by
solving the famous Black Scholes equation, giving for any stock price Nptq the right value
S of the European option.
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u = 1

1
2∆u = 0

u = 0

2. Outline For a Course

What follows is a rough outline of the class, giving a good indication of the topics to be covered,
though there will be modifications.

i) Weeks 1-2: Motivation and Introduction to Stochastic Process
(a) Motivating Examples: Random Walks, Population Model with noise, Black-Scholes,

Dirichlet problems
(b) Themes: Direct calculation with stochastic calculus, connections with pdes
(c) Introduction: Probability Spaces, Expectations, σ-algebras, Conditional expectations,

Random walks and discrete time stochastic processes. Continuous time stochastic pro-
cesses and characterization of the law of a process by its finite dimensional distributions
(Kolmogorov Extension Theorem). Markov Process and Martingales.

ii) Weeks 3-4: Brownian motion and its Properties
(a) Definitions of Brownian motion (BM) as a continuous Gaussian process with indepen-

dent increments. Chapman-Kolmogorov equation, forward and backward Kolmogorov
equations for BM. Continuity of sample paths (Kolmogorov Continuity Theorem).
BM and more Markov process and Martingales.

(b) First and second variation (a.k.a variation and quadratic variation) Application to BM
iii) Week 5: Stochastic Integrals

(a) The Riemann-Stieltjes integral. Why can’t we use it ?

(b) Building the Itô and Stratonovich integrals (Making sense of “
şt
0 σ dB.”)

(c) Standard properties of integrals hold: linearity, additivity
(d) Itô isometry: Ep

ş

f dBq2 “ E
ş

f2 ds.
iv) Week 6: Itô’s Formula and Applications

(a) Change of variable
(b) Connections with pdes and the Backward Kolmogorov equation

v) Week 7: Stochastic Differential Equations
(a) What does it mean to solve an sde ?
(b) Existence of solutions (Picard iteration), Uniqueness of solutions

vi) Week 8-9: Stopping Times
(a) Definition. σ-algebra associated to stopping time. Bounded stopping times. Doob’s

optional stopping theorem
(b) Dirichlet Problems and hitting probabilities
(c) Localization via stopping times

vii) Week 10: Levy-Doob theorem and Girsonov’s Theorem
(a) How to tell when a continuous martingale is a Brownian motion
(b) Random time changes to turn a Martingale into a Brownian motion
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(c) Hermite Polynomials and the exponential martingale
(d) Girsanov’s Theorem, Cameron-Martin formula, and changes of measure

(1) The simple example of i.i.d Gaussian random variables shifted
(2) Idea of Importance sampling and how to sample from tails
(3) The shift of a Brownian motion
(4) Changing the drift in a diffusion

viii) Week 11: Feller Theory of one dimensional diffusions
(a) Speed measures, natural scales, the classification of boundary point.

ix) Week 12-13: Applications
(a) Option Pricing and the Black-Scholes equation
(b) Population biology and Chemical Kinetics
(c) Stochastic Control, Signal Processing and Reinforcement learing
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CHAPTER 2

Probabilistic Background

1. Countable probability spaces

Example 1.1. We begin with the following motivating example. Consider a random sequence
ω “ tωiu

N
i“0 where

ωi “

#

1 with probability p

´1 with probability 1´ p

independent of the other ωj’s. We will also write this as

Prpω1, ω2, . . . , ωN q “ ps1, s2, . . . , sN qs “ pn`p1´ pqN´n`

for si “ ˘1, where n` :“ |ti : si “ `1u|. We can group the possible outcomes with ω1 “ `1:

A1 “ tω P Ω : ω1 “ 1u .

and compute the probability of such an event:

P rA1s “
ÿ

ωPA1

P rωs “ p.

Let Ω be the set of all such sequences of length N (i.e. Ω “ t´1, 1uN ), and consider now the
sequence of functions tXn : Ω Ñ Zu where

X0pωq “ 0 (2.1)

Xnpωq “
n
ÿ

i“1

ωi

for n P t1, ¨ ¨ ¨ , Nu. This sequence is a biased random walk (we call it unbiased or simply a random
walk if p “ 1{2) of length N : A simple example of a stochastic process. We can compute its
expectation:

E rX2s “
ÿ

iPt´2,0,2u

iP rX2 “ is “ 2p2 ´ 2p1´ pq2 “ 2p2p´ 1q .

This expectation changes if we assume that we have some information on the state of the random
walk at an earlier time:

E rX2|X1 “ 1s “
ÿ

iPt´2,0,2u

iP rX2 “ i|X1 “ 1s “ 2p` 0 p1´ pq “ 2p .

We now recall some basic definitions from the theory of probability which will allow us to put
this example on solid ground.

In the above example, the set Ω is called the sample space (or outcome space). Intuitively, each
ω P Ω is a possible outcome of all of the randomness in our system. The subsets of Ω (the sets of
outcomes we want to compute the probability of) are referred to as the events and the measure
given by P on subsets A Ď Ω is called the probability measure, giving the chance of the various
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outcomes. Finally, each Xn is an example of an integer-valued random variable. We will refer to
this collection of random variables as random walk.

In the above setting where the outcome space Ω consists of a finite number of elements, we are
able to define everything in a straightforward way. We begin with a quick recalling of a number of
definitions in the countably infinite (possibly finite) setting.

If Ω is countable it is enough to define the probability of each element in Ω. That is to say give
a function p : Ω Ñ r0, 1s with

ř

ωPΩ ppωq “ 1 and define

Prωs “ ppωq

for each ω P Ω. An event A is just a subset of Ω. We naturally extend the definition of P to an
event A by

PrAs :“
ÿ

ωPA

P rωs .

Observe that this definition has a number of consequences. In particular, if Ai are disjoint events,
that is to say Ai Ă Ω and Ai XAk “ H if i ‰ j then

P

«

8
ď

i“1

Ai

ff

“

8
ÿ

i“1

PrAis

and if Ac :“ tω P Ω with ω R Au is the compliment of A then PrAs “ 1´ PrAcs.
Given two event A and B, the conditional probability of A given B is defined by

PrA|Bs :“
PrAXBs
PrBs

(2.2)

For fixed B, this is just a new probability measure Pr ¨ |Bs on Ω which gives probability Prω|Bs to
the outcome ω P Ω.

A random variable taking values in some set X is a function X : Ω Ñ X. In particular a
real-valued random variable X is simply a real-valued function X : Ω Ñ R. Throughout this course
we will almost exclusively consider real-valued random variables, so we can set X “ R in most cases.
We can then define the expected value of a random variable X (or simply the expectation of X) as

ErXs :“
ÿ

xPRangepXq

xPrX “ xs “
ÿ

ωPΩ

XpωqPrωs (2.3)

Here we have used the convention that tX “ xu is short hand for tω P Ω : Xpωq “ xu and the defi-
nition of RangepXq “ tx P X : Dω,with Xpωq “ xu “ XpΩq. We can further define the covariance
of two random variables X,Y in the same space as Cov rX,Y s “ E rpX ´ E rXsq ¨ pY ´ E rY sqs and

Var rXs :“ Cov rX,Xs “ E
”

X2 ´ E rXs2
ı

.

Two events A and B are independent if PrA X Bs “ PrAsPrBs. Two random variables are
independent if PrX “ x, Y “ ys “ PrX “ xsPrY “ ys. Of course this implies that for any
events A and B that PrX P A, Y P Bs “ PrX P AsPrY P Bs and that ErXY s “ ErXsErY s, so
that Cov rX,Y s “ 0 (note that Cov rX,Y s “ 0 is a necessary but not sufficient condition for
independence). A collection of events Ai is said to be mutually independent if

PrA1 X ¨ ¨ ¨ XAns “
n
ź

i“1

PrAis .

Similarly a collection of random variable Xi are mutually independent if for any collection of sets
from their range Ai one has that the collection of events tXi P Aiu are mutually independent. As
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before, as a consequence one has that

ErX1 . . . Xns “

n
ź

i“1

ErXis .

Given two X-valued random variables Y and Z, for any z P Range(Z) we define the conditional
expectation of Y given tZ “ zu as

ErY |Z “ zs :“
ÿ

yPRangepY q

yPrY “ y|Z “ zs (2.4)

Which is to say that ErY |Z “ zs is just the expected value of Y under the probability measure
which is given by P r ¨ |Z “ zs.

In general, for any event A we can define the conditional expectation of Y given A as

ErY |As :“
ÿ

yPRangepY q

yPrY “ y |As (2.5)

We can extend the definition ErY |Z “ zs to ErY |Zs which we understand to be a function of Z which
takes the value ErY |Z “ zs when Z “ z. More formally ErY |Zs :“ hpZq where h : RangepZq Ñ X
given by hpzq “ ErY |Z “ zs.

Example 1.2 (Example 1.1 continued). By clever rearrangement one does not always have to
calculate the function ErY |Zs explicitly:

ErX7|X6s “ E

«

7
ÿ

i“1

ωi|X6

ff

“ E

«

6
ÿ

i“1

ωi ` ω7|X6

ff

“E rX6 ` ω7|X6s “ ErX6|X6s ` Erω7|X6s

“X6 ` Erω7s “ X6 ` p2p´ 1q

since ω7 is independent on tωiu
6
i“1 (and therefore on X6) and we have Erω7s “ p2p´ 1q.

Example 1.3 (again, Example 1.1 continued). Setting p “ 1{2 we consider the random variable
pX3q

2 and we see that

ErpX3q
2|X2 “ 2s “

ÿ

iPN
iPrpX3q

2 “ i|X2 “ 2s

“ p1q2PrX3 “ 1|X2 “ 2s ` p3q2PrX3 “ 3|X2 “ 2s “ 5

Of course, X2 can also take the value ´2 and 0. For these values of X2 we have

ErpX3q
2|X2 “ ´2s “p´1q2PrX3 “ ´1|X2 “ ´2s ` p´3q2PrX3 “ ´3|X2 “ ´2s “ 5

ErpX3q
2|X2 “ 0s “p´1q2PrX3 “ ´1|X2 “ 0s ` p1q2PrX3 “ 1|X2 “ 0s “ 1

Hence ErpX3q
2|X2s “ hpX2q where

hpxq “

#

5 if x “ ˘2

1 if x “ 0
(2.6)

Again, note that we can arrive to the same result by cleverly rearranging the terms involved in the
computation:

ErX2
3 |X2s “ ErpX2 ` ω3q

2|X2s “ ErX2
2 ` 2ω3X2 ` ω

2
3|X2s

“ ErX2
2 s ` 2Erω3sErX2s ` Erω2

3s “ X2
2 ` 1

since Erω3s “ 0 and Erω2
3s “ 1. Compare this to the definition of h given in (2.6) above.
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2. Uncountable Probability Spaces

If we consider Example 1.1 in the case N “ 8 (or even worse if we imagine our stochastic
process to live on the continuous interval r0, 1s) we need to consider Ω which have uncountably
many points. To illustrate the difficulties one can encounter in this setting let us condsider the
following example:

Example 2.1. Consider Ω “ r0, 1s and let P be the uniform probability distribution on Ω, i.e.,
that dmeasure that associates the same probability to each on the points in Ω. We immediately see
that in order to have P rΩs to be finite we must have P rωs “ 0 for all ω P Ω, as otherwise

P rΩs “ P

«

ď

ωPΩ

ω

ff

“
ÿ

ωPΩ

P rωs “ 8 .

For this reason it is not sufficient anymore to simply assign a probability to each point ω P Ω as we
did before. We have to assign a probability to sets:

P rpa, bqs “ b´ a for 0 ď a ď b ď 1 .

To handle the setting such as the one introduced above completely rigorously we need ideas
from basic measure theory. However if one is willing to except a few formal rules of manipulation,
we can proceed with learning basic stochastic calculus without needing to distract ourselves with
too much measure theory.

As we did in the previous section, we can define a real random variable as a function X : Ω Ñ R.
To define the measure associated by P to the values of this random variable we specify its Cumulative
Distribution Function (CDF) F pxq defined as P rX ď xs “ F pxq. We say that a R-valued random
variable X is a continuous random variable if there exists an (absolutely continuous) density function
ρ : RÑ R so that

P rX P ra, bss “

ż b

a
ρpxqdx

for any ra, bs Ă R. By the fundamental theorem of calculus we see that ρpxq satisfies ρpxq “ F 1pxq.
More generally a Rn-valued random variable X is called a continuous random variable if there exists
a density function ρ : Rn Ñ Rě0 so that

PrX P ra, bss “

ż b1

a1

¨ ¨ ¨

ż bn

an

ρpx1, . . . , xnq dx1 ¨ ¨ ¨ dxn “

ż

ra,bs
ρpxqdx “

ż

ra,bs
ρpxqLebpdxq

for any ra, bs “
ś

rai, bis Ă Rn. The last two expressions are just different ways of writing the same
thing. Here we have introduced the notation Lebpdxq for the standard Lebesgue measure on Rn
given by dx1 ¨ ¨ ¨ dxn.

If X and Y are Rn-valued and Rm-valued random variables, respectively, then the vector pX,Y q
is again a continuous Rnˆm-valued random variable which has a density which is called the joint
probability density function (joint density for short) of X and Y . If Y has density ρY and ρXY is
the joint density of X and Y we can define

PrX P A|Y “ ys “

ż

A

ρXY px, yq

ρY pyq
dx . (2.7)

Hence X given Y “ y is a new continuous random variable with density x ÞÑ ρXY px,yq
ρY pyq

for a fixed y.

Finally, analogously to the countable case we define the expectation of a continuous random
variable with density ρ by

ErhpXqs “
ż

Rn
hpxqρpxqdx . (2.8)
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The conditional expectation is defined using the density (2.7).

Definition 2.2. A real-valued random variable X is Gaussian with mean µ and variance σ2 if

PrX P As “

ż

A

1
?

2πσ2
e´

px´µq2

2σ2 dx .

If a random variable has this distribution we will write X „ N pµ, σ2q . More generally we say
that a Rn-valued random variable X is Gaussian with mean µ P Rn and SPD covariance matrix
Σ P GLpRnq if

PrX P As “

ż

A

1
a

2π detpΣq
exp

„

´
px´ µqJΣ´1 px´ µq

2



dx .

While many calculations can be handled satisfactorily at this level, we will soon see that we
need to consider random variables on much more complicated spaces such as the space of real-valued
continuous functions on the time interval r0, T s which will be denoted Cpr0, T s;Rq. To give all of
the details in such a setting would require a level of technical detail which we do not wish to enter
into on our first visit to the subject of stochastic calculus. If one is willing to “suspend a little
disbelief” one can learn the formal rule of manipulation, much as one did when one first learned
regular calculus. The technical details are important but better appreciated after one fist has the
big picture.

3. General Probability Spaces and Sigma Algebras

To this end, we will introduce the idea of a sigma algebra (usually written σ-algebra or σ-field
in [Klebaner]). In Section 1, we defined our probability measures by beginning with assigning a
probability to each ω P Ω. This was fine when Ω was finite or countably infinite. However, as we
have seen in Example 2.1, when Ω is uncountable as in the case of picking a uniform point from the
unit interval (Ω “ r0, 1s), the probability of any given point must be zero. Otherwise the sum of all
of the probabilities would be 8 since there are infinitely many points and each of them has the
same probability as no point is more or less likely than another.

This is only the tip of the iceberg and there are many more complicated issues. The solution
is to fix a collection of subsets of Ω about which we are “allowed” to ask “what is the probability
of this event?”. We will be able to make this collection of subsets very large, but it will not, in
general, contain all of the subsets of Ω in situations where Ω is uncountable. This collections of
subsets is called the σ-algebra. The triplet pΩ,F ,Pq of an outcome space Ω, a probability measure
P and a σ-algebra F is called a Probability Space. For any event A P F , the “probability of this
event happening” is well defined and equal to PrAs. A subset of Ω which is not in F might not
have a well defined probability. Essentially all of the event you will think of naturally will be in the
σ-algebra with which we will work. In light of this, it is reasonable to ask why we bring them up
at all. It turns out that σ-algebras are a useful way to “encode the information” contained in a
collection of events or random variables. This idea and notation is used in many different contexts.
If you want to be able to read the literature, it is useful to have a operational understanding of
σ-algebras without entering into the technical detail.

3.1. Sigma-algebras and probability spaces. Before attempting to convey any intuition
or operational knowledge about σ-algebras we give the formal definitions since they are short (even
if unenlightening).

Definition 3.1. Given a set Ω, a σ-algebra F is a collection of subsets of Ω such that

i) Ω P F

13



ii) A P F ùñ Ac “ ΩzA P F

iii) Given tAnu a countable collection of subsets of F , we have
Ť8
i“1Ai P F .

In this case the pair pΩ,Fq are referred to as a measurable space

Intuitively, a σ-algebra contains the sets of events that we are able to distinguish , i.e., the set of
events we are able to talk about. The more sets are contained in a σ-algebra, the larger the amount
of events we can talk about, the more information we have (or we can have) on the state ou four
system. Therefore

for us a σ-algebra is the embodiment of information.

Note that the requirements i)-iii) in the above definition correspond to operations we need to be
able to talk about:

i) we should be able to know if anything has happened,
ii) if we can infer whether an event has happened we should also know if that event has not

happened,
iii) given our knowledge on whether a series of events has happened we should also be able to

say if any of those events has happened.

Example 3.2 (Example 1.1 continued). If we set the total number of coin tosses N “ 2 we can
enumerate the σ-algebra completely: by iterating the operations i)-iii) in Def. 3.1 and by denoting
t`´u “ tω : ω1 “ `1, ω2 “ ´1u we have

F2 “ tΩ,H,t``u, t`´u, t´`u, t´´u, t``,`´u, t``,´`u, t``,´´u, t`´,´`u,

t`´,`´u, t´`,´´u, t``,`´,´`u, t``,`´,´´u, t``,´`,´´u, t`´,´`,´´uu .

Given any collection of subsets G of Ω we can talk about the “σ-algebra generated by G” as
simply what we get by taking all of the elements of G and exhaustively applying all of the operations
listed above in the definition of a σ-algebra. More formally,

Definition 3.3. Given Ω and F a collection of subsets of Ω, σpF q is the σ-algebra generated
by F . This is defined as the smallest (in terms of numbers of sets) σ-algebra which contains F .
Intuitively σpF q represents all of the probability data contained in F .

Example 3.4 (Example 1.1 continued). We define

F1 “ ttω P Ω : ω1 “ 1u, tω P Ω : ω1 “ ´1uu ,

as a division of the possible outcomes fixing ω1. This collection of sets generates a σ-algebra on Ω,
given by

F1 :“ tΩ,H, tω P Ω : ω1 “ 1u, tω P Ω : ω1 “ ´1uu , (2.9)

representing the information we have on the process knowing ω1.

Example 3.5. If Ω “ Rn or any subset of it, we talk about the Borel σ-algebra as the σ-algebra
generated by all of the intervals ra, bs with a, b P Ω. This σ-algebra contains essentially any event you
would think about in most all reasonable problems. Using pa, bq, or ra, bq or pa, bs or some mixture
of them makes no difference.

To complete our measurable space pΩ,Fq into a probability space we need to add a probability
measure. Since we will not build our measure from its definition on individual ω P Ω as we did in
Section 1 we will instead assume that it satisfies certain reasonable properties which follow from
this construction in the countable or finite case. The fact that the following assumptions is all that
is needed would be covered in a measure theoretical probability or analysis class.
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Definition 3.6. Given a measurable space pΩ,Fq, a function P : F Ñ r0, 1s is a probability
measure if

i) PrΩs “ 1,

ii) PrAcs “ 1´ PrAs for all A P F .

iii) Given tAiu a finite collection of pairwise disjoint sets in F ,P r
Ťn
i“1Ais “

řn
i“1 PrAis ,

In this case the triple pΩ,F ,Pq is referred to as a probability space.

Given any events A and B in F , we define the conditional probability just as before, namely

PrA|Bs “
PrAXBs
PrBs

.

3.2. Random Variables. As we anticipated in the previous sections, a random variable is a
function mapping an outcome to a number.

Definition 3.7. Let pΩ,Fq and pX,Bq be measurable spaces, then X : Ω Ñ X is a X-valued
random variable if for all B P B we have

X´1pBq “ tω P Ω : ξpωq P Bu P F . (2.10)

When (2.10) holds we say that the random variable is measurable with respect to F (F-measurable
for short). In this case we will write X P F . While this is a slight abuse of notation, it will be very
convenient.

The condition (2.10) in the above definition guarantees that admissible events in X get mapped
to admissible events in Ω. Speaking intuitively, a random variable is measurable with respect to a
given σ-algebra if the information in the σ-algebra is always sufficient to uniquely fix the value of
the random variable. In other words, for a random variable to make sense we need to have enough
information on the state of the system (in F) in order to uniquey determine the value of X (within
the “precision” of B).

Remark 3.8. The above definition can be naturally extended to sub-σ-algebras of F : For any
σ-algebra G Ď F we say that the random variable X is G-measurable if for all B P B we have
X´1pBq P G.
In particular, we say that a real-valued random variable X is measurable with respect to σ-algebra
G if every set of the form X´1pra, bsq is in G.

Example 3.9 (Example 1.1 continued). Consider the case N “ 2, Xn “
řn
i“1 ωn,

F1 “ tΩ,H, t``,`´u, t´`,´´uu

(from (2.9)). Then we see that X1 P F1 as X´1
1 p1q “ t``,`´u, X´1

1 p´1q “ t´`,´´u, while

X2 R F1 as X´1
2 p0q “ t`´,´`u R F1.

One can define the smallest amount of information needed to specify the value of a certain
random variable: the generated σ-algebra.

Definition 3.10. Given a random variable on the probability space pΩ,F ,Pq taking values in a
measurable space pX,Bq, we define the σ-algebra generated by the random variable X as

σpXq “ σptX´1pBq|B P Buq .

The idea is that σpXq contains all of the information contained in X. If an event is in σpXq then
whether this event happens or not is completely determined by knowing the value of the random
variable X. Of course the random variable X is always measurable with respect to σpXq. More
specifically, σpXq is the smallest σ-algebra G on Ω such that X is G-measurable.
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Example 3.11 (Example 1.1 continued). By definition (2.1), since X1 “ ω1 the σ-algebra
generated by the random variable X1 is σpX1q “ F1 from (2.9). However, denoting by t`´u the
event tω : ω1 “ 1, ω2 “ ´1u, the σ-algebra generated by X2 “ ω1 ` ω2 is given by

σpX2q “ σptt``u, t´´u, t`´,´`uuq

“ tH,Ω, t``u, t´´u, t`´,´`u, t``,´´u, t`´,´`,´´u, t``,`´,´`uu, .

Note that this σ-algebra is different than F2 “ σpttw P Ω : pw1, w2q “ ps1, s2qu : s1, s2 P t´1, 1uuq .
Indeed, knowing the value of X2 is not always sufficient to know the value of ω1 “ X1. Contrarily,
knowing the value of pω1, ω2q (contained in F2) definitely implies that you know the value of X2. In
other words, (the information of) σpX2q is contained in F2, concisely σpX2q Ă F2.

Now compare σpX2q and σpY q where Y “ X2
2 . Lets consider three events A “ tX2 “ 2u,

B “ tX2 “ 0u, C “ tX2 is evenu. Clearly all three events are in the σ-algebra generated by X2 (i.e.
σpX2q) since if you know that value of X2 then you always know whether the events happen or not.
Next notice that B P σpY q since if you know that Y “ 0 then X2 “ 0 and if Y ‰ 0 then X2 ‰ 0.
Hence no mater what the value of Y is knowing it you can decide if X2 “ 0 or not. However,
knowing the value of Y does not always tell you if X2 “ 2. It does sometimes, but not always. If
Y “ 0 then you know that X2 ‰ 0. However if Y “ 4 then X2 could be equal to either 2 or ´2.
We conclude that A R σpY q but B P σpY q. Since X2 is always even, we do not need to know any
information to decide C and it is in fact in both σpX2q and σpY q. In fact, C “ Ω and Ω is in any
σ-algebra since by definition Ω and the empty set H are always included. Lastly, since whenever
we know X2 we know Y , it is clear that σpX2q contains all of the information contained in σpY q.
In fact it follows from the definition and the fact that σpY q Ă σpX2q. To say that one σ-algebra is
contained in another is to say that the second contains all of the information of the first and possibly
more. In other words, Y is measurable with respect to σpX2q since knowing the value of X2 fixes the
value of Y .

Example 3.12. Let X be a random variable taking values in r´1, 1s. Let g be the function from
r´1, 1s Ñ t´1, 1u such that gpxq “ ´1 if x ď 0 and gpxq “ 1 if x ą 0. Define the random variable
Y by Y pωq “ gpXpωqq. Hence Y is a random variable talking values in t´1, 1u. Let FY be the
σ-algebra generated by the random variable Y . That is FY “ σpY q :“ tY ´1pBq : B P BpRqu. In this
case, we can figure out exactly what FY looks like. Since Y takes on only two values, we see that for
any subset B in BpRq(the Borel σ-algebra of R)

Y ´1pBq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Y ´1p´1q :“ tω : Y pωq “ ´1u if ´ 1 P B, 1 R B

Y ´1p1q :“ tω : Y pωq “ 1u if 1 P B,´1 R B

H if ´ 1 R B, 1 R B

Ω if ´ 1 P B, 1 P B

Thus FY consists of exactly four sets, namely tH,Ω, Y ´1p´1q, Y ´1p1qu. For a function f : Ω Ñ R
to be measurable with respect the σ-algebra FY , the inverse image of any set B P BpRq must be one
of the four sets in FY . This is another way of saying that f must be constant on both Y ´1p´1q and
Y ´1p1q. Note that together Y ´1p´1q Y Y ´1p1q “ Ω.

Definition 3.13. Given pΩ,F ,Pq a probability space and A,B P F , we say that A and B are
independent (A |ù B) if

PrAXBs “ PrAs ¨ PrBs (2.11)
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Furthermore, random variables tXiu are jointly independent if for all Ci,

PrX1 P C1 and . . . and Xn P Cns “
n
ź

i“1

PrXi P Cis (2.12)

We conclude by extending our main example:

Example 3.14 (Infinite random walk). We now cosider ω “ tωiu
8
i“1 where

ωi “

#

1 with probability p

´1 with probability 1´ p

independent of the other ωj’s. We note that the cardinality of the sample space Ω is uncountable:
you can map each outcome to a number in the interval r0, 1s in binary representation. We now start
by considering the events for which we know we can compute the probability: for any couple of finite
disjoint sets of indices I, J Ă N we have

P rAI,J s “ p|I|p1´ pq|J | for AI,J :“ tω : ωi “ 1@i P I, ωj “ ´1@j P Ju .

Then we define a σ-algebra generated by these sets:

F “ σptAI,Juq .

With a σ algebra and a probability measure defined on our sample space Ω1 we have a probability
space pΩ,F ,Pq and can now define random variables on it. We immediately see that the random
walk

Xn :“
n
ÿ

i“1

ωi

is a random variable for any n P N, as the sets determining the outcome of the first n coin tosses
are in F by consruction. Indeed for any k P Z we have

X´1
n pkq “ tω :

n
ÿ

i“1

ωi “ nu “
ď

I,J : IYJ“p1,...,nq,|I|´|J |“k

AI,J

which clearly belongs to F .
Consider now the random variable Y` :“ mintk P N : ωk P 1u. We see that we have Y` P F ,

too! To check that this is the case, it is sufficient to verify that for every n P N we have tY` “ nu P F .

3.3. Expactation. We now introduce a notation allowing to write the sums (or integrals) (??)
and (2.8) in a unified way. Given a real-valued random variable X on a probability space pΩ,F ,Pq,
we define the expected value of X as the integral:

EpXq “
ż

Ω
XpωqPpdωq . (2.13)

We will take for granted that this integral makes sense. However, it follows from the general theory
of measure spaces.

Example 3.15. Consider Ω “ r0, 1s equipped with the Borel σ-algebra, P „ UnifpΩq and the
random variable Xpωq “ eω. Then the expectation (2.13) is given by

E rXs “
ż

Ω
eω Ppdωq “

ż 1

0
eω dω “ e´ 1 .

1it is not a priori clear that the probability measure we have defined on single events can be extended to the
σ-algebra of interest. It turns out that this can be done wothout problems, and this is the content of the Carathéodory
extension theorem

17



We recall below some properties of the expected value:

‚ For any A P F we have E r1As “ P rAs where 1Apωq is defined in (2.14) ,

‚ Independence If the random variables X and Y are independent, then X and Y one has

ErXY s “ ErXs ¨ ErY s ,

‚ Jensen’s inequality If g : I Ñ R is convex2 on I Ď R for a random variable X P G with
range(X) Ď I we have

gpErXsq ď ErgpXqs ,

‚ Chebysheff inequality For a random variable X P G we have that for any λ ą 0

Pr|X| ą λs ď
Er|X|s
λ

.

We now go back to conditional expectations. Recall Example 1.2 and Example 1.3, where the
definition of conditional expectation has been extended to be a function of the random variable we
are conditioning on (i.e., a random variable itself!). In other words, conditional expectations wrt

a random variable depend on the information contained by that random varable. It is therefore
natural to further generalize this concept to the one of conditional expectation with respect to a
σ-algebra. To do so, we introduce the indicator function.

Definition 3.16. Given pΩ,F ,Pq a probability space and A P F , the indicator function of A is

1Apxq “

#

1 x P A

0 otherwise
(2.14)

Note that the above is a measurable function. Fixing a probability space pΩ,F ,Pq, we define the
conditional expectation:

Proposition 3.17. If X is a random variable on pΩ,F ,Pq with Er|X|s ă 8, and G Ă F is a
σ-algebra, then there is a unique random variable Y on pΩ,G,Pq such that

i) Er|Y |s ă 8 ,

ii) Er1AY s “ Er1AXs for all A P G .

Definition 3.18. We define the conditional expectation with respect to a σ-algebra G as the
unique random variable Y from Proposition 3.17, i.e., ErX|Gs :“ Y .

The intuition behind Proposition 3.18 is that the conditional expectation wrt a σ-algebra G Ă F
of a random variable X P F is that random variable Y P G that is equivalent or identical (in terms
of expected value, or predictive power) to X given the information contained in G. In other words,
Y “ ErX|Gs is that random variable that is

i) measurable with respect to G, and

ii) the best approximation of the value of X given the information in G in the sense of
Proposition 3.17 ii).

2A function g is convex on I Ď R if for all x, y P I with rx, ys Ď I and for all λ P r0, 1s one has gpλx` p1´ λqyq ď
λgpxq ` p1´ λqgpyq
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The previous definition of conditional expectation wrt a fixed set of events is obtained by evaluating
the random variable ErX|Gs on the events of interest, i.e., by fixing the events in G that may have
occurred.

When we condition on a random variable we are really conditioning on the information that
random variable is giving to us. In other words, we are conditioning on the σ-algebra generated by
that random variable:

E rX|Zs :“ E rX|σpZqs .
As in the discrete case, one can show that there exists a function h : RangepZq Ñ X such that

ErY |Zpωqs :“ hpZpωqq ,

and hence we can think about the conditional expectation as a function of Zpωq. In particular, this
allows to define

ErY |Z “ zs :“ hpzq .

Example 3.19 (Example 3.15 continued). Consider Ω “ r0, 1s, P „ UnifpΩq and the real random
variable Xpωq “ eω. We further define A1 “ r0,

1
3 s, A2 “ p

1
3 ,

2
3 s, A3 “ p

2
3 , 1s and G “ σptA1, A2, A3uq.

We want to find E rX|Gs. By definition (point i) above) the random variable Y “ E rX|Gs must be
measurable on G, i.e., it must assign a unique value to all the outcomes ω in each of the intervals
A1, A2, A3. Therefore, we can write a random variable Y P G as

Y pωq “
ÿ

iPI

ai1Aipωq . (2.15)

for I “ t1, 2, 3u and real numbers taiuiPI .
3 It therefore only remains to specify the value of taiuiPI so

that Y (which is now measurable wrt G) is the best approximation to the original random variable
X. We do so enforcing the condition from Proposition 3.17 ii):

E
“

Y 1Aj
‰

“ E

«

ÿ

iPI

ai1Ai1Aj

ff

“
ÿ

iPI

aiE
“

1AiXAj
‰

“ ajP rω P Ajs “
aj
3

E
“

X1Aj
‰

“ E
“

eω1Aj
‰

“

ż

Aj

eω dω

and evaluating the above we obtain

E rX|Gs pωq “ 3pe1{3 ´ 1q1A1pωq ` 3pe2{3 ´ e1{3q1A2pωq ` 3pe1 ´ e2{3q1A3pωq .

We now list some properties of the conditional expectation:

‚ Linearity: for all α, β P R we have

ErαX ` βY |Gs “ αErX|Gs ` βErY |Gs ,

‚ if X is G-measurable then

ErX|Gs “ X and ErXY |Gs “ XErY |Gs .

Intuitively, since X P G (X is measurable wrt the σ-algebra G), the best approximation of
X on the sets contained in G is X itself, so we do not need to approximate it.

‚ if X is independent of G then

ErX|Gs “ E rXs and in particular ErX|Ω,Hs “ ErXs .

3In fact, we know that when a σ-algebra G is countable any real-valued random variable Z P G has the form (2.15)
for an index set I, a family of sets tAiuiPI Ă G and real numbers taiuiPI .
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‚ Tower property: if G and H are both σ-algebras with G Ă H, then

E rE rX|Hs |Gs “ E rE rX|Gs |Hs “ E rX|Gs .

Since G is a smaller σ-algebra, the functions which are measurable with respect to it are
contained in the space of functions measurable with respect to H. More intuitively, being
measure with respect to G means that only the information contained in G is left free
to vary. E rE rX|Hs |Gs means first give me your best guess given only the information
contained in H as input and then reevaluate this guess making use of only the information
in G which is a subset of the information in H. Limiting oneself to the information in G is
the bottleneck so in the end it is the only effect one sees. In other words, once one takes
the conditional expectation with respect to a smaller σ algebra one is loosing information.
Therefore, by doing E rE rX|Gs |Hs one is loosing information (in the innermost expectation)
that cannot be recovered by the second one.

‚ Optimal approximation The conditional expectation with respect to a σ-algebra G Ă F
is that random variable Y P G such that

ErX|Gs “ argmin
Y meas w.r.t. G

ErX ´ Y s2 (2.16)

This should be thought of as the best guess of the value of Y given the information in G.

Example 3.20 (Example 3.12 continued). In the previous example, EtX|FY u is the best
approximation to X which is measurable with respect to FY , that is constant on Y ´1p´1q and
Y ´1p1q.In other words, EtX|FY u is the random variable built from a function hmin composed with
the random variable Y such that the expression

E
!

pX ´ hminpY qq
2
)

is minimized. Since Y pωq takes only two values in our example, the only details of hmin which mater
are its values at 1 and -1. Furthermore, since hminpY q only depends on the information in Y , it
is measurable with respect to FY . If by chance X is measurable with respect to FY , then the best
approximation to X is X itself. So in that case EtX|FY upωq “ Xpωq.

In light of (2.16), we see that

ErX|Y1, . . . , Yks “ ErX|σpY1, . . . , Ykqs

This fits with our intuitive idea that σpY1, . . . , Ykq embodies the information contained in the
random variables Y1, Y2, . . . Yk and that ErX|σpY1, . . . , Ykqs is our best guess at X if we only know
the information in σpY1, . . . , Ykq.

4. Distributions and Convergence of Random Variables

Definition 4.1. We say that two X-valued random variables X and Y have the same distribution
or have the same law if for all bounded (measureable) functions f : X Ñ R we have ErfpXqs “
ErfpY qs. This equivalence is sometimes written

LawpXq “ LawpY q (2.17)

Remark 4.2. Either of the following are equivalent to two random variable X and Y on a
probability space pΩ,F ,Pq having the same distribution.

i) ErfpXqs “ ErfpY qs for all continuous f with compact support.
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ii) PrX ă xs “ PrY ă xs for all x P R .4

As in the case of functions, there are many ways a sequence of random variables tXnunPN can
converge to another random variable X:

Definition 4.3. Let tXnunPN be a sequence of random variables on a probability space pΩ,F ,Pq,
and let X be a random variable on the same space. Then

‚ almost sure convergence tXnu converges to X almost surely if

Prtw P Ω : lim
nÑ8

Xnpωq “ Xpωqus “ 1 ,

‚ convergence in probability tXnu converges to X in probability if, for all ε ą 0

lim
nÑ8

Prtw P Ω : |Xnpωq ´Xpωq| ą εus “ 0 ,

‚ weak convergence tXnu converges weakly (or in distribution) to X if, for all x P R
lim
nÑ8

PrXnpωq ă xs “ PrXpωq ă xs .

‚ Lp convergence For p ě 1, tXnu converges in Lp to X if,

lim
nÑ8

E r|Xn ´X|
ps “ 0 .

Remark 4.4. The above definitions can be ordered by strength: we have the following implications

almost sure convergence ñ convergence in probability ñ weak convergence .

and, for 1 ď q ď p ă 8

convergence in Lp ñ convergence in Lq ñ convergence in probability .

Moreover, we note that in order to have convergence in distributions the two random variables do
not need to live on the same probability space.

A useful method of showing that the distribution of a sequence of random variables converges to
another is to consider the associated sequence of Fourier transforms, or the characteristic function
of a random variable as it is called in probability theory.

Definition 4.5. The characteristic function (or Fourier Transform) of a random variable X is
defined as

ψptq “ ErexppitXqs

for all t P R.

It is a basic fact that the characteristic function of a random variable uniquely determines its
distribution. Furthermore, the following convergence theorem is a classical theorem from probability
theory.

Theorem 4.6. Let Xn be a sequence of real-valued random variables and let ψn be the associated
characteristic functions. Assume that there exists a function ψ so that for each t P R

lim
nÑ8

ψnptq “ ψptq .

If ψ is continuous at zero then there exists a random variable X so that the distribution of Xn

converges to the distribution of X. Furthermore the characteristic function of X is ψ.

4or, equivalently if PrX P As “ PrY P As for all continuity sets A P F .
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Example 4.7. Note that using a Fourier transform,

Ereiλxs “ eiλm´
σ2λ2

2 ,

for all λ. Using this, we say that X “ pX1, . . . , Xkq is a k-dimensional Gaussian if there exists
m P Rk and R a positive definite symmetric k ˆ k matrix so that for all λ P Rk we have

Ereiλ¨xs “ eiλ¨m´
pRλq¨λ

2 .
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CHAPTER 3

Brownian Motion and Stochastic Processes

1. An Illustrative Example: A Collection of Random Walks

Fixing an n ě 0, let tξ
pnq
k : k “ 1, ¨ ¨ ¨ , 2nu be a collection of independent random variables each

distributed as normal with mean zero and variance 2´n. For t “ k2´n for some k P t1, ¨ ¨ ¨ , 2nu, we
define

Bpnqptq “
k
ÿ

j“1

ξ
pnq
j . (3.1)

for intermediate times P r0, 1s not of the form k2´n for some k we define the function as the linear
function connecting the two nearest points of the form k2´n. In other words, if t P rs, rs were
s “ k2´n and r “ pk ` 1q2´n then

Bpnqptq “
t´ s

2n
Bpnqpsq `

r ´ t

2n
Bpnqprq

We will see momentarily that Bpnq has the following properties independent of n:

i) Bpnqp0q “ 0.

ii) E
“

Bpnqptq
‰

“ 0 for all t P r0, 1s.

iii) E
“

|Bpnqptq ´Bpnqpsq|2
‰

“ t´ s for 0 ď s ă t ď 1 of the form k2´n.

iv) The distribution of Bpnqptq ´Bpnqpsq is Gaussian for 0 ď s ă t ď 1 of the form k2´n.

v) The collection of random variables

tBpnqptiq ´B
pnqpti´1qu

are mutually independent as long as 0 ď t0 ă t1 ă ¨ ¨ ¨ ă tm ď 1 for some m and the ttiu
are of the form k2´n.

The first property is clear since the sum in (3.1) is empty. The second property for t “ k2´n

follows from

E
”

Bpnqptq
ı

“

k
ÿ

j“1

E
”

ξ
pnq
j

ı

“ 0

since E
”

ξ
pnq
j

ı

“ 0 for all j P p1, . . . , 2nq. For general t, we have t P ps, rq “ pk{2´n, pk` 1q2´nq for a

k P p1, . . . , 2nq, so that

E
”

Bpnqptq
ı

“
t´ s

2n
E
”

Bpnqpsq
ı

`
r ´ t

2n
E
”

Bpnqprq
ı

“ 0 .
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To see the second moment calculation take s “ m2´n and t “ k2´n and observe that

E
”

|Bpnqptq ´Bpnqpsq|2
ı

“ E

«

´

k
ÿ

j“m`1

ξ
pnq
j

¯´

k
ÿ

`“m`1

ξ
pnq
`

¯

ff

“

k
ÿ

j“m`1

k
ÿ

`“m`1

E
”

ξ
pnq
j ξ

pnq
`

ı

“

k
ÿ

j“m`1

E
”

pξ
pnq
j q2

ı

`

k
ÿ

j“m`1

k
ÿ

`“m`1
`‰j

E
”

ξ
pnq
j

ı

E
”

ξ
pnq
`

ı

“

k
ÿ

j“m`1

2´n “ k2´n ´m2´n “ t´ s

since ξ
pnq
j and ξ

pnq
` are independent if j ‰ `, while by definition E

”

ξ
pnq
j

ı

“ 0 and E
”

pξ
pnq
j q2

ı

“ 2´n.

Since Bnptq is just the sum of independent Gaussians, it is also distributed Gaussian with a
mean and a variance which is just the sum of the individual means and variances respectively.
Because for disjoint time intervals the differences of the Bpnqptiq ´B

pnqpti´1q are sums over disjoint
collections of ξ1is, they are mutually independent. �

Since all of these properties are independent of n it is tempting to think about the limit as
nÑ8 and the mesh becoming increasingly fine. It is not clear that such a limit would exist as the
curves Bpnq become increasingly “wiggly.” We will see in fact that it does exist. We begin by taking
an abstract perspective in the next sections though we will return to a more concrete perspective at
the end.

2. General Stochastic Proceses

Motivated by the example of the previous section, we pause to discuss the idea of a stochastic
process more generally.

Definition 2.1. Let pΩ,F ,Pq be a probability space and let pX,Bq be a measurable space. Also
let T be an indexing set which for our purposes will typically be R,R`,N, or Z. Suppose that for
each t P T we have Xt : Ω Ñ X a measurable function. Then the set tXtu is a stochastic process
on T with values in X. Also, given ω P Ω, Xtpωq : T Ñ X is called a path or trajectory of tXtu.

Remark 2.2. Commonly used notations for stochastic processes include tXtu, Xtpωq, X¨, . . .

Now that we have defined a stochastic process we would like to characterize its distribution.
However, as we have seen in Example 3.14, defining probability distribution on high dimensional
spaces such as the ones we are dealing with is not entirely trivial. We recall that one way to define
a probability distribution on an uncountable sigma algebra (such as the ones generated by the
stochastic processes defined above) is to first define the probability of a certain family of events,
and then generate a σ-algebra from those events. A natural and useful way to define events of
interests is by defining probabilities on marginals of the process: for any finite collection of times
ttiu

n
1 and corrseponding collection of sets tAiu

n
1 in X, one can identify the distribution of a process

by specifying the probabilities

P rXt1 P A1, Xt2 P A2, . . . , Xtn P Ans “ µt1,t2,...,tnpA1, A2, . . . , Anq (3.2)

In the language of measure theory such events are referred to as cylinder sets.
The above definition of the distribution of a process allows us to define a type of equivalence

between stochastic processes.
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Definition 2.3. We say that two stochastic processes have the same distribution or have the
same law if for all t1 ă ¨ ¨ ¨ ă tn P T we have

LawpXt1 , . . . , Xtnq “ LawpYt1 , . . . , Ytnq

where we think of the vector pXt1 , . . . Xtnq as a random variable taking values in the product space
Xn.

We see that in order to be sensible probability measures on cylinder sets (events appearing
on the rhs of (3.2)), the family of functions tµu must have some properties, summarized in the
definition below.

Definition 2.4. Given a set of finite dimensional distributions tµu over an indexing set T on
X we say that the set is compatible if

i) For all t1 ă ¨ ¨ ¨ ă tm`1 P T and A1, . . . , Am P B we have

µt1...tm pA1, . . . , Amq “ µt1...tm`1 pA1, . . . , Am,Xq

ii) For all t1 ă ¨ ¨ ¨ ă tm, A1, . . . , Am P B, and σ a permutation on m letters, we have

µt1...tm pA1, . . . , Amq “ µtσp1q...tσpmq
`

Aσp1q, . . . , Aσpmq
˘

The first condition is roughly saying that if one considers a null condition (the total space) in
a higher-dimensional measure, one gets the same result without the null condition in the lower
dimensional measure. The second condition is saying that the order of the indexing of the µ doesn’t
matter.

Remark 2.5. The first of the above two requirements is called the Chapman-Kolmogorov
equation.

We conclude this paragraph by stating a nice extension theorem for constructing stochastic
processes. This theorem (much as the Carathéodory extension theorem in Example 3.14) extends
the definition of the probability measure P originally defined on cylinder sets to the whole σ-algebra
and ensures the existence of a stochastic process with such distribution.

Theorem 2.6 (Kolmogorov Extension Theorem). Given a set of compatible finite dimensional
distributions tµt1...tmu with indexing set T , there exists a probability space pΩ,F ,Pq and a stochastic
process tXtu so that Xt has the required finite dimensional distributions, i.e. for all t1 ă ¨ ¨ ¨ ă tm P T
and A1, . . . Am P B we have

PrXt1 P A1 and . . . and Xtm P Ams “ µt1...tmpA1, . . . Amq .

3. Definition of Brownian motion (Wiener Process)

Looking back at Section 1, the list of properties of Bpnq suggest a reasonable collection of
compatible finite distributions. Namely independent increments with each increment distributed
normally with mean zero and variance proportional to the time interval. These are the distribution
of marginals of a fundamental process in stochastic calculus: Brownian motion, which we define
below.

Definition 3.1. Standard Brownian motion tBtu is a stochastic process on R such that

i) B0 “ 0 almost surely (i.e. P rtω P Ω : B0 ‰ 0us “ 0),

ii) Bt has independent increments: for any t1 ă t2 ă . . . ă tn,
Bt1 , Bt2 ´Bt1 , . . . , Btn ´Btn´1 are independent,
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iii) The increments Bt ´Bs are Gaussian random variables with mean 0 and variance given
by the length of the interval:

VarpBt ´Bsq “ |t´ s| .

iv) The paths t ÞÑ Btpωq are continuous with probability one.

Wedefine in particular a process satisfying assumption iii) above as continuous:

Definition 3.2. A stochastic process is continuous if its paths tÑ Xtpωq are continuous with
probability one.

This allows to define Brownian motion shortly as:

Brownian motion is a continuous stochastic process with indipendent increments „ N p0, t´ sq
The first two points of the above definition specify the distribution of the increments of Brownian

motion, which in turn defines the distribution of the marginals (3.2). Indeed, we can “separate” the
event of a path running through two sets A1, A2 at times t1 ă t2 by considering the events of

i) the path arriving at y P A1 at time t1 and

ii) the path arriving at z P A2 conditioned on starting at y.

For a fixed y, the second event depends exclusively on the increment Bt2 ´Bt1 and by the definition
of brownian motion we can write:

P rBt1 P A1, Bt2 P A2s “ P rBt1 ´B0 P A1, Bt1 ` pBt2 ´Bt1q P A2s

“

ż

A1

P ry ` pBt2 ´Bt1q P A2|Bt1 “ ysP rBt1 ´B0 P dys

“

ż

A1

ż

A2

P ry ` pBt2 ´Bt1q P dzsP rBt1 ´B0 P dys

“

ż

A1

ż

A2

ρpy, z, t2 ´ t1qdz ρp0, y, t1qdy (3.3)

where in the third line we have used the independence of the increments, and in the last line we
have used that the increments are normal random variables. Furthermore we have defined

ρpx1, x2,∆tq “
1

?
2π∆t

e´
px1´x2q

2

2∆t (3.4)

which can be interpreted as the probability density of a transition from x1 to x2 in a time interval
∆t. The above conditioning procedure can trivially be extended to any finite number of marginals.
The family of probability distributions that this process generates is compatible according to
drefd:compatible, an therefore Theorem 2.6 guarantees the existence of the process we have described.
More precisely, Theorem 2.6 guarantees the existence of a process with properties i) and ii) from
above.

Notice that the above definition makes no mention of the continuity. It turns out that the finite
dimensional distributions can not guarantee that a stochastic process is almost surely continuous
(but they can imply that it is possible for a given process to be continuous, as we see below). Indeed,
defining the distribution of the marginals still leaves us with some freedom in the choice of the
process. This is captured by the following definition:

Definition 3.3. A stochastic process tXtu is a version (or modification) of a second stochastic
process tYtu if for all t , PrXt “ Yts “ 1. Notice that this is a symmetric relation.

We now give an example showing that different versions of a process, despite having by definition
the same distribution, can have different continuity properties:

26



Example 3.4. We consider the probability space pΩ,F ,Pq “ pr0, 1s,B,unifpr0, 1sqq. On this
space we define two processes variables:

Xtpωq “ 0 and Ytpωq “

#

0 if t ‰ ω

1 else

We immediately see that for any t P r0, 1s

P rXt ‰ Yts “ P rω “ ts “ 0

so that one process is a version of the other. However, we see that all of the paths of Xt are
continuous, while none of the paths Yt are in such class.

The previous example showcases a family of distributions of marginals that is trivially compatible
with the continuity of the process they represents (the process can have a continuous version). The
following theorem gives sufficient conditions on the distribution of marginals guaranteeing that the
corresponding process has a continuous version. We use this result to prove that, in partcular, the
marginals defined by points i) and ii) in Def. 3.1 are compatible with iii), i.e., there exists a process
satisfying all such conditions.

Theorem 3.5 (Kolmogorov Continuity Theorem (a version)). Suppose that a stochastic process
tXtu, t ě 0 satisfies the estimate:
for all T ą 0 there exist positive constants α, β, D so that

Er|Xt ´Xs|
αs ď D|t´ s|1`β @t, s P r0, T s, (3.5)

then there exist a version of Xt which is continuous.

Remark 3.6. The estimate in (3.5) holds for a Brownian motion. We give the details in
one-dimension. First recall that if X is a Gaussian random variable with mean 0 and variance σ2

then ErX4s “ 3σ4. Applying this to Brownian motion we have E|Bt ´Bs|4 “ 3|t´ s|2 and conclude
that (3.5) holds with α “ 4, β “ 1, D “ 3. Hence it is not incompatible with the all ready assumed
properties of Brownian motion to assume that Bt is continuous almost surely.

Remark 3.6 shows that continuity is a fundamental attribute of Brownian motion. In fact we have the
following second (and equivalent) definition of Brownian motion which assumes a form of continuity as a
basic assumption, replacing other assumptions.

Theorem 3.7. Let Bt be a stochastic process such that the following conditions hold:

i) EpB2
1q “ constant,

ii) B0 “ 0 almost surely,
iii) Bt`h ´Bt is independent of tBs : s ď tu.
iv) The distribution of Bt`h ´Bt is independent of t ě 0 (stationary increments),
v) (Continuity in probability.) For all δ ą 0,

lim
hÑ0

Pr|Bt`h ´Bt| ą δs “ 0

then Bt is Brownian motion. When EBp1q2 “ 1 we call it standard Brownian motion.

The process introduced above can be straightforwardly generalized to n dimensions:

Definition 3.8. n-dimensional Standard Brownian motion tBtu is a stochastic process on Rn
such that

i) B0 “ 0 almost surely (i.e. P rtω : B0 ‰ 0us “ 0),

ii) Bt has independent increments: for any t1 ă t2 ă . . . ă tn,
Bt1 , Bt2 ´Bt1 , . . . , Btn ´Btn´1 are independent,
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iii) The increments Bt ´Bs are Gaussian random variables with mean 0 and variance given
by the length of the interval: denoting by pBtqi the i-th component of Bt

Cov
`

pBt ´Bsqi, pBt ´Bsqj
˘

“

#

|t´ s| if i “ j

0 else
.

4. Constructive Approach to Brownian motion

Returning to the construction of Section 1, one might be tempted to hope that the random
walks Bpnq converge to a Brownian motion Bt as nÑ8. While this is true that the distribution
of Bpnq converges weakly to that of Bt as n Ñ 8, a moments reflection shows that there is not
hope that the sequence converges almost surely since Bpnq and Bpn`1q have no relation for a given

realization of the underlying random variable tξ
pnq
k u.

We will now show that by cleverly rearranging the randomness we can construct a new sequence
of random walks W pnqptq so that the stochastic process W pnq has the same distribution as Bpnq yet

W pnq will converge almost surely to a realization of Brownian motion.

We begin by defining a new collection of random variables tη
pnq
k u from the tξ

pnq
k u. We define

η
p0q
1 to be a normal random variable with mean 0 and variance 1 which is independent of all of the
ξ’s. Then for n ě 0 and k P t1, . . . , 2ku we define

η
pn`1q
2k “

1

2
η
pnq
k `

1

2
ξ
pnq
k and η

pn`1q
2k´1 “

1

2
η
pnq
k ´

1

2
ξ
pnq
k

Since each η
pnq
k is the sum of independent Gaussian random variables they are themselves Gaussian

random variables. It is easy to see that η
pnq
k is mean zero and has variance 2´n. Since for any

n ě 0 and j, k P t1, . . . , 2ku with j ‰ k, we see that Eηpnqk η
pnq
j “ 0 and we conclude that because the

variables are Gaussian that the collection of random variables tη
pnq
k : k P t1, . . . , 2kuu are mutually

independent. Hence if we define

W pnqpk2´nq “
k
ÿ

j“1

η
pnq
j

and at intermediate times as the value of the line connecting the two nearest points, then W pnq has
the same distribution as Bpnq from Section 1.

Theorem 4.1. With probability one, the sequence of functions
`

W pnqptq
˘

pωq on converges
uniformly to a continuous function Btpωq as nÑ8, and the process Btpωq is a Brownian motion
on r0, 1s.

Proof. Now for n ě 0 and k P t1, . . . , 2ku define

Z
pnq
k “ sup

tPrpk´1q2´n,k2´ns

ˇ

ˇW pnqptq ´W pn`1qptq
ˇ

ˇ

and observe that

Z
pnq
k “

ˇ

ˇ

ˇ

1

2
η
pnq
k ´ η

pn`1q
2k´1

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

1

2
ξ
pnq
k

ˇ

ˇ

ˇ

Since ξ
pnq
k is normal with mean zero and variance 2´pn`2q, we have by Markov inequality that

PrZpnqk ą δs ď
Er|Zpnqk |4s

δ4
“

3 ¨ 2´2pn`2q

δ4
.
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In turn since the tZ
pnq
k : k “ 1, . . . , 2nu are mutually independent this implies that

P

«

sup
tPr0,1s

ˇ

ˇW pnqptq ´W pn`1qptq
ˇ

ˇ ą δ

ff

“ Prsup
k
Z
pnq
k ą δs “ 2nPrZpnq1 ą δs

ď 2n
3 ¨ 2´2pn`2q

δ4
:“ ψpn, δq .

Since ψpn, 2´n{5q „ c2´n{5 for some c ą 0, we have that
8
ÿ

n“1

P
”

sup
tPr0,1s

ˇ

ˇW pnqptq ´W pn`1qptq
ˇ

ˇ ą 2´n{5
ı

ă 8 .

Hence the Borel-Cantelli lemma implies that with probability one there exists a random kpωq so
that if n ě k then

sup
tPr0,1s

ˇ

ˇW pnqptq ´W pn`1qptq
ˇ

ˇ ď 2´n{5 .

In other words with probability one the tW pnqu form a Cauchy sequence. Let Bt denote the limit.
It is not hard to see that Bt has the properties that define Brownian motion. Furthermore since
each W pnq is uniformly continuous and converge in the supremum norm to Bt, we conclude that
with probability one Bt is also uniformly continuous. �

5. Brownian motion has Rough Trajectories

In Section 4, we saw that Brownian motion could be seen as the limit of a ever roughening
path. This leads us to wonder “how rough is Brownian motion?” We know it is continuous, but is
it differentiable?

Definition 5.1. The (standard) p-th variation on the interval ps, tq of any continuous function
f is defined to be

Vprf sps, tq “ sup
Γ

ÿ

k

|fptk`1q ´ fptkq|
p (3.6)

where the supremum is over all partitions

Γ “ tttku : s “ t0 ă t1 ă ¨ ¨ ¨ ă tn´1 ă tn “ tu , (3.7)

for some n.

For a given partition ttku let us define the mesh wi dth of the partition to be

|Γ| “ sup
0ăkďN

|tk ´ tk´1| .

The variations of Brownian motion are finite only for a certain range of q:

Proposition 5.2. If Bt is a Brownian motion on the interval r0, T s with T ă 8, then

VprBsp0, T q ă 8 a.s. if and only if p ą 2 . (3.8)

Proof. See [20, 13] for details. �

The fact that large values of p imply boundedness of the quadratic variation may be surprising
at first. However, this results from the fact that in order for the supremum in (3.6) to diverge
for a continuous function we must consider a sequence ΓN of partitions with diverging number of
intervals. As these intervals become smaller, the variation that each of them captures becomes
smaller. These small contribution become even smaller if they are raised to a power p ą 1, whence
the (possible) convergence. This concept is in close relation with the one of Hölder continuity.
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Notice that if a function f has a nice bounded derivative on the interval r0, ts then V1rf sp0, tq ă 8
since

|fptkq ´ fptk`1q| “
ˇ

ˇtk
tk`1f 1psq ds

ˇ

ˇ ď
`

sup
sPr0,ts

|f 1psq|
˘

|tk`1 ´ tk| ,

we see that

V1rf sp0, tq ď
`

sup
sPr0,ts

|f 1psq|
˘

t .

Similar considerations hold if f is Lipschitz continuous in r0, T s with Lipschitz constant L:

V1rf sp0, tq “
ÿ

k

|fptkq ´ fptk`1q| ď
ÿ

k

Lptk`1 ´ tkq “ LT .

Hence (3.8) implies that with probability one Brownian motion can not have a bounded derivative
on any interval. In fact something much stronger is true. With probability one, Brownian motion is
nowhere differentiable as a function of time (see [13] for details).

From Proposition 5.2, we see that p “ 2 is the border case. It is quite subtle. On one hand the
statement (3.8) is true, yet if one considers a specific sequence of shrinking partitions ΓpNq (such
that each successive partition contains the previous partition as a sub-partition) then

QN pT q :“
ÿ

ΓpNq

|Bpt
pNq
k`1q ´Bpt

pNq
k q|2 Ñ T a.s. .

Initially we will prove the following simpler statement.

Theorem 5.3. Let ΓpNq be a sequence of partitions of r0, T s as in (3.7) with limNÑ8 |Γ
pNq| Ñ 0.

Then

QN pT q :“
ÿ

ΓpNq

|Bpt
pNq
k`1q ´Bpt

pNq
k q|2 ÝÑ

NÑ8
T (3.9)

in L2pΩ,Pq.

Corollary 5.4. Under the conditions of the above theorem we have limNÑ8QN pT q “ T in
probability.

Proof. We see that for any ε ą 0

Prω : |ZN pωq ´ T | ą εs ď
Er|Znpωq ´ T |2s

ε2
Ñ 0 as |ΓpNq|Ñ 0.

�

Proof of Theorem 5.3. Fix any sequence of partitions

ΓpNq :“ ttt
pNq
k u : 0 “ t

pNq
1 ă t

pNq
2 ¨ ¨ ¨ ă tpNqn “ T u ,

of r0, T s with |ΓpNq| Ñ 0 as N Ñ8. Defining

ZN :“
N´1
ÿ

k“1

rBpt
pNq
k`1q ´Bpt

pNq
k qs2 ,

we need to show that

ErZN ´ T s2 .
We have,

ErZN ´ T s2 “ ErZN s2 ´ 2TErZN s ` T 2 “ ErZN s2 ´ T 2 .
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Using the convenient notation ∆kB :“ Bpt
pNq
k`1q ´Bpt

pNq
k q and ∆kt

pNq :“ |t
pNq
k`1 ´ t

pNq
k | we have that

ErZN s2 “ Er
ÿ

n

p∆nBq
2
ÿ

k

p∆kBq
2s

“ Er
ÿ

n

p∆nBq
4s ` Er

ÿ

n‰k

p∆kBq
2p∆nBq

2s

“ 3
ÿ

n

p∆nt
pNqq2 `

ÿ

n‰k

p∆kt
pNqqp∆nt

pNqq

since Ep∆kBq
2 “ ∆kt and Ep∆kBq

4 “ p∆kt
pNqq2 because ∆kB is a Gaussian random variable with

mean zero and variance ∆kt
pNq.

The limit of the first term equals 0 as the maximum partition spacing goes to zero since
ÿ

n

p∆nt
pNqq2 ď 3 ¨ supp∆nt

pNqqT

Returning to the remaining term

ÿ

n‰k

p∆kt
pNqqp∆nt

pNqq “

N
ÿ

k“1

∆kt
pNqr

k´1
ÿ

n“1

∆nt
pNq `

N
ÿ

k`1

∆nt
pNqs

“

N
ÿ

k“1

∆kt
pNqpT ´∆kt

pNqq

“ T
ÿ

∆kt
pNq ´

ÿ

p∆kt
pNqq2

“ T 2 ´ 0

Summarizing, we have shown that

ErZN ´ T s2 Ñ 0 as N Ñ8

�

Corollary 5.5. Under the conditions of Theorem 5.3, if ΓpNq Ă ΓpNq we have limNÑ8QN pT q “
T almost surely.

Proof. You can prove the above result as an exercise. To do so repeat the proof of the main
theorem and apply Borel-Cantelli Lemma when necessary. �

6. More Properties of Random Walks

We now return to the family of random walks constructed in Section 1. The collection of random
walks Bpnqptq constructed in (3.1) have additional properties which are useful to identify and isolate
as the general structures will be important for our development of stochastic calculus.

Fixing an n ě 0, define tk “ k2´n for k “ 0, . . . , 2n. Then notice that for each such k, Bpnqptkq
is a Gaussian random variable since it is the sum of the mutually independent random variables

ξ
pnq
j . Furthermore for any collection of ptk1 , tk2 , . . . , tkmq with kj P t1, . . . , 2

nqu we have that
`

Bpnqpt1q, ¨ ¨ ¨ , B
pnqptmq

˘

is a multidimensional Gaussian vector.
Next notice that for 0 ď t` ă tk ď 1 we have

E
“

B
pnq
tk

ˇ

ˇB
pnq
t`

‰

“ E
“

pB
pnq
tk
´B

pnq
t`
q `B

pnq
t`

ˇ

ˇB
pnq
t`

‰

“ E
“

B
pnq
tk
´B

pnq
t`

‰

`B
pnq
t`
“ B

pnq
t`

(3.10)
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since B
pnq
tk
´B

pnq
t`

is independent of B
pnq
t`

and ErBpnqtk
´B

pnq
t`
s “ 0. We will choose to view this single

fact as the result of two finer grain facts. The first being that the distribution of the walk at time

tk given the values tB
pnq
s : s ă t`u is the same as the conditional distribution of the walk at time tk

given only B
pnq
t`

. In light of Definition 4.1, we can state this more formally by saying that for all
functions f

E
”

fpB
pnq
tk
q

ˇ

ˇ

ˇ
Ft`

ı

“ E
”

fpB
pnq
tk
q

ˇ

ˇ

ˇ
B
pnq
t`

ı

where Ft “ σpB
pnq
s : s ď tq. This property is called the Markov property which states that the

distribution of the future depends only on the past through the present value of the process.
There is a stronger version of this property called the strong Markov property which states that

one can in fact restart the process and restart it from the current (random) value and run it for the
remaining amount of time and obtain the same answer. To state this more precisely let us introduce
the process Xptq “ x ` Bpnqptq as the random walk starting from the point x and let Px be the
probability distribution induced on Cpr0, 1sRq by the trajectory of Xptq for fixed initial x. Let Ex
be the expected value associated to Px. Of course P0 is simply the random walk starting from 0
that we have been previously considering. Then the strong Markov property states that for any
function f

E0fpXtkq “ E0F pXtk´t` , tkq where F px, tq “ ExfpXtq .

Neither of these Markov properties is solely enough to produce (3.10). We also need some fact

about the mean of the process given the past. Again defining Ft “ σpB
pnq
s : s ď tq, we can rewrite

(3.10) as

E
”

B
pnq
tk

ˇ

ˇ

ˇ
Ft`

ı

“ B
pnq
t`

by using the Markov property. This equality is the principle fact that makes a process what is called
a martingale.

We now revisit these ideas making more general definitions which abstract these properties so
we can talk about and use them in broader contexts.

7. More Properties of General Stochastic Processes

Gaussian processes. We begin by giving the general definition of a Gaussian process of which
Brownian motion is an example.

Definition 7.1. tXtu is a Gaussian random process if all finite dimensional distributions of
X are Gaussian random variables. I.e., for all t1 ă . . . tk P T and A1, . . . , Ak P B (where here B
represents Borel sets on the real line) we have that there exists R a positive definite symmetric kˆ k
matrix and m P Rk so that

PrXt1 P A1, . . . , Xtk P Aks “

ż

A1ˆ¨¨¨ˆAk

1

p2πqk{2
?

detR
e´

1
2
pX´mqTR´1pX´mq .

We have the associated definitions

µt :“ ErXts , Rt,s :“ covpXtXsq “ ErpXt ´ µtq ¨ pXs ´ µsqs . (3.11)

Example 7.2. By definition, Brownian motion is a Gaussian process: we can rewrite the rhs

of (3.3) using the definition (3.4) and obtain

P rBt1 P A1, Bt2 P A2s “

ż

A1

ż

A2

1

2π
a

t1pt2 ´ t1q
e
´

ˆ

y2

2t1
`
px´yq2

2pt2´t2q

˙

dz dy
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Expanding the exponento of the above expression or even better applying (3.11) we see that Brownian
motion has mean µt “ 0 for all t ą 0 and covariance matrix

CovpBt, Bsq “ Cov pBs ` pBt ´Bsq, Bsq “ E rBss2 ` E rpBt ´BsqBss
“ E rBss2 ` E rBt ´BssE rBss “ s .

Here we have assumed without loss of generality that s ă t and in the third identity we have used
the independence of increments of Brownian motion. This shows that for general t, s ě 0 we have

CovpBt, Bsq “ mintt, su . (3.12)

In fact, because the mean and covariance structure of a Gaussian process completely determine
the properties of its marginals, if a Gaussian process has the same covariance and mean as a
Brownian motion then it is a Brownian motion.

Theorem 7.3. A Brownian motion is a Gaussian process with zero mean function, and covariance
function minpt, sq. Conversely, a Gaussian process with zero mean function, and covariance function
minpt, sq is a Brownian motion.

Proof. Example 7.2 proves the forward direction. To prove the reverse direction, assume that
Xt is a Gaussian process with zero mean and CovpXt, Xsq “ minpt, sq. Then the increments of the
process, given by pXt, Xt`s ´Xtq are Gaussian random variables with mean 0. The variance of the
increments Xt`s ´Xt is given by

VarpXt`s ´Xt, Xt`s ´Xtq “ CovpXt`s, Xt`sq ´ 2CovpXt, Xt`s ´Xtq ` CovpXt, Xtq

“ pt` sq ´ 2t` t “ s .

The independence of Xt and Xt`s ´Xt follows immediately by

CovpXt, Xt`s ´Xtq “ CovpXt, Xt`sq ´ CovpXt, Xtq “ t´ t “ 0 .

�

Martingales. In order to introduce the concept of a martingale, we first adapt the concept
of σ-algebra to the framework of stochastic processes. In particular, in the case of a stochastic
process we would like to encode the idea of history of a process: by observing a process up to a
time t ą 0 we have all the information on the behavior of the process before that time but none
after it. Furthermore, as t increases we increase the amount of information we have on that process.
This idea is the one that underlies the concept of filtration:

Definition 7.4. Given an indexing set T , a filtration of σ-algebras is a set of sigma algebras
tFtutPT such that for all t1 ă ¨ ¨ ¨ ă tm P T we have

Ft1 Ă ¨ ¨ ¨ Ă Ftm .

We now define in which sense a filtration contains the information associated to a certain process

Definition 7.5. A stochastic process tXtu is adapted to a filtration tFtu if its marginals are
measurable with respect to the corresponding σ-algebras, i.e., if σpXtq Ď Ft for all t P T . In this
case we say that the process is to the filtration tFtu .

We also extend the concept of σ-algebras generated by a random variable to the case of a
filtration. In this case, the filtration generated by a process tXtu is the smallest filtration containing
enough information about tXtu.
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Definition 7.6. Let tXtu be a stochastic process on pΩ,F ,Pq . Then the filtration tFX
t u

generated by Xt is given by
FX
t “ σpXs|0 ď s ď tq ,

which means the smallest σ-algebra with respect to which the random variable Xs is measurable, for
all s P r0, ts. Thus, FX

t contains σpXsq for all 0 ď s ď t.

The canonical example of this is the filtration generated by a discrete random process (i.e.
T “ N):

Example 7.7 (Example 1.1 continued). The filtration generated by the N -coin flip process for
m ă N is

Fm :“ σpX0, . . . , Xmq .

Intuitively, we will think of tFXt u as the history of tXtu up to time t, or the “information” about
tXtu up to time t. Roughly speaking, an event A is in tFXt u if its occurrence can be determined by
knowing tXsu for all s P r0, ts.

Example 7.8. Let Bt be a Brownian motion consider the event

A “ tω P Ω : max
tPp0,1{2q

|Bspωq| ď 2u .

It is clear that we have A P F1{2 as the history of Bt up to time t “ 1{2 determines whether A has
occurres or not. However, we have that A R F1{3 as the process may not yet have reached 2 at time
t “ 1{3 but may do so before t “ 1{2.

We now have all the tools to define the concept of a martingale:

Definition 7.9. tXtu is a Martingale with respect to a filtration Ft if for all t ą s we have

i) Xt is Ft-measurable ,

ii) Er|Xt|s ă 8 ,

iii) ErXt|Fss “ Xs .

Condition iii) in Def. 7.9 involves a conditional expectation with respect to the σ-algebra Ft.
Recall that E rXt`s|Fts is an Ft-measurable random variable which approximates Xt`s in a certain
optimal way (and it is uniquely defined). Then Def. 7.9 states that, given the history of Xt up to
time t, our best estimate of Xt`s is simply Xt , the value of tXtu at the present time t. In a certain
sense, a martingale is the equivalent in stochastic calculus of a constant function.

Example 7.10. Brownian motion is a martingale wrt tFB
t u. Indeed, we have that

E rBt`s|Fts “ E rBt ` pBt`s ´Btq|Fts “ E rBt|Fts ` E rBt`s ´Bt|Fts “ Bt ` 0 ,

by the independence of increments property.

The above strategy can be extended to general functions gpXq, as the only property that was
used is independence of the increments: because gpXq P FX this property implies that

E
“

gpBt`s ´Btq|FB
t

‰

“ E rgpBt`s ´Btqs . (3.13)

Example 7.11. The process Xt :“ B2
t ´ t is a martingale wrt tFB

t u. Indeed we have that
the process is obviously measurable wrt tFB

t u and that E
“

|B2
t |
‰

“ t ă 8 verifying i) and ii) from
Def. 7.9. For iii) we have

E
“

B2
t`s|FB

t

‰

“ E
“

pBt `Bt`s ´Btq
2|FB

t

‰
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“ E
“

B2
t |FB

t

‰

´ 2E rBtsE
“

Bt`s ´Bt|FB
t

‰

` E
“

pBt`s ´Btq
2|FB

t

‰

“ B2
t ` s .

subtracting t´ s on both sides of the above equation we obtain E
“

B2
t`s ´ pt` sq|FB

t

‰

“ B2
t ´ t .

Example 7.12. The process Yt :“ exprλB2
t ´ λ2t{2s is a martingale wrt tFB

t u. Again, the
process is obviously measurable wrt tFB

t u and, computing the moment generating function of a
Gaussian random variable, we have that E rexp pλBtqs “ exp

`

tλ2{2
˘

ă 8, verifying i) and ii) from
Def. 7.9. For iii) we have

E
“

exp pλBt`sq |FB
t

‰

“ E
“

exp pλpBt `Bt`s ´Btqq |FB
t

‰

“ exp pλBtqE
“

exp pλpBt`s ´Btqq |FB
t

‰

“ exp pλBtqE rexp pλBsqs “ exp
`

sλ2{2
˘

.

multiplying by exprpt´ sqλ2{2s on both sides of the above equation we obtain

E
“

exp
`

λBt`s ´ λ
2pt` sq{2

˘

|FB
t

‰

“ exp
`

λBt ´ λ
2t{s

˘

.

Markov processes. We now turn to the general idea of a Markov Process. As we have seen
in the example above, this family of processes has the “memoryless” property, i.e., their future
depends on their past (their history, their filtration) only through their present (their state at the
present time, or the σ-algebra generated by the random variable of the process at that time).

In the discrete time and countable sample space setting, this holds if given t1 ă ¨ ¨ ¨ ă tm ă t,
we have that the distribution of Xt given pXt1 , . . . , Xtmq equals the distribution of Xt given pXtmq.
This is the case if for all A P BpXq and s1, . . . , sm P X we have that

P rXt P A|Xt1 “ s1 . . . , Xtm “ sms “ P rXt P A|Xtm “ sms .

This property can be stated in more general terms as follows:

Definition 7.13. A random process tXtu is called Markov with respect to a filtration tFtu when
Xt is adapted to the filtration and, for any s ą t, Xs is independent of Ft given Xt.

The above definition can be restated in terms of Brownian motions as follows: For any set
A P pXq we have

PrBt P A|FB
s s “ PrBt P A|Bss a.s. . (3.14)

Remember that conditional probabilities with respect to a σ-algebra are really random variables in
the way that a conditional expectation with respect to σ-algebra is a random variable. That is,

P
“

Bt P A|FB
s

‰

“ E
“

1BtPApωq|FB
s

‰

and P rBt P A|Bss “ E r1BtPApωq|σpBsqs .

Example 7.14. The fact that (3.14) holds can be shown directly by using characteristic functions.
Indeed,to show that the distributions of the right and left hand side of (3.14) coincide it is enough to
identify their characteristic functions. We compute

E
”

eiϑBt |FB
s

ı

“ E
”

eiϑpBs`Bt´Bsq|FB
s

ı

“ eiϑBsE
”

eiϑpBt´Bsq|FB
s

ı

“ eiϑBsE
”

eiϑpBt´Bsq
ı

,

and similarly

E
”

eiϑBt |Bs

ı

“ E
”

eiϑpBs`Bt´Bsq|Bs

ı

“ eiϑBsE
”

eiϑpBt´Bsq|Bs

ı

“ eiϑBsE
”

eiϑpBt´Bsq
ı

.

Stopping times and Strong Markov property. We now introduce the concept of stopping
time. As the name suggests, a stopping time is a time at which one can stop the process. The accent
in this sentence should be put on can, and is to be intended in the following sense: if someone
is observing the process as it evolves, and is given the instructions on when to stop, I can stop
the process given his/her/their observations. In other words, the observer does not need future
information to know if the event triggering the stop of the process has occurred or not. We now
define this concept formally:
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Definition 7.15. For a measurable space pΩ,Fq and a filtration tFtu with Ft Ď F for all t P T ,
a random variable tτu is a stopping time wrt tFtu if tω P Ω : τ ď tu P Ft for all t P T .

Classical examples of stopping times are hitting times such as the one defined in the following
example

Example 7.16. The random time τ1 :“ infts ą 0 : Bt ě 1u is a stopping time wrt the natural
filtration of Brownian motion

 

FB
t

(

. Indeed, at any time t i can know if the event τ1 has passed
by looking at the past history of Bt. However, the random time τ0 : ` sup ts P p0, t˚q : Bs “ 0u is
NOT a stopping time wrt

 

FB
t

(

for t ă t˚, as before t˚ we cannot know for sure if the process will
reach 0 again.

The strong Markov property introduced below is a generalization of the Markov property to
stopping times (as opposed to fixed times in Def. 7.13). More specifically, we say that a stochastic
process has the strong Markov property if its future after any stopping time depends on its past
only through the present (i.e., its state at the stopping time).

Definition 7.17. The stochastic process tXtu has the strong Markov property if for all finite
stopping time τ one has

P rXτ`s P A|Fτ s “ P rXτ`s P A|Xτ s ,

where Fτ :“ tA P Ft : tτ ď tu XA P Ft ,@t ą 0u.

In the above definition, the σ-algebra Fτ can be interpreted as “all the information we have on
the process up to time τ”.

Theorem 7.18. Brownian motion has the strong Markov property.

We now use the above result to investigate some of the properties of Brownian motion:

Example 7.19. For any t ą 0 define the maximum of Brownian motion in the interval r0, ts
as Mt :“ maxsPp0,tqBs. Similarly, for any m ą 0 we define the hitting time of m as τm :“ infts P
r0, ts : Bs ě mu. Then, we write

P rMt ě ms “ P rτm ď ts “ P rτm ď t, Bt ě ms ` P rτm ď t, Bt ă ms

“ P rτm ď t, Bt ´Bτm ě 0s ` P rτm ď t, Bt ´Bτm ă ms .

Using the strong Markov property of Brownian motion we have that Bt ´ Bτm is independent on
Fτm and is a Brownian motion. So by symmetry of Brownian motion we have that

P rτm ď t, Bt ´Bτm ě 0s “ P rτm ď t, Bt ´Bτm ď ms “ P rBt ě ms ,

and we conclude that

P rMt ě ms “ 2P rBt ě ms “
2

?
2πt

ż 8

m
e
y2

2t dx .

This argument is called the reflection principle for Brownian motion. From the above argument one
can also extract that

lim
TÑ8

P rτm ă T s “ 1 ,

i.e., that the hitting times of Brownian motion are almost surely finite.

From the above example we can also derive the following formula

Example 7.20. We will compute the probability density ρτmpsq of the hitting time of level m by

the Brownian motion, defined by P rτm ď ts “
şt
0 ρτmpsqds. To do so we write

P rτm ď ts “ P rMt ě ms “ 2P rBt ě ms “

c

2

πt

ż 8

m
e´

y2

2t dy “
?

2π

ż 8

m{
?
t
e´u

2
du , (3.15)
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where in the last equality we made a change of variables u “ y{
?
t. Now, differentiating (3.15) wrt

t we obtain, by Leibniz rule,

ρτmptq “
d

dt
P rτm ď ts “

|m|

2π
t´3{2e´

m2

2t . (3.16)

We immediately see from (3.16) that

E rτms “
|m|

2π

ż 8

0
s´1{2e´

m2

2s ds “ 8 .

Example 7.21. From the above computations we derive the distribution of zeros of Brownian
motion in the interval ra, bs for 0 ă a ă b. We start by computing the desired quantity on the
interval r0, ts for an initial condition x which we assume wlog to be x ă 0:

P rBs “ 0 for s P r0, ts|B0 “ xs “ P
„

max
sPr0,ts

Bs ě 0|B0 “ x



“ P
„

max
sPr0,ts

Bs ě ´x|B0 “ 0



“ P rτ´x ď ts “
|x|

2π

ż t

0
s´3{2e´

x2

2s ds . (3.17)

Since the above expression holds for all x we obtain the distribution of zeroes in the interval ra, bs by
integrating (3.17) over all possible x, weighted by the probability of reaching x at time a:

P rBs “ 0 for s P ra, bs|B0 “ 0s “

ż 8

´8

P rBs “ 0 for s P ra, b´ as|Ba “ xsP rBa P dxs

ż 8

´8

|x|

2π

ż b´a

0
s´3{2e´

x2

2s ds

c

2

πa
e´

x2

2a dx “
2

π
arccos

ˆ
c

a

b

˙

.

By taking the complement of the above we also obtain the probability that Brownian motion has no
zeroes in the interval ra, bs:

P rBs ‰ 0@s P ra, bss “ 1´ P rBs “ 0 for s P ra, bss “
2

π
arcsin

ˆ
c

a

b

˙

.

The above result is referred to as the arcsine law for Brownian motion.

8. A glimpse of the connection with pdes

The Gaussian

ρpt, zq “
e´

z2

2πt

?
2πt

is the fundamental solution to the heat equation. By direct calculation one sees that if t ą 0 then Bρ
Bt
“ 1

2
B2ρ
Bx2

. There is
a small problem at zero, namely ρ blows up. However, for any “nice” function φpxq (smooth with compact support),

lim
tÑ0

ż

ρpt, xqφpxqdx “ φp0q.

This is the definition of the “delta function” δpxq. (If this is uncomfortable to you, look at [18].) Hence we see that
ρpt, xq is the (weak) solution to

Bρ

Bt
“

1

2

B
2ρ

Bx2

ρp0, xq “ δpxq

To see the connection to probability, we set ppt, x, yq “ ρpt, x´ yq and observe that for any function f we have

E
 

fpBtq
ˇ

ˇB0 “ x
(

“

ż 8

´8

fpyqppt, x, yqdy
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We will write ExfpBtq for E
 

fpBtq
ˇ

ˇB0 “ x
(

. Now notice that if upt, xq “ ExfpBtq then upt, xq solves

Bu

Bt
“

1

2

B
2u

Bx2

up0, xq “ fpxq

This is Kolmogorov Backward equation. We can also write it in terms of the transition density ppt, x, yq

Bp

Bt
“

1

2

B
2p

Bx2

pp0, x, yq “ δpx´ yq

From this we see why it is called the “backwards” equation. It is a differential equation in the x variable. This is the
“backwards” equation in ppt, x, yq in that it gives the initial point. This begs a question. Yes, there is also a forward
equation. It is written in terms of the forward variable y.

Bp

Bt
“

1

2

B
2p

By2

pp0, x, yq “ δpx´ yq

In this case it is identical to the backwards equation. In general it will not be.
We make one last observation: the ppt, s, x, yq “ ppt´ s, x, yq “ ρpt´ s, x´ yq satisfy the Chapman-Kolmogorov

equation (the semi-group property). Namely, for any s ă r ă t and any x, y we have

pps, t, x, yq “

ż 8

´8

pps, r, x, zqppr, t, z, yqdz

s r t

x
y

z

This also suggests the following form for the Kolmogorov forward equation. If we write an equation for pps, t, x, yq
evolving in s and y, then we get an equation with a finial condition instead of an initial condition. Namely, for s ď t

Bp

Bs
“ ´

1

2

B
2p

By2

ρpt, t, x, yq “ δpx´ yq

Hence, we are solving backwards in time.
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CHAPTER 4

Itô Integrals

1. Properties of the noise Suggested by Modeling

If we want to model a process Xt which was subject to random noise we might think of writing
down a differential equation for Xt with a “noise” term regularly injecting randomness like the
following:

dXt

dt
“ fpXtq ` gpXtq ¨ pnoiseqt

The way we have written it suggests the “noise” is generic and is shaped to the specific state of the
system by the coefficient gpXtq.

It is instructive to write this in integral form over the interval r0, ts

Xt “ X0 `

ż t

0
fpXsq ds`

ż t

0
gpXsq ¨ pnoiseqs ds (4.1)

it is reasonable to take the “noise” term to be a pure noise, independent of the structure of Xt and
leave the “shaping” of the noise to a particular setting to the function gpXtq. Since we want all
moments of time to be the same it is reasonable to assume that distribution of “noise” is stationary
in time. We would also like the noise at one moment to be independent of the noise at different
moment. Since in particular both of these properties should hold when the function g ” 1 we
consider that simplified case to gain insight.

Defining

Vt “

ż t

0
pnoiseqs ds

stationarity translates to the distribution of Vt`h ´ Vt being independent of t. Independence
translates to

Vt1 ´ V0, Vt2 ´ Vt1 , ¨ ¨ ¨ , Vtn`1 ´ Vtn

being a collection of mutually independent random variables for any collection of times

0 ă t1 ă t2 ă ¨ ¨ ¨ ă tn .

Rewriting (4.1) with g ” 1 produces

Xt “ X0 `

ż t

t
fpXsq ds` Vt

we see that if further decide that we would like to model processes Xt which are continuous in time
we need to require that t ÞÑ Vt is almost surely a continuous process.

Clearly from our informal definition, V0 “ 0. Collecting all of the properties we desire of Vt:

i) V0 “ 0
ii) Stationary increments

iii) Independent increments
iv) t ÞÑ Vt is almost surely continuous.
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Comparing this list with Theorem 3.7 we see that Vt must be a Brownian motion. We will chose it
to be standard Brownian motion to fix a normalization.

Hence we are left to make sense of the integral equation

Xt “ X0 `

ż t

0
fpXsqdS `

ż t

0
gpXsq

dBs
ds

ds

Of course this leads to its own problems since we saw in Section 5 that Bs is nowhere differentiable.
Formally canceling the “ds” maybe we can make sense of the integral

ż t

0
gpXsqdBs .

There is a well established classical theory of integrals in this form called “Riemann–Stieltjes”
integration. We will briefly sketch this theory in the next section. However, we will see that even
this theory is not applicable to the above integral. This will lead us to consider a new type of
integration theory designed explicitly for random functions like Brownian motion. This named
the Itô Integral after Kiyoshi Itô who developed the modern version though earlier version exist
(notably in the work of Paley, Wiener and Zygmund).

2. Riemann-–Stieltjes Integral

Before we try to understand how to integrate against Brownian motion, we recall the classical
Riemann—Stieltjes integration theory. Given two continuous functions f and g, we want to define

ż T

0
fptqdgptq . (4.2)

We begin by considering a piecewise function φ function defined by

φptq “

#

a0 for t P rt0, t1s

ak for t P ptk, tk`1s, k “ 1, . . . , n´ 1
(4.3)

for some partition

0 “ t0 ă t1 ă ¨ ă tn´1 ă tn “ t

and constants ak P R. For such a function φ it is intuitively clear that
ż T

0
φptqdgptq “

n´1
ÿ

k“0

ż tk`1

tk

φpsqdgpsq “
n´1
ÿ

k“0

ak

ż tk`1

tk

dgpsq “
n´1
ÿ

k“0

akrgptk`1q ´ gptkqs . (4.4)

because
ştk`1

tk
dgpsq “ gptk`1q ´ gptkq by the fundamental theorem of Calculus (since

ştk`1

tk
dgpsq “

ştk`1

tk
g1psq ds if g is differentiable).

The basic idea of defining (4.2) is to approximate f by a sequence of step functions tφnptqu each
of the form given in (4.3) so that

sup
tPr0,T s

|fptq ´ φnptq| Ñ 0 as nÑ8 . (4.5)

A natural choice of partition for the nth level is t
pnq
k “ Tk2´n for k “ 0, . . . , 2n and then define the

nth approximating function by

φnptq “

#

fpT q if t “ T

fpt
pnq
k q if t P rt

pnq
k , t

pnq
k`1q

If f is continuous, it easy to see that (4.5) holds.
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We then are left to show that there exists a constant α so that

ˇ

ˇ

ż T

0
φpnqptqdgptq ´ α

ˇ

ˇ ÝÑ 0 as nÑ8

We would then define the integral
şT
0 fptqdgptq to be equal to α. One of the keys to proving this

convergence is a uniform bound on the approximating integrals
şT
0 φ

pnqptqdgptq. Observe that

|

ż T

0
φpnqptqdgptq| ď }f}8

n´1
ÿ

k“0

|gptkq ´ gptk`1q| ď }f}8V1rgsp0, T q

where

}f}8 “
ÿ

tPr0,T s

|fptq| .

This uniform bound implies that the
şT
0 φ

pnqptqdgptq say in a compact subset of R. Hence there must
be a limit point α of the sequence and a subsequence which converges to it. It is not then hard to
show that this limit point is unique. That is to say that if any other subsequent converges it must

also converge to α. We define the value of
şT
0 fptqdgptq to be α. Hence it seems sufficient for g to

have V1rgsp0, T q ă 8 if when g and f are continuous. It can also be shown to be necessary for a
reasonable class of f .

It is further possible to show using essentially the same calculations that the limit α is independent
of the sequence of partitions as long as the maximal spacing goes to zero and independent of the
choice of point at which to evaluate the integrand f . In the above discussion we chose the left hand
endpoint tk of the interval rtk, tk`1s. However we were free to choose any point in the interval.

While the compactness argument above is a standard path in mathematics is often more
satisfying to explicitly show that the tφpnqu are a Cauchy sequence by showing that for any ε ą 0
there exists and N so that if n,m ą N then

ˇ

ˇ

ˇ

ż T

0
φpmqptqdgptq ´

ż T

0
φpnqptqdgptq

ˇ

ˇ

ˇ
ă ε

Since φpmq ´ φpnq is again a step function of the form (4.3), the integral
şT
0 rφ

pmq ´ φpnqsptqdgptq is
well defined given by a sum of the form (4.4). Hence we have

ˇ

ˇ

ˇ

ż T

0
φpmqptqdgptq ´

ż T

0
φpnqptqdgptq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ż T

0
rφpmq ´ φpnqsptqdgptq

ˇ

ˇ

ˇ
ď }φpmq ´ φpnq}8V1rgsp0, T q

Since f is continuous and the partition spacing is going to zero it is not hard so see that the tφpnqu
from a Cauchy sequence under the } ¨ }8 norm which completes the proof that integrals of the step
functions form a Cauchy sequence.

3. A motivating example

We begin by considering the example
ż T

0
Bs dBs (4.6)

where B is a standard Brownian motion. Since V1rBsp0, T q “ 8 almost surely we can not entirely
follow the prescription of the Riemann-Stieltjes integral given in Section 2. However, it still seems
reasonable to approximate the integrand Bs by a sequence of step functions of the form(4.3).
However, since B is random, the ak from (4.3) will have to be random variables.
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Fixing a partition 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tN “ T , we define two different sequences of step function
approximations of B. For t P r0, T s, we define

φN ptq “ Bptkq if t P rtk, tk`1q

φ̂N ptq “ Bptk`1q if t P ptk, tk`1s

Just as in the Riemann-Stieltjes setting (see (4.4)), for such step functions it is clear that one should
define the respective integrals in the following manner:

ż T

0
φN ptq dBs “

N´1
ÿ

i“0

BptkqrBptk`1q ´Bptkqs

ż T

0
φ̂N ptq dBs “

N´1
ÿ

i“0

Bptk`1qrBptk`1q ´Bptkqs

In the Riemann-Stieltjes setting, the two are the same. But in this case, the two have very different
properties as the following calculation shows. Since Bptkq and Bptk`1q ´Bptkq are independent we
have EBptkqrBptk`1q ´Bptkqs “ E

“

Bptkq
‰

ErBptk`1q ´Bptkqs “ 0. So

E
”

ż T

0
φNdBs

ı

“

N´1
ÿ

k“0

EBptkqrBptk`1q ´Bptkqs

“

N´1
ÿ

k“0

E
“

Bptkq
‰

ErBptk`1q ´Bptkqs “ 0

While since ErBptk`1q ´Bptkqs
2 “ tk`1 ´ tk, we have

E
”

ż T

0
φ̂NdBs

ı

“E
N´1
ÿ

i“0

BptkqrBptk`1q ´Bptkqs ` E
N´1
ÿ

k“0

rBptk`1q ´Bptkqs
2

“0`
N´1
ÿ

k“0

“

tk`1 ´ tk
‰

“ T

Hence, how we construct our step functions will be important in our analysis. The choice of the
endpoint used in φN ptq leads to what is called the Itô integral. The choice used in φ̂N ptq is called
the Klimontovich Integral. While if the midpoint is chosen, this leads to the Stratonovich integral.
The question on which to use is a modeling question and is dependent on the problem being studied.
We will see that it is possible to translate between all three in most cases. We will concentrate on
the Itô integral since it has some nice additional properties which make the analysis attractive.

4. Itô integrals for a simple class of step functions

Let pΩ,F ,Pq be a probability space and Bt be a standard Brownian motion. Let Ft be a filtration
on the probability space to which Bt is adapted. For example, one could have Ft “ σpBs : s ď tq be
the filtration generated by the Brownian motion Bt.

Definition 4.1. φpt, ωq is an elementary stochastic process if there exists a collection of bounded,
disjoint intervals tIku “ trt0, t1q, rt1, t2q, . . . , rtN´1, tN qu associated to a partition 0 ď t0 ă t1 ă
¨ ¨ ¨ ă tN and a collection of random variables tαk : k “ 0, . . . , Nu so that

φpt, ωq “
N
ÿ

k“0

αkpωq1Ikptq ,
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the random variable αkpωq is measurable with respect to Ftk , and Er|αkpωq|2s ă 8. We denote the
space of all elementary functions as S2.

To be precise, stochastic integrals are defined on the class of progressively measurable processes, defined
below:

Definition 4.2. A stochastic process tXtutě0 on pΩ,F ,P, tFtuq is called progressively measurable, if for
any t ě 0, Xtpωq, viewed as a function of two variables pt, ωq is Br0,ts ˆ Ft-measurable, where Br0,ts is the
Borel σ-algebra on r0, ts.

Fact 1. Every adapted right continuous with left limits (“cadlag”) or left continuous with right limits
process is progressively measurable. The reason to assume progressive measurability is to ensure that the
expectation and the integral can be interchanged (by Fubini’s theorem).

Fact 2. Any progressively measurable process X “ tXtutPr0,T s can be approximated by a sequence of
simple processes Xn “ tXn

t utPr0,T s P S2 in the L2-sense, that is

E

«

ż T

0

|Xn
t ´Xt|

2 dt

ff

“

ż T

0

E
“

|Xn
t ´Xt|

2
‰

dtÑ 0 as nÑ8 .

The proof of this approximation can be found in [14].
Because of the above result, we will be able to extend the notion of integral to adapted processes, and we
restrict our attention to such processes for the rest of the chapter.

Next, we define a functional I which will be our integral operator. That is to say Ipφq “
ş8

0 φ dB.
Just as for Riemann-Stieltjes integral, if φ is an elementary stochastic process, it is relatively clear
what we should mean by Ipφq, namely

Definition 4.3. The stochastic integral operator of an elementary stochastic process is given by

Ipφq :“
ÿ

k

αkrBptk`1q ´Bptkqs .

We first observe that I satisfies one of the standard properties of an integral in that it is a linear
functional. In other words, if λ P R, and φ and ψ are elementary stochastic processes then

Ipλφq “ λIpφq and Ipψ ` φq “ Ipψq ` Ipφq (4.7)

Thanks to our requirement that αk are measurable with respect to the filtration associated to the
left endpoint of the interval rtk, tk`1q we have the following properties which will play a central role
in what follows and should be compared to the calculations in Section 3.

Lemma 4.4. If φ is an elementary stochastic processes then

EIpφq “ 0 (mean zero)

E
“

Ipφq2
‰

“

ż 8

0
E|φptq|2 ds (Itô Isometry)

Remark 4.5. An isometry is a map between two spaces which preserves distance (i.e. the norm).
If we consider

IpS2q “
 

Ipφq : φ P S2u

then according to Lemma 4.4 the map Ipφq ÞÑ φ is an isometry between the space of random variables

L2
`

IpS2q,P
˘

“
 

X P IpS2q : }X} “
a

EpX2q ă 8u

and the space of elementary stochastic processes L2pS2,Prdωq ˆ dts equipped with the norm

}φ} “
´

ż 8

0
Eφ2pt, ωq dt

¯
1
2
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Proof of Lemma 4.4. We begin by showing Ipφq is mean zero.

ErIpφqs “
ÿ

k

ErαkpBptk`1q ´Bptkqqs

“
ÿ

k

ErErαkpBptk`1q ´Bptkqqs|Ftks

“
ÿ

k

ErαkErBptk`1q ´Bptkq|Ftkss “ 0

Turning to the Itô isometry

ErIpφq2s “
”

E
`

ÿ

k

αkpBptk`1q ´Bptkqq
˘

ı

¨

”

E
`

ÿ

j

αjpBptj`1q ´Bptjqq
˘

ı

“
ÿ

j,k

ErαkαjrBptk`1q ´BptkqsrBptj`1q ´Bptjqss

“2
ÿ

jăk

ErαkαjrBptk`1q ´BptkqsrBptj`1q ´Bptjqss

`
ÿ

k

Erα2
krBptk`1q ´Bptkqs

2s

Next, we examine each component separately: Recall for tk`1 ď tj

ErαkαjrBptk`1q ´BptkqsrBptj`1q ´Bptjqss

“ ErErαkαjrBptk`1q ´BptkqsrBptj`1q ´Bptjqs|Ftj ss
“ ErαkαjrBptk`1q ´BptkqsErrBptj`1q ´Bptjqs|Ftj ss
“ 0

since ErrBptj`1q ´Bptjqs|Ftj s “ 0. Similarly
ÿ

k

Erα2
krBptk`1q ´Bptkqs

2s “
ÿ

k

ErErα2
krBptk`1q ´Bptkqs

2|Ftkss

“
ÿ

k

Erα2
kptk`1 ´ tkqs

Hence, we have:

ErIpφq2s “ 0`
ÿ

k

Erα2
ksptk`1 ´ tkq “

ż

Erφ2psqs ds

�

So far we have just defined the Itô Integral on the whole positive half line r0,8q. For any
0 ď s ă t ď 8, we make the following definition

ż t

s
φr dBr “ Ipφ1rs,tqq

We can now talk about the stochastic process

Mt “ Ipφ1r0,tqq “

ż t

0
φsdBs (4.8)

associated to a given elementary stochastic process φt, where the last two expressions are just
different notation for the same object.

We now state a few simple consequences of our definitions.
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Lemma 4.6. Let φ P S2 and 0 ă s ă t then
ż t

0
φr dBr “

ż s

0
φr dBr `

ż t

s
φr dBr

and

Mt “

ż t

0
φs dBs

is measurable with respect to Ft.

Proof of Lemma 4.6. Clearly Mt is measurable with respect to Ft since tφs : s ď tu are by
assumption and the construction of the integral only uses the information from tBs : s ď tu. The
first property follows from φ1r0,ts “ φ1r0,sq ` φ1rs,tq and hence

Ipφ1r0,tsq “ Ipφ1r0,sqq ` Ipφ1rs,tqq

by (4.7). �

Lemma 4.7. Let Mt be as in (4.8) for an elementary process φ and a Brownian motion Bt both
adapted to a filtration tFt : t ě 0u. Then Mt is a martingale with respect to the filtration Ft.

Proof of Lemma 4.7. Looking at Definition 7.9, there are three conditions we need to verify.
The measurability is contained in Lemma 4.6. The fact that ErM2

t s ă 8 follows from the Itô
isometry since

ErM2
t s “

ż t

0
E|φs|2 ds ď

ż 8

0
E|φs|2 ds

because the last integral is assumed to be finite in the definition of an elementary stochastic process.
All that remains is to verify that for s ă t.

ErMtpφq ´Mspφq|Fss “ 0 .

There are a few cases. Taking one case, say s and t are in the disjoint intervals rtk, tk`1q and
rtj , tj`1q, respectively. We have that

Mtpφq ´Mspφq “ αkrBptk`1q ´Bss `
´

j´1
ÿ

n“k`1

αnrBptn`1q ´Bptnqs
¯

` αjrBt ´Bptjqs

Next, take repeated expectations with respect to the filtrations tFau, where a P ttj , tj´1, . . . , tk`1, su.
This would then imply that for each a

ErαarBpta`1q ´Bptaqs|Fas “ αaErBpta`1q ´Bptaq|Fas
“ αaErBpta`1q ´Bptaqs

“ 0

Hence, ErMtpφq ´Mspφq|Fss “ 0. The other cases can be done similarly. And the conclusion
immediately follows. �

Lemma 4.8. In the same setting as Lemma 4.7, Mt is a continuous stochastic process. (That is
to say, with probability one the map t ÞÑMt is continuous for all t P r0,8q) .

Proof of Lemma 4.8. We begin by noticing that if φpt, ωq is a simple process with

φpt, ωq “
N´1
ÿ

k“1

αkpωq1rtk,tk`1q
ptq
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then if t P ptk˚ , tk˚`1q then

Mtpφ, ωq “
k˚´1
ÿ

k“1

αkpωqrBptk`1, ωq ´Bptk, ωqs ` αk˚pωqrBpt, ωq ´Bptk˚ , ωqs

Hence it is clear that Mtpφ, ωq is continuous if φ is a simple function since the Brownian motion Bt
is continuous. �

5. Extension to the Closure of Elementary Processes

We will denote by S̄2 the closure in L2pPˆ dtq of the square integrable elementary processes S2.
Namely,

S̄2 “

!

all stochastic process fpt, ωq : there exist a sequence φnpt, ωq P S2

so that

ż 8

0
Epfptq ´ φnptqq2 dtÑ 0 as nÑ8

)

Also recall that we define

L2pΩ,Pq :“
!

f : Ω Ñ R :

ż

Ω
fpωq2 Prdωs ă 8

)

“ tRandom Variables X with EpX2q ă 8u

and

L2pΩˆ r0,8q,Pˆ dtq :“
!

f : Ωˆ r0,8q :

ż 8

0

ż

Ω
fpt, ωq2 Prdωsdt ă 8

)

“

!

Stochastic Processes Xt with

ż 8

0
EpX2

t q dt ă 8
)

In general, in the interest of brevity we will write L2pΩq for the first and L2pΩ ˆ r0,8qq for

the second space above. We will occasionally write }X}L2pΩq for
a

EpX2q and }X}L2pΩˆr0,8qq for

p
ş8

0 EpX2
t q dtq

1
2 though we will simply write } ¨ }L2 when the context is clear.

Recalling that our definition of S2 and hence S̄2 had a filtration Ft in the background, we
define L2

adpΩˆ r0,8qq to be the subset of L2pΩˆ r0,8qq in which all of the stochastic processes are
adapted to the filtration Ft. We have the following simple observation

Lemma 5.1. The closure of the space of elementary processes is contained in the space of square
integrable, adapted processes, i.e., S̄2 Ă L2

adpΩˆ r0,8qq .

Proof. The adaptedness follows from the adaptedness of S2. The fact that elements in S̄2 are
square integrable follows from the following calculation. Fixing an X P S̄2 and a sequence φn P S̄2

so that }φn´X} Ñ 0 as nÑ8 we fix an n so that }φn´X} ď 1. Then since for any real numbers
a and b and p ě 1 one has |a` b|2 ď 2p´1|a|2 ` 2p´1|b|p we see that

}f}2L2 “ }fn ` pf ´ φnq}
2
L2 ď 2}φn}

2
L2 ` 2}f ´ φn}

2
L2 ď 2p}φn}

2
L2 ` 1q ă 8

where the term on the far right is finite since for every n, φn P S2 (observe that }φn}
2
L2 “

ř

Epα2
kq). �

In fact, S̄2 is exactly L2
adpΩˆ r0,8qq,

Theorem 5.2. S̄2 “ L2
adpΩˆ r0,8qq

Proof. S̄2 Ă L2
adpΩˆ r0,8qq was just proven in Lemma 5.1. For the other direction, see the

proof of [14, Theorem 3.1.5] or [11] �
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We are now ready to state the main theorem of this section. This result shows that given
a Cauchy sequence of elementary stochastic processes tφnu P S2 converging in L2pΩ, r0,8qq to a
process f P S̄2, there exists a random variable X P L2pΩq to which the stochastic integrals Ipφnq
converge in L2pΩq. We will then define this variable X to be the stochastic integral Ipfq “

ş8

0 fs dBs.
The concept of the construction is summarized in the following scheme:

tφnptqutPT S2 IpS2q
ş

φn dBs

tfptqutPT S̄2 L2pΩq X “:
ş

f dBs

P Q

P Q

Ip¨q

ş8

0 E
“

pφn ´ fq
2
‰

dtÑ 0 nÑ8 E
“

pIpφnq ´Xq
2
‰

Ñ 0nÑ8

Ip¨q

Theorem 5.3. For every f P S̄2, there exists a random variable X P L2pΩq so that if tφn : n “
1, . . . ,8u is a sequence of elementary stochastic processes (i.e. elements of S2) converging to the
stochastic process f in L2pΩˆ r0,8q then Ipφnq converges to X in L2pΩq.

Definition 5.4. For any f P S̄2, we define the Itô integral

Ipfq “

ż 8

0
ft dBt

to be the random variable X P L2pωq given by Theorem 5.3.

Proof of Theorem 5.3. We start by showing that Ipφnq is a Cauchy sequence in L2pΩq. By
the linearity of the map I (see (4.7)), Ipφnq ´ Ipφmq “ Ipφn ´ φmq. Hence by the Itô isometry for
the elementary stochastic processes (see lemma 4.4), we have that

E
“

pIpφnq ´ Ipφmqq
2
‰

“ E
“

Ipφn ´ φmq
2
‰

“

ż 8

0
E
“

pφnptq ´ φmptqq
2
‰

dt (4.9)

Since the sequence φn converges to f in L2pΩˆ r0,8qq, we know that it is a Cauchy sequence in
L2pΩ ˆ r0,8qq. By the above calculations we hence have that tIpφnqu is a Cauchy sequence in
L2pΩq. It is a classical fact from real analysis that this space is complete which implies that every
Cauchy sequence converges to a point in the same space. Let X P L2pΩq denote the limit.

To see that X does not depend on the sequence tφnu, let tφ̃nu be another sequence converging

to f . The same reasoning as above ensures the existence of a X̃ P L2pΩq so that Ipφ̃nq Ñ X̃ in
L2pΩq. On the other hand

E
”

pIpφnq ´ Ipφ̃nqq
2
ı

“ E
”

pIpφn ´ φ̃nqq
2
ı

“

ż 8

0
E
”

pφnptq ´ φ̃mptqq
2
ı

dt

ď 2

ż 8

0
E
“

pφnptq ´ fq
2
‰

dt` 2

ż 8

0
E
”

pf ´ φ̃mptqq
2
ı

dt

where in the inequality we have again used the fact that pφn ´ φ̃mq
2 “ rpφn ´ fq ` pf ´ φ̃mqs

2 ď

2pφn ´ fq
2 ` 2pf ´ φ̃nq

2. Since both φn and φ̃n converge to f in L2pΩˆ r0,8qq we have that the

last two terms on the right-hand side go to 0. This in turn implies that EpX ´ X̃q2 “ 0 and that
the two random variables are the same. �
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Remark 5.5. While the above construction might seem like magic since it is so soft, it is an
application of a general principle in mathematics. If one can define a linear map on a dense subset
of elements in a space in such a way that the map is an isometry then the map can be uniquely
extend to the whole space. This approach is beautifully presented in our current context in [10] using
the following lemma

Lemma 5.6. (Extension Theorem) Let B1 and B2 be two Banach spaces. Let B0 Ă B1 be a linear
space. If L : B0 Ñ B2 is defined for all b P B0 and |Lb|B2 “ |Lb|B1, @b P B0. Then there exists a
unique representation of L to B0 (closure of B0) called L with Lb “ Lb, @b P B0.

Example 5.7. We use the above theorem to show that

IT pBsq “

ż T

0
Bs dBs “

1

2
pB2

T ´ T q .

To do so, we show that the sequence φn “
řN
j“1 1

rt
pnq
j ,t

pnq
j`1q

Btnj with ∆tnj “ t
pnq
j`1 ´ t

pnq
j Ñ 0 converges

in L2pΩ, r0, T qq to tBtu. Indeed we have that

ż T

0
E
“

|φn ´Bs|
2
‰

dt “
N
ÿ

j“1

ż t
pnq
j`1

t
pnq
j

pB
t
pnq
j

´Bsq
2 ds “

N
ÿ

j“1

ż t
pnq
j`1

t
pnq
j

pt
pnq
j`1 ´ sqds

“
1

2

N
ÿ

j“1

pt
pnq
j`1 ´ t

pnq
j q2 Ñ 0 .

Then, by Theorem 5.3 we have that
ż T

0
Bs dBs “ lim

nÑ8
Ipφnq “ lim

nÑ8

ÿ

j

B
t
pnq
j

∆Bn
j .

Now, writing ∆Bn
j :“ B

t
pnq
j

´B
t
pnq
j`1

we have

∆pB2
j q :“ B2

t
pnq
j

´B2

t
pnq
j`1

“ pB
t
pnq
j

´B
t
pnq
j`1

q2 ` 2B
t
pnq
j

pB
t
pnq
j

´B
t
pnq
j`1

q “ p∆Bn
j q

2 ` 2B
t
pnq
j

∆Bn
j

and therefore

ÿ

j

B
t
pnq
j

∆Bn
j “

1

2

˜

ÿ

j

∆pB2
j q ´

ÿ

j

p∆Bn
j q

2

¸

“
1

2

˜

B2
T ´

ÿ

j

p∆Bn
j q

2

¸

.

The term on the rhs converges to pB2
T ´ T q{2 in L2pΩq, which therefore corresponds to

şT
0 Bs dBs .

6. Properties of Itô integrals

Proposition 6.1. Let f, g P L2
adpΩ, r0,8q, λ P R, then

i) Linearity:
ż 8

0
pλfs ` gsqdBs “ λ

ż 8

0
fs dBs `

ż 8

0
gs dBs , (4.10)

ii) Separability: for all S ą 0,
ż 8

0
fs dBs “

ż S

0
fs dBs `

ż 8

S
fs dBs ,

iii) Mean 0:

E
„
ż 8

0
fs dBs



“ 0 , (4.11)
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iv) Itô isometry:

E

«

ˆ
ż 8

0
fs dBs

˙2
ff

“

ż 8

0
E
“

f2
s

‰

dt . (4.12)

Proof. For the proof of points i) and ii) we refer to [9].
To prove iv), for f P L2

adpΩ, r0,8q, let tφnu P S2 be a sequence of elementary stochastic processes
converging to f in L2

adpΩ, r0,8q. By Theorem 5.3, there exists X P L2pΩq with E
“

pX ´ Ipφnqq
2
‰

Ñ 0

as nÑ8. Since E
“

X2
‰

,E
“

Ipφnq
2
‰

ă 8 using Cauchy-Schwartz (or Hölder) inequality we write

|E
“

Ipφnq
2
‰

´ E
“

X2
‰

| “ |E rpX ´ IpφnqqpX ` Ipφnqqs |
ď |E rpX ´ IpφnqqIpφnqs ` E rpX ´ IpφnqqXs |
ď

a

E rX2s ` E rIpφnq2s
a

E rpX ´ Ipφnqq2s ,

with the term on the right hand side
a

E rpX ´ Ipφnqq2s “ }X ´ Ipφnq}L2pωq Ñ 0 as nÑ8 . This
implies that in the limit nÑ8 we have

E
“

Ipφnq
2
‰

Ñ E
“

X2
‰

.

At the same time,

EIpφnq2 “
ż 8

0
Epφnptqq2 dtÑ

ż 8

0
Epfptq2q dt .

Combining these facts produces

EpX2q “

ż 8

0
Epfptq2q dt

as desired. The exact same logic produces EX “ 0. �

7. A continuous in time version of the the Itô integral

In this section, we consider the

Definition 7.1. For any f P LadpΩˆ r0,8qq and any t ě 0, we define the Itô integral process
tItpfqu as

Itpfq “

ż t

0
fspωqdBspωq :“ Ipf1p0,tsq .

Note that the process introduced above is well defined and adapted to Ft. In fact since

EItpfq2 “
ż t

0
Ef2

t dt ď

ż 8

0
Ef2

t dt ă 8

we see that Itpfq is an adapted stochastic process whose second moment is uniformly bounded in
time. It is not immediately clear that we can fix the realization ω (which in turn fixes the realization

of f and W ) and then change the time t in Itpfqpωq “
şt
0 fspωqdBspωq. We built the integral as

some limit at each time t. Changing the time t requires us to repeat the limiting process. This
would be fine except that we built the Itô integral through an L2-limit. Hence at each time it is
only defined up to sets of probability zero. If we only want to define It for some countable sequence
of time then this still would not be a problem because the countable union of measure zero sets is
still measure zero. However, we would like to define Itpfq for all t P r0, T s. This is a problem and
more work is required.

Theorem 7.2. Let f P L2
adpΩ, r08qq, then there exists a continuous version of Itpfq, i.e., there

exists a t-continuous stochastic process tJtu on pΩ,F ,Pq such that for all t P T
P rJt “ Itpfqs “ 1 .
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To prove this result, we state a very useful theorem which we will prove later.

Theorem 7.3 (Doob’s Martingale Inequality). Let Mt be a continuous-time martingale with
respect to the filtration Ft. Then

P
´

sup
0ďtďT

|Mt| ě λ
¯

ď
Er|MT |

ps

λp

where λ P R`, and p ě 1.

Proof of Theorem 7.2. By Lemma 4.8 we know that Itpφ, ωq is continuous if φ is a simple
function. If we had a sequence of simple functions φn converging to f in L2, we would like to “transfer”
the continuity of φ to f . To do so we use the following fact: “ The uniform limit of continuous
functions is continuous”. In other words, if fn is continuous and suptPr0,T s |fnptq ´ fptq| Ñ 0 as
nÑ8 then f is continuous.

To do so, let Itpφnq “
şt
0 φpsqdBs and consider a Cauchy sequence tφnu, for which we have

P
„

sup
0ďtďT

|Itpφnq ´ Itpφmq| ą ε



ď
1

ε2
E
“

|IT pφnq ´ IT pφmq|
2
‰

ď
1

ε2
E
„
ż T

0
pφnpsq ´ φmpsqq

2 ds



The last term goes to zero as n,mÑ8. Hence we can find a subsequence tnku so that

P
„

sup
0ďtďT

|Itpφnk`1
q ´ Itpφnkq| ą

1

k2



ď
1

2k

If we set

Ak “

"

sup
0ďtďT

|Itpφnk`1
q ´ Itpφnkq| ą

1

k2

*

then
ř

k PrAks ď
ř

k 2´k ă 8. Hence the Borel-Cantelli lemma tells us that there is an random
Npωq so that

n ą Npωq ùñ sup
0ďtďT

|Itpφnk`1
q ´ Itpφnkq| ď

1

k2

If we set J
pkq
t “ Itpφnkq then the tJ

pkq
t u form a Cauchy sequence in the sup norm (|f |sup “

suptPr0,T s |fptq|). Since the convergence is uniform in t and each J
pkq
t is continuous, we know that for

almost every ω the limit point limkÑ8 J
pkq
t “ Jt is also continuous in t. Finally, since by assumption

we also have J
pkq
t Ñ Itpfq “

şt
0 fspωqdBspωq in L2, we have that

ż t

0
fspωqdBspωq “ Jtpωq a.s. ,

as required. �

8. An Extension of the Itô Integral

Up until now we have only considered the Itô integral for integrands f such that E
şT
0 f

2 ds ă 8.

However it is possible to make sense of
şT
0 fspωqdBspωq if we only know that

P
„
ż T

0
|fspωq|

2 ds ă 8



“ 1 .
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Most of the previous properties hold. In particular
şT
0 fspωqdBspωq is a perfectly fine random

variable which is almost surely finite. However, it is not necessarily true that Er
şT
0 fspωqdBspωqs “ 0.

Which in turn means that
şT
0 fspωqdBspωq need not be a martingale. (In fact it is what is called a

local martingale.) By obvious reasons, the Itô isometry property (4.12) may not hold in this case.

Example 8.1.

9. Itô Processes

Let pΩ,F ,Pq be the canonical probability space and let Ft be the σ-algebra generated by the
Brownian motion Btpωq.

Definition 9.1. Xtpωq is an Itô process if there exist stochastic processes fpt, ωq and σpt, ωq
such that

i) fpt, ωq and σpt, ωq are Ft-measurable ,

ii)
şt
0 |f |ds ă 8 and

şt
0 |σ|

2 ds ă 8 almost surely ,

iii) X0pωq is F0-measurable ,

iv) With probability one the following holds

Xtpωq “ X0pωq `

ż t

0
fspωq ds`

ż t

0
σspωqdBspωq (4.13)

The processes fpt, ωq and σpt, ωq are referred to as drift and diffusion coefficients of Xt.

For brevity, one often writes (4.13) as

dXtpωq “ ftpωqdt` σtpωqdBtpωq

But this is just notation for the integral equation above!
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CHAPTER 5

Stochastic Calculus

This section introduces the fundamental tools for the computation of stochastic integrals. Indeed,
similarly to what is done in classical calculus, stochastic integrals are rarely computed by applying
the definition of Itô integral from the previous chapter. In the case of classical calculus, instead
of applying the definition of Riemann integral one usually computes

ş

fpxqdx by applying the

fundamental theorem of calculus and choosing d
dxF pxq “ fpxq such that

ż

fpxqdx “

ż

d

dx
F pxqdx “ F pxq . (5.1)

Even though, as we have seen in the previous section differentiation in this framework is not possible,
it is possible to obtain a similar result for Itô integrals. In the following chapter we will introduce
such a formula (called the Itô formula) allowing for rapid computation of stochastic integrals.

1. Itô’s Formula for Brownian motion

We first introduce the Itô formula for the Brownian motion process.

Theorem 1.1. Let f P C2pRq (the set of twice continuously differentiable functions on R) and
Bt a standard Brownian motion. Then for any t ą 0,

fpBtq “ fp0q `

ż t

0
f 1pBsqdBs `

1

2

ż t

0
f2pBsqds .

To prove this theorem, we first state the following partial result, proven at the end of the section.

Lemma 1.2. Let g be a continuous function and Γn :“ ttnk : k “ 1, . . . , Npnqu be a sequence of
partitions of r0, ts such that t0 “ 0 and tN “ t

|Γn| :“ sup
i
|tni`1 ´ t

n
i | Ñ 0 as nÑ8 . (5.2)

Then
N´1
ÿ

k“0

gpξnk q
´

Btnk ´Bt
n
k`1

¯2
Ñ

ż t

0
gpBsqds ,

for any choice of ξnk P pBtnk , Bt
n
k`1
q .

Proof of Theorem 1.1. Without loss of generality we can assume that f and its first two
derivatives are bounded. After establishing the result for such functions we can approximate any
function by such a sequence and pass to the limit to obtain the general result.

Let ttnk : k “ 1, . . . , Npnqu be a sequence of partitions of r0, ts such that t0 “ 0 and tN “ t

|ΓN | :“ sup
i
|tni`1 ´ t

n
i | Ñ 0 as nÑ8 .

Now for any level n,

fpBtq ´ fp0q “

Npnq
ÿ

k“1

´

fpBtkq ´ fpBtk´1
q

¯

. (5.3)
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Taylor’s Theorem implies

fpBtkq ´ fpBtk´1
q “ f 1pBtk´1

q
`

Btk ´Btk´1

˘

`
1

2
f2pξkq

`

Btk ´Btk´1

˘2
,

for some ξk P rBtk´1
, Btks. Returning to (5.3), we have

fpBtq ´ fp0q “

Npnq
ÿ

k“1

f 1pBtk´1
q
`

Btk ´Btk´1

˘

`
1

2

Npnq
ÿ

k“1

f2pξkq
`

Btk ´Btk´1

˘2
. (5.4)

By the construction of the Itô integral, for the first term on the right hand side of (5.4) we have

Npnq
ÿ

k“1

f 1pBtk´1
q
`

Btk ´Btk´1

˘

ÝÑ

ż t

0
f 1pBsqdBs

in L2 as nÑ8. Combining this with the result of Lemma 1.2 (proven below) with g “ f2 for the
second term on the right hand side of (5.4) we conclude the proof. �

Proof of Lemma 1.2. We now want to show that

An :“

Npnq
ÿ

k“1

gpξkq
`

Btk ´Btk´1

˘2
ÝÑ

ż t

0
gpBsq ds

in probability as nÑ8. We begin by showing that

Cn :“

Npnq
ÿ

k“1

gpBtk´1
q
`

Btk ´Btk´1

˘2
ÝÑ

ż t

0
gpBsqds , (5.5)

in probability as nÑ8. First since gpBsq is continuous, we have that

Dn :“

Npnq
ÿ

k“1

gpBtk´1
qptk ´ tk´1q ÝÑ

ż t

0
gpBsqds .

as nÑ8. Therefore, we obtain (5.5), by showing that the term |Cn ´Dn| converges to 0 in L2pΩq
as this directly implies convergence in probability. To that end observe that

E
“

pDn ´ Cnq
2
‰

“ E

»

–

Npnq
ÿ

k“1

gpBtk´1
q2p∆kt´∆2

kBq
2

fi

fl

` 2E

»

–

ÿ

jăk

gpBtk´1
qgpBtj´1qp∆kt´∆2

kBqp∆jt´∆2
jBq

fi

fl (5.6)

where ∆k :“ tk ´ tk´1 and ∆2
kB :“ pBtk ´Btk´1

q2. Now since

E
“

p∆kt´∆2
kBq

2
‰

“ p∆ktq
2 ´ 2p∆ktq

2 ` 3p∆ktq
2 “ 2p∆ktq

2

Considering the first term in (5.6) we have

E

»

–

Npnq
ÿ

k“1

gpBtk´1
q2p∆kt´∆2

kBq
2

fi

fl “ 2

Npnq
ÿ

k“1

E
“

gpBtk´1
q2p∆ktq

2
‰

ď 2|ΓN |

Npnq
ÿ

k“1

E
“

gpBtk´1
q2p∆ktq

‰

Since the sum converges to
ż t

0
E
“

gpBsq
2
‰

ds ă 8
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as n Ñ 8 and |ΓN | Ñ 0, the product goes to zero. All that remains is the second sum in (5.6).
Since

E
“

gpBtk´1
qgpBtj´1qp∆kt´∆2

kBqp∆jt´∆2
jBq

‰

“ E
“

gpBtk´1
qgpBtj´1qp∆jt´∆2

jBqE
“

∆kt´∆2
kB

ˇ

ˇFtk´1

‰‰

and E
“

∆kt´∆2
kB

ˇ

ˇFtk´1

‰

“ 0, we see that the second sum is in fact zero.
All that remains is to show that An converges to Cn. Now

|Cn ´An| ď

Npnq
ÿ

k“1

|gpξkq ´ gpBtkq|
`

Btk ´Btk´1

˘2

ď

´

sup
k
|gpξkq ´ gpBtkq|

¯

Npnq
ÿ

k“1

`

Btk ´Btk´1

˘2
.

Since the first term goes to zero in probability as n Ñ 8 by the continuity and boundedness of
gpBsq and the second term converges to the quadratic variation of Bt (which equals t), we conclude
that the product converges to zero in probability. �

1.1. A second look at Itô’s Formula. Looking back at (5.4), one sees that the Itô integral
term in Itô’s Formula comes from the sum against the increments of Brownian motion. This term
results directly from the first order Taylor expansion of f , and can be identified with the first order
derivative term that we are used to see in the fundamental theorem of calculus (5.1). The second
sum

Npnq
ÿ

k“1

f2pξkq
`

Btk ´Btk´1

˘2
,

which contains the squares of the increments of Brownian motion, results from the second order
term in the Taylor expansion and is absent in the classical calculus formulation. However, since the
sum

Npnq
ÿ

k“1

`

Btk ´Btk´1

˘2

converges in probability to the quadratic variation of the Brownian motion Bt, which according
to Lemma 5.3 is simply t, this term gives a nonzero contribution in the limit nÑ 8 and should
be considered in this framework. We refer to this term as the Itô correction term. In light of
this remark, if we let rBst denote the quadratic variation of Bt, then one can reinterpret the Itô
correction term

1

2

ż t

0
f2pBsq ds as

1

2

ż t

0
f2pBsqdrBss . (5.7)

We wish to derive a more general version of Itô’s formula for a general Itô process Xt defined by

Xt “ X0 `

ż t

0
fs ds`

ż t

0
gs dBs .

Beginning in the same way as before, we write the expression analogous to (5.4), namely

fpXtq ´ fpX0q “

Npnq
ÿ

k“1

f 1pXtk´1
q
`

Xtk ´Xtk´1

˘

`
1

2

Npnq
ÿ

k“1

f2pξkq
`

Xtk ´Xtk´1

˘2
(5.8)
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for some twice continuously differentiable function f and some partition ttku of r0, ts. It is reasonable
to expect the first and second sums to converge respectively to the integrals

ż t

0
f 1pXsqdXs and

1

2

ż t

0
f2pXsq drXss . (5.9)

The first is the Itô stochastic integral with respect to an Itô process Xt while the second is an
integral with respect to the differential of the quadratic variation rXst of the process Xt. So far this
discussion has proceeded mainly by analogy to the simple Brownian motion. To make sense of the
two terms in (5.9) we need to better understand the quadratic variation of an Itô process Xt and
to define the concept of stochastic integral against Xt. While the former point is covered in the
following section, the latter is quickly clarified by this intuitive definition:

Definition 1.3. Given an Itô process tXtu with differential dXt “ ft dt`σt dBt and an adapted
stochastic process thtu such that

ż 8

0
|hsfs| ds ă 8 and

ż 8

0
phsσsq

2 ds ă 8 a.s.

then we define the integral of ht against Xt as
ż t

0
hs dXs :“

ż t

0
hsfs ds`

ż t

0
hsσs dBs . (5.10)

2. Quadratic Variation and Covariation

We generalize the definition (3.9) of quadratic variation to the one of quadratic covariation

Definition 2.1. Let Xt, Yt be two adapted, stochastic processes. Their quadratic covariation is
defined as

rX,Y st :“
p

lim
NÑ8

jN
ÿ

j“0

´

XtNj`1
´XtNj

¯´

YtNj`1
´ YtNj

¯

where limp denotes a limit in probability and ttNj u is a set partitioning the interval r0, ts defined by

ΓN :“ tttNj u : 0 “ tN0 ă tN1 ă ¨ ¨ ¨ ă tNjN “ tu (5.11)

with |ΓN | :“ supj |t
N
j`1 ´ t

N
j | Ñ 0 as N Ñ8. Furthermore, we define the quadratic variation of Xt

as

rXst :“ rX,Xst . (5.12)

We can also speak about the quadratic variation on an interval different than r0, ts. For 0 ď s ă t
we will write respectively rXss,t and rX,Y ss,t for the quadratic variation and cross-quadratic variation
on the interval rs, ts.
Just from the algebraic form of the pre-limiting object the quadratic variation satisfies a number of
properties.

Lemma 2.2. Assuming all of the objects are defined, then for any adapted, continuous stochastic
processes Xt, Yt,

i) for any constant c P R we have

rcXst “ c2rXst

ii) for 0 ă s ă t we have

rXs0,s ` rXss,t “ rXs0,t (5.13)
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iii) we have that

0 ď rXs0,s ď rXs0,t (5.14)

for t ą s ě 0. In other words, the map t ÞÑ rXst is nondecreasing a.s. .
iv) we can write

rX ˘ Y st “ rXst ` rY st ˘ 2rX,Y st . (5.15)

Consequently, quadratic covariations can be written in terms of quadratic variations as

rX,Y st “
1

2

´

rX ` Y st ´ rXst ´ rY st

¯

“
1

4

´

rX ` Y st ´ rX ´ Y st

¯

. (5.16)

Proof. Parts i) and ii) are a direct consequence of Def. 2.1, while part iii) results from ii) the fact
that rX,Y st is defined as a sum of squares and is therefore nonnegative: rXs0,t “ rXs0,s ` rXss,t ě
rXs0,s. Part iv) is obtained by noticing that

rX ˘ Y st “
p

lim
NÑ8

jN
ÿ

j“0

´

pXtNj`1
´XtNj

q ˘ pYtNj`1
´ YtNj`1

q

¯2

“
p

lim
NÑ8

jN
ÿ

j“0

ˆ

´

XtNj`1
´XtNj

¯2
˘ 2

´

XtNj`1
´XtNj

¯´

YtNj`1
´ YtNj

¯

`

´

YtNj`1
´ YtNj

¯2
˙

“ rXst ˘ 2rX,Y st ` rY st ,

while (5.16) is obtained by rearranging the terms of the above result (for the first inequality) and
by using it to compute rX ` Y st ` rX ´ Y st (for the second). �

In the following sections we will see that the quadratic variation of Itô integrals acquires a
particularly simple form. We will show this by first considering quadratic variations of Itô integrals
and then extend this result to Itô processes.

2.1. Quadratic Variation of an Itô Integral.

Lemma 2.3. Let σt be a process adapted to the filtration tFB
t u and such that

ş8

0 σ2
s ds ă 8 a.s..

Then defining Mt :“ Itpσq “
şt
0 σs dBs we have that

rM st “

ż t

0
σ2
s ds (5.17)

or in differential notation drM st “ σ2
t dt.

Proof of Lemma 2.3. It is enough to prove (5.17) when σs is an elementary stochastic process
in S2. The general case can then be handled by approximation as in the proof of the Itô isometry.
Hence, we assume that

σt “
K
ÿ

j“1

αj´11rtj´1,tjqptq (5.18)

where the αk satisfy the properties required by S2 and K is some integer. Without loss of generality
we can assume that t is the right endpoint of our interval so that the partition takes the form

0 “ t0 ă t1 ă ¨ ¨ ¨ ă tK “ t

Now observe that if rs, rs Ă rtj´1, tjs then
ż r

s
στ dBτ “ αj´1

`

Bs ´Br
˘

57



Hence ts
pnq
` u is a sequence of partitions of the interval rtj´1, tjs so that

tj´1 “ s
pnq
0 ă s

pnq
1 ă ¨ ¨ ¨ ă s

pnq
Npnq “ tj

and |ΓN | “ sup` |s
pnq
`´1 ´ s

pnq
` | Ñ 0 as n Ñ 8. Then the quadratic variation of Mt on the interval

rtj´1, tjs is the limit nÑ8 of

Npnq
ÿ

`“1

pMs`´1
´Ms`q

2 “ α2
j´1

Npnq
ÿ

`“1

pBs`´1
´Bs`q

2 .

Since the summation on the right hand side limits to the quadratic variation of the Brownian motion
B on the interval rtj´1, tjs which we know to be tj ´ tj´1 we conclude that

rM stj´1,tj “ α2
j´1ptj ´ tj´1q .

Since the quadratic variation on disjoint intervals adds, we have that

rM st “
K
ÿ

j“1

rM stj´1,tj “

K
ÿ

j“1

α2
j´1ptj ´ tj´1q “

ż t

0
σ2
s ds

where the last equality follows from the fact that σs takes the form (5.18). As mentioned at the
start, the general form follows from this calculation by approximation by functions in S2. �

Remark 2.4. The proof of the above result in Klebaner (Theorem 4.14 on pp. 106) has a subtle issue .
When bounding

2
n´1
ÿ

i“0

g2pBtni
qptni`1 ´ t

n
i q

2 ď 2δnE

«

n´1
ÿ

i“0

g2pBtni
qptni`1 ´ t

n
i q

ff

,

Klebaner asserts that as nÑ8, δn “ |Γn| Ñ 0,
řn´1

i“0 Erg2pBt2i
qsptni`1 ´ t

n
i q would stay finite, and thus their

product would go to 0. However, the finiteness of
řn´1

i“0 Erg2pBt2i
qsptni`1 ´ t

n
i q is unjustified. In fact, if it were

finite, it must converge to
şt

0
Erg2pBsqsds (Riemann sum). However, this integral might be infinity for certain

choice of g, for example, gpxq “ ex
2

(see Example 4.5 on pp. 99 of [Klebaner]). The proof here uses the
same computation of second moment but only for “nice” functions (i.e., those with compact support). The
convergence in probability (note: this is weaker than convergence in L2) for general continuous functions is
established using approximation. The stopping rules for Itô integral are needed here, but we defer it to the
later part of the course.

We now consider the quadratic covariation of two Itô integrals with respect to independent
Brownian motions.

Lemma 2.5. Let Bt,Wt two independent Brownian motions, and fs, gs two stochastic processes,
all adapted to the underlying filtration Ft and such that

ş8

0 f2
s ds,

ş8

0 g2
s ds ă 8 almost surely. We

define

Mt :“

ż t

0
fs dBs and Nt :“

ż t

0
gs dWs .

Then, for all t ě 0 one has

rN,M st “ 0 . (5.19)

Proof of (5.19). Again without lost of generality it is enough to prove the result for σt and
gs in S2. We can further assume that both functions are defined with respect to the same partition

0 “ t0 ă t1 ă ¨ ¨ ¨ ă tK “ t
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Since as observed in (5.13), the quadratic variation on disjoint intervals adds, we need only show
that rN,M stj´1,tj “ 0 on any of the partition intervals rtj´1, tjs.

Fixing such an interval rtj´1, tjs, we see that rN,M stj´1,tj “ σtj´1gtj´1rW,Bstj´1,tj . The easiest
way to see this is to use the “polarization” equality (5.16)

2rW,Bstj´1,tj “ r
W`B?

2
, W`B?

2
stj´1,tj ´ r

W´B?
2
, W´B?

2
stj´1,tj “ ptj ´ tj´1q ´ ptj ´ tj´1q “ 0

since W`B?
2

and W´B?
2

are standard Brownian motions and hence have quadratic variation the length

of the time interval. �

Remark 2.6. One can also prove the above result more directly by following the same argument as
in Theorem 5.3 of Chapter 3. The key calculation is to show that the expected value of the approximating
quadratic variation is 0 and not the length of the time interval as in the proof of Theorem (5.3) of Chapter 3.
For any partitions ts`u of rtj´1, tjs one has to zero we have

E
ÿ

`

pBs` ´Bs`´1qpBs` ´Bs`´1q “
ÿ

`

EpBs` ´Bs`´1qEpBs` ´Bs`´1q “ 0

2.2. Quadratic Variation of an Itô Process. In this section, using the results presented
above, we finally obtain a simple expression for the quadratic variation of an Itô process.

Lemma 2.7. If Xt is an Itô process with differential dXt “ µt dt` σt dBt , then

rXst “ rIpσ
2qst “

ż t

0
σ2
s ds , (5.20)

or equivalently drXst “ σ2
t dt.

By comparing this result with (5.17) we notice that the only contribution to the quadratic variation
process comes from the Itô integral. The following result will be useful in the proof of (5.20).

Lemma 2.8. Let Xt and Yt be adapted stochastic processes, such that Xt is continuous a.s. and
Yt has trajectories with finite first variation (V1rY sptq ă 8) then rX,Y st “ 0 a.s..

Before we give the proof of Lemma 2.8 we observe that it immediately yields (5.20).

Proof of Lemma 2.7. Defining Ft “
şt
0 µs ds and Mt “

şt
0 σsdBs, observe that Xt “ Ft `Mt

and that Ft is continuous and of finite first variation almost surely. Hence rF st “ 0. Since Mt is
continuous a.s., we have that rM,F st “ 0 almost surely. Hence

rXst “ rF st ` 2rF,M st ` rM st “ rM st “

ż t

0
σ2
s ds .

�

Proof of Lemma 2.8 . Let ΓN :“ ttNi : i “ 0, . . . , iNu be a sequence of partitions of r0, ts
such that |ΓN | “ supi |t

N
i`1 ´ t

N
i | Ñ 0 as N Ñ8. Now

ˇ

ˇ

ˇ

iN
ÿ

i“1

pXti ´Xti´1qpYti ´ Yti´1q

ˇ

ˇ

ˇ
ď

´

sup
i
|Xti ´Xti´1 |

¯

iN
ÿ

i“1

|Yti ´ Yti´1 |

The summation on the right hand side is bounded from above by the first variation of Yt which by
assumption is finite a.s. On the other hand, as nÑ8 the supremum goes to zero since |ΓN | Ñ 0
and Xt is a.s. continuous. �
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Remark 2.9. Similarly to the formal considerations in Section 1.1, we may think of the
differential of the quadratic variation process drXst as the limit of the difference term pXtnk`1

´Xtnk
q2,

which in turn is the square of the differential of Brownian motion pdXtq
2. Therefore, formally

speaking, we can obtain the result of the previous lemma by writing

drXst “ pdXtq
2 “ pµt dt` σt dBtq

2

“ µ2
t pdtq

2 ` 2µtσtpdtqpdBtq ` σ
2
t pdBtq

2

“ σ2
t dt .

where we have applied pdtq2 “ pdtqpdBtq “ 0 (cfr. Lemma 2.8) and pdBtq
2 “ dt (cfr. Lemma 2.3).

These formal multiplication rules are summarized in the following table: By the same formal

ˆ dt dBt
dt 0 0

dBt 0 dt

arguments, such rules apply to the computation of the quadratic covariation of two Itô processes
Yt “ µ1t dt` σ1tdBt:

drX,Y st “ pdXtqpdYtq “ pµt dt` σt dBtqpµ
1
t dt` σ1t dBtq

“ µtµ
1
tpdtq

2 ` µtσ
1
tpdtqpdBtq ` µ

1
tσtpdtqpdBtq ` σtσ

1
tpdBtq

2 (5.21)

“ σtσ
1
t dt .

This result can be verified by going through the steps of the proof of the above lemmas.

3. Itô’s Formula for an Itô Process

Using the lessons learned in the previous sections, we now proceed to compute the infinitesimal
of (5.8) as

dfpXtq “ f 1pXtqdXt `
1

2
f2pXtqpdXtq

2 . (5.22)

Of course this is just notation for the integral equation

fpXtq ´ fpX0q “

ż t

0
f 1pXsqdXs `

1

2

ż t

0
f2pXsqpdXsq

2 .

The first integral is simply the integral against an Itô process as we have already discussed. In light
of Remark 2.9, we should interpret drXts “ pdXtq

2 “ pµt dt` σt dBtq
2 “ σ2

t dt. Hence

1

2

ż t

0
f2pXsqpdXsq

2 “
1

2

ż t

0
f2pXsqσ

2
s ds

This formal calculation (which is correct) leads us to suggest the following general Itô formula.

Theorem 3.1. Let Xt be the Itô process given by

dXt “ µt dt` σt dBt

If f is a C2 function then

fpXtq “ fpX0q `

ż t

0
f 1pXsqdXs `

1

2

ż t

0
f2pXsqdrXss

“ fpX0q `

ż t

0
f 1pXsqµs ds`

ż t

0
f 1pXsqσsdBs `

1

2

ż t

0
f2pXsqσ

2
s ds
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Proof of Theorem 3.1. Without loss of generality, we can assume that both µt and σt are
adapted elementary stochastic processes satisfying the assumptions required by an Itô process.
Furthermore, by inserting partition points if needed, we can assume that they are both defined on
the same partition

0 “ t0 ă t1 ă ¨ ¨ ¨ ă tN “ t .

Since

fpXtq ´ fpX0q “

N
ÿ

`“1

fpXt`q ´ fpXt`´1
q

we need only prove Itô’s formula for fpXt`q ´ fpXt`´1
q. Now since Xt is constant for t P rt`´1, t`q

we can take ξ “ Xt`´1
and for rr, ss Ă rt`´1, t`s we have

Xs ´Xr “

ż s

r
µτdτ `

ż s

r
στ dBτ “ µt`´1

ps´ rq ` σt`´1
pBs ´Brq .

Let ts
pnq
i : i “ 0, . . . ,Kpnqu be a sequence of partitions of rt`´1, t`s such that |ΓN | “ supi |s

pnq
i ´

s
pnq
i´1| Ñ 0 as nÑ8. Now using Taylor’s theorem we have

fpXsj q ´ fpXsj´1q “ f 1pXsj´1qpXsj ´Xsj´1q `
1

2
f2pξjqpXsj ´Xsj´1q

2 .

for some ξj P pXsj´1 , Xsj q. Hence we have

fpXt`q ´ fpXt`´1
q “

Kpnq
ÿ

j“1

fpXsj q ´ fpXsj´1q

“

Kpnq
ÿ

j“1

f 1pXsj´1qpXsj ´Xsj´1q `
1

2

Kpnq
ÿ

j“1

f2pξjqpXsj ´Xsj´1q
2 “ pIq `

1

2
pIIq

Since

pXsj ´Xsj´1q
2 “ µ2

t`´1
psj ´ sj´1q

2 ` 2µt`´1
σt`´1

psj ´ sj´1qpBsj ´Bsj´1q ` σ
2
t`´1
pBsj ´Bsj´1q

2

we have

pIq “ µt`´1

Kpnq
ÿ

j“1

f 1pXsj´1qps´ rq ` σt`´1

Kpnq
ÿ

j“1

f 1pXsj´1qpBs ´Brq “ pIaq ` pIbq

and

pIIq “µ2
t`´1

Kpnq
ÿ

j“1

f2pξjqpsj ´ sj´1q
2 ` 2µt`´1

σt`´1

Kpnq
ÿ

j“1

f2pξjqpsj ´ sj´1qpBsj ´Bsj´1q

` σ2
t`´1

Kpnq
ÿ

j“1

f2pξjqpBsj ´Bsj´1q
2 “ pIIaq ` pIIbq ` pIIcq

As nÑ8, it is clear that

pIaq ÝÑ

ż t`

t`´1

f 1pXsqbs ds, and pIbq ÝÑ

ż t`

t`´1

f 1pXsqσsdBs .

61



Using the same arguments as in Theorem 1.1 we see that

pIIcq ÝÑ σ2
t`´1

ż t`

t`´1

f2pXsq ds “

ż t`

t`´1

σ2
sf
2pXsqds .

All that remains is to show that pIIaq and pIIbq converge to zero as nÑ8. Observe that

|pIIaq| ď µ2
t`´1
|ΓN |

Kpnq
ÿ

j“1

f2pξjqpsj ´ sj´1q and |pIIbq| ď 2µt`´1
σt`´1

|ΓN |

Kpnq
ÿ

j“1

f2pξjqpBsj ´Bsj´1q .

Since the two sums converge to
ş

f2pXsqds and
ş

f2pXsqdBs respectively the fact that |ΓN | Ñ 0
implies that pIIaq and pIIbq converge to zero as n Ñ 8. Putting all of these results together
produces the quoted result. �

Remark 3.2. Notice that the “multiplication table” given in Remark 2.9 is reflected in the
details of the proof of Theorem 3.1. Each of the terms in pdXtq

2 correspond to one of the terms
labeled pIIq which came from pXpsjq ´ Xpsj´1qq

2 in the Taylor’s theorem expansion. The term
pIIaq which corresponds to p dtq2 limits to zero as the multiplication table indicates. The term pIIbq
which corresponds to pdtqpdBtq also tends to zero again as the table indicates. Lastly, pIIcq which
corresponds to pdBtq

2 limits to an integral against pdtq as indicated in the table.

Example 3.3. Consider the stochastic process with differential

dXt “
1

2
Xt dBt `Xt dBt .

The above process is an example of a geometric Brownian motion, a process widely used in finance
to model the price of a stock. We apply Itô formula to the function fpxq :“ log x. Using that
Bxfpxq “ x´1 and B2

xxfpxq “ ´x
´2 we obtain

d logXt “
1

Xt
dXt ´

1

2

1

X2
t

drXst “
1

Xt

ˆ

1

2
Xt dBt `Xt dBt

˙

´
1

2

1

X2
t

`

X2
t dt

˘

“ dBt .

In the integral form the above can be written as logXt “ logX0 `Bt and therefore Xt “ X0e
Bt.

4. Full Multidimensional Version of Itô Formula

We now give the full multidimensional version of Itô’s formula. We will include the possibility
that the function depends on time and that there is more than one Brownian motion. We begin
with the definition of a multidimensional Itô process.

Definition 4.1. A stochastic process Xt “ pX1ptq, . . . , Xdptqq P Rd is an Itô process if each of
the coordinate process Xiptq is a one-dimensional Itô process.

Let µiptq and σijptq be adapted stochastic processes and tBjptqu
m
j“1 be m mutually independent,

standard Brownian motions such that for i “ 1, . . . , d we can write each component of the d-
dimensional Itô process as

dXiptq “ µiptqdt`
m
ÿ

j“1

σijptq dBjptq . (5.23)

If we collect the Brownian motions into one m-dimensional Brownian motion Bt “ pB1ptq, . . . , Bmptqq
and define the Rd-valued process µt “ pµ1ptq, . . . , µdptqq and the matrix valued process σt whose
matrix elements are the σijptq then we can write

dXt “ µt dt` σt dBt . (5.24)
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While this is nice and compact, it is perhaps more suggestive to define the Rd-valued processes
σpjq “ pσ1,j , . . . , σn,jq for j “ 1, . . . ,m and write

dXt “ µt dt`
d
ÿ

j“1

σ
pjq
t dBjptq . (5.25)

This emphasizes that the process Xt at each moment of time is pushed in the direction which µt
points and given m random kicks, in the directions the σ

pjq
t point, whose magnitude and sign are

dictated by the Brownian motions Bjptq.

We now want to derive the process which describes evolution of F pXtq where F : Rd Ñ R. In
other words, the multidimensional Itô formula.

We begin by developing some intuition. Recall Lemma 2.5 stating that the cross-quadratic
variation of independent Brownian motions is zero. Hence if Bt and Wt are independent standard
Brownian motions then the multiplication table for pdXtq

2 and pdYtqpdXtq if Xt and Yt are two Itô
processes is given in the following table.

ˆ dt dBt dWt

dt 0 0 0
dBt 0 dt 0
dWt 0 0 dt

Table 1. Formal multiplication rules for differentials of two independent Brownian motions

Theorem 4.2. Let F : Rd Ñ R be a function such that F pxq P C2 in x P Rd. If Xt is as above
then

dF pXtq “

n
ÿ

i“1

BF

Bxi
pXtqdXiptq `

1

2

n
ÿ

i“1

n
ÿ

k“1

BF

BxiBxk
pXtq drXi, Xkst (5.26)

Furthermore one has

d
ÿ

i“1

n
ÿ

k“1

BF

BxiBxk
pXtqdrXi, Xksptq “

n
ÿ

i“1

n
ÿ

k“1

BF

BxiBxk
pXtqaikptq dt (5.27)

where

aikptq “
d
ÿ

j“1

σijptqσkjptq

The matrix aptq can be written compactly as σptqσptqT . The matrix a is often called the diffusion
matrix.

We will only sketch the proof of this version of Itô formula since it follows the same logic of the
others already proven. Proofs can be found in many places including [14, 7, 3].

Sketch of proof. Similarly to the proof of Theorem 3.1 we introduce the family of partitions
ΓN of the interval r0, ts as in (8.8) with limnÑ8 |ΓN | “ 0 and expand in Taylor the function f in
each of these intervals:

F pXtq ´ F pX0q “

N
ÿ

`“1

!

d
ÿ

i“1

B

Bxi
F pXs`´1

qpXi ps`q ´Xi psj´1qq
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`
1

2

d
ÿ

i,j“1

B2

BxiBxj
F pξ`qpXi ps`q ´Xi ps`´1qqpXj ps`q ´Xj ps`´1qq

)

“

N
ÿ

`“1

tpIq` `
1

2
pIIq`u ,

for ξ` P
Śd

i“1rXips`q, Xips``1qs . For the first order term, it is straightforward to generalize the
proof of Theorem 3.1 to obtain that

p

lim
NÑ8

N
ÿ

`“1

pIq` “

ż t

0

d
ÿ

i“1

B

Bxi
F pXsq dXipsq .

We formally recover the expression of the second order term by combining (5.21) with the rules
of Table 1:

p

lim
NÑ8

N
ÿ

`“1

pIIq` “

ż t

0

d
ÿ

i,j“1

B2

BxiBxj
F pXsqpdXipsqqpdXjpsqq

“

ż t

0

d
ÿ

i,j“1

B2

BxiBxj
F pXsq

m
ÿ

k,l“1

pσikptqdBkpsqqpσjlptqdBlpsqq

“

ż t

0

d
ÿ

i,j“1

B2

BxiBxj
F pXsq

m
ÿ

k“1

σikptqσjkptq dt ,

where in the second equality we have used that pdtqpdBjptqq “ 0 and in the third that pdBiptqqpdBjptqq “
0 for i ‰ j. Note that one should check that when taking the limit in the first equality F pξ`q can be
replaced by F pXs`q. This can be done by reproducing the proof of Lemma 1.2. �

Remark 4.3. The fact that (5.27) holds requires that Bi and Bj are independent if i ‰ j.
However, (5.26) holds even when they are not independent.

Theorem 4.2 is for a scalar valued function F . However by applying the result to each coordinate function
Fi : Rd Ñ R of the function F : Rd Ñ Rp with F “ pF1, . . . , Fpq we obtain the full multidimensional version.
Instead of writing it again in coordinates, we take the opportunity to write a version aligned with the
perspective and notation of (5.26). Recalling that the directional derivative of F in the direction ν P Rd at
the point x P Rd is

DF pxqrνs “ lim
εÑ0

F px` ενq ´ F pxq

ε
“ p∇F ¨ νqpxq “

p
ÿ

k“1

d
ÿ

i“1

BFk

Bxi
νiek

where ek is the k-th unit vector of Rp. Similarly, the second directional derivative at the point x P Rd in the
directions ν, η P Rd is given by

D2F pxqrν, ηs “ lim
εÑ0

DF px` εηqrνs ´DF pxqrνs

ε
“

p
ÿ

k“1

d
ÿ

i“1

d
ÿ

j“1

B2Fk

Bxixj
νiηjek

Then in the notation of (5.26), Theorem 4.2 can be rewritten as

dF pXptqq “ DF pXptqqrfptqsdt`
d
ÿ

i“1

DF pXptqqrσpiqptqsdBiptq

`
1

2

d
ÿ

i“1

d
ÿ

j“1

D2F pXptqqrσpiqptq, σpjqptqsdrBi, Bjsptq
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If Bi and Bj are assumed to be independent if i ‰ j, then

dF pXptqq “ DF pXptqqrfptqsdt`
d
ÿ

i“1

DF pXptqqrσpiqptqsdBiptq `
1

2

d
ÿ

i“1

D2F pXptqqrσpiqptq, σpiqptqsdt .

We now consider special cases of Theorem 3.1 that will be helpful in practice. The first describes
evolution of a function F px, tq that depends explicitly on time:

Corollary 4.4. Let F : Rdˆr0,8q Ñ R such that F px, tq is C2 in x P Rd and C1 in t P r0,8q.
Furthermore, let Xt be a d-dimensional Itô process as in (5.23). Then

dF pXt, tq “
BF

Bt
pXt, tq dt`

n
ÿ

i“1

BF

Bxi
pXt, tqdXiptq `

1

2

n
ÿ

i“1

n
ÿ

k“1

BF

BxiBxk
pXt, tqdrXi, Xkst . (5.28)

where a is defined as in (5.27).

Proof. In this proof we will make use of the “multiplication table” at the beginning of
this section. Consider the d ` 1-dimensional process X̄t :“ pX1ptq, . . . , Xdptq, Ytq for Yt given by
dYt “ dt` 0 dBt. Then by applying Itô’s Formula Theorem 5.26 and the fact that Yt is of finite
variation (so drZ, Y st “ 0 for continuous Zt) we obtain

dF pXtq “

d
ÿ

i“1

BiF pXt, tqdXiptq ` BtF pXt, tqpdt` 0 dBtq

`
1

2

˜

d
ÿ

i,j“1

B2
ijF pXt, tqdrXi, Xjst ` 2

d
ÿ

i“1

BiBtF pXt, tqdrXi, Yts ` B
2
tF pXt, tqdrYt, Yts

¸

“

d
ÿ

i“1

BiF pXt, tqdXiptq ` BtF pXt, tqdt`
1

2

d
ÿ

i,j“1

B2
ijF pXt, tqdrXi, Xjst .

Note that the existence of the second derivative in t is not needed in the above formula and can
therefore be dropped. �

Corollary 4.5. Let Xt, Yt be two Itô processes. Then

dpXtYtq “ YtdXt `XtdYt ` drX,Y st . (5.29)

This result is known as stochastic integration by parts formula.

Proof. Let F : R2 Ñ R with F px, yq “ x ¨ y, then since

BxF px, yq “ y , ByF px, yq “ x , B2
xxF px, yq “ B

2
yyF px, yq “ 0 , B2

xy “ 1 ,

by Itô’s Formula Theorem 5.26 we have

dpXtYtq “ dF pXt, Ytq “ YtdXt `XtdYt ` 1drX,Y st . (5.30)

�

Example 4.6. We compute the stochastic integral
ż t

0
sdBs .

Applying the integration by parts formula (5.30) for dXt “ dBt, dYt “ dt we obtain

dptBtq “ tdBt `Btdt` drB, tst .
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Since Yt is of finite variation we have drB, Y st “ 0, and by integrating and rearranging the terms
we obtain

ż t

0
sdBs “

ż t

0
dpsBsq ´

ż t

0
Bsds “ tBt ´

ż t

0
Bsds .

Example 4.7. Assume that fpx, tq P C2,1pR,R`q satisfies the pde

B

Bt
fpx, tq `

B2

Bx2
fpx, tq “ 0 ,

and E
“

fpBt, tq
2
‰

ă 8, then have that

dfpBt, tq “ BtfpBt, tqdt` BxfpBt, tqdt`
1

2
B2
xxfpBt, tq drBst

“

ˆ

Bt `
1

2
B2
xx

˙

fpBt, tq dt` BxfpBt, tq dBt “ BxfpBt, tqdBt .

Therefore fpBt, tq “ fp0, 0q `
şt
0 BxfpBs, sq dBs is a martingale.

5. Collection of the Formal Rules for Itô’s Formula and Quadratic Variation

We now recall some of the formal calculations, bringing them all together in one place. We consider
a probability space pΩ,F ,Pq with a filtration Ft. We assume that Bt and Bt are independent standard
Brownian motions adapted to the filtration Ft.

For any ρ P r0, 1s, Zt “ ρBt `
a

1´ ρ2Bt is again a standard Brownian motion. Furthermore

rZst “ rZ,Zst “ ρ2rB,Bst ` 2ρ
a

1´ ρ2 “ rB,Bst ` p1´ ρ
2qrB,Bst

“ ρ2t` 0` p1´ ρ2qt “ t

Or in the formal differential notation, drZst “ dt. This result can be understood by using the formal
multiplication table for differentials which formally states:

drZst “ pdZtq
2 “ pρdBt `

a

1´ ρ2 dBtq
2 “ ρ2pdBtq

2 ` 2ρ
a

1´ ρ2 dBtdBt ` p1´ ρ
2qpdBtq

2

“ ρ2 dt` 0` p1´ ρ2qdt “ dt

Similarly, one has

drZ,Bst “ pdZtqpdBtq “ ρpdBtq
2 `

a

1´ ρ2pdBtqpdBtq “ ρ dt` 0 “ ρ dt

drZ,Bst “ pdZtqpdBtq “ ρpdBtqpdBtq `
a

1´ ρ2pdBtq
2 “ 0`

a

1´ ρ2 dt “
a

1´ ρ2 dt

Now let σt and gt be adapted stochastic processes (adapted to Ft) with
ż t

0

σ2
s ds ă 8 and

ż t

0

g2s ds ă 8

almost surely. Now define

dMt “ σt dBt dNt “ gt dBt

dUt “ σtdBt dVt “ σtdZt

Of course these are just formal expression. For example, dMt “ σt dBt means Mt “M0 `
şt

0
σsdBs. Using

the multiplication table from before we have

drM st “ pdMtq
2 “ σ2

t pdBtq
2 “ σ2

t dt drU st “ pdUtq
2 “ σ2

t pdBtq
2 “ σ2

t dt

drN st “ pdNtq
2 “ g2t pdBtq

2 “ g2t dt drV st “ pdVtq
2 “ σ2

t pdZtq
2 “ σ2

t dt
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and the cross-quadratic variations

drM,N st “ pdMtqpdNtq “ σtgtpdBtq
2 “ σtgt dt

drM,U st “ pdMtqpdUtq “ σ2
t pdBtqpdBtq “ 0

drM,Zst “ pdMtqpdZtq “ ρσ2
t pdBtqpdBtq `

a

1´ ρ2σ2
t pdBtq

2 “
a

1´ ρ2σ2
t dt

Next we define

dHt “ µt dt and dKt “ ft dt

and observe that since Ht and Kt have finite first variation we have that

drHst “ pdHtq
2 “ µ2

t pdtq2 “ 0 and drKst “ pdKtq
2 “ f2t pdtq2 “ 0

Furthermore if Xt “ Ht `Mt and Yt “ Kt `Nt then using the previous calculations

drXst “ drX,Xst “ drH `M,H `M st “ drHst ` drM st ` 2drH,M st “ σ2
t dt

drX,Y st “ drH `M,K `N st “ drH,K `N st ` drM,K `N st “ drM,N st “ σtgt dt

or using the formal algebra

drXst “ pdXtq
2 “ µ2

t pdtq2 ` 2µtσtpdtqpdBtq ` σ
2
t pdBtq

2 “ 0` 0` σ2
t dt “ σ2

t dt

drX,Y st “ pdXtqpdYtq “ µtftpdtq2 ` σtftpdtqp dBtq ` gtftpdtqpdBtq ` σtgtpdBtq
2

“ 0` 0` 0` σtgt dt “ σtgt dt
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CHAPTER 6

Stochastic Differential Equations

1. Definitions

Let pΩ,F ,Pq be a probability space equipped with a filtration tFtuT . LetBt “ pB1ptq, . . . , Bmptqq P
Rm be a m-dimensional Brownian motion with tBjptqu

m
j“1 a collection of mutually independent

Brownian motions such that Bjptq P Ft and for any 0 ď s ă t, Bjptq ´Bjpsq is independent of Fs.
Obviously, these conditions are satisfied by the natural filtration tFB

t uT .

Definition 1.1. Let µ : Rd Ñ Rd and σj : Rd Ñ Rd for i “ 1, . . . ,m be fixed functions. An
equation of the form

dXt “ µpXtqdt`
m
ÿ

i“1

σipXtq dBjptq (6.1)

representing the integral equation

Xt “ x`

ż t

0
µpXsqds`

m
ÿ

j“1

ż t

0
σjpXsqdBjpsq . (6.2)

where Xt is an unknown process is a Stochastic Differential Equation (sde) driven by the Brownian
motion tBtu. The functions µpxq, σpxq asre called the drift and diffusion coefficients, respectively.

It is more compact to introduce the matrix

σpxq “

¨

˝

| |

σ1pxq ¨ ¨ ¨ σmpxq
| |

˛

‚P Rmˆd

and write

dXt “ bpXtq dt` σpXtq dBt . (6.3)

There are different concepts of solution for a sde. The most natural is the one of strong solution:

Definition 1.2. A stochastic process tXtu is a strong solution to the sde (6.1) driven by the
Brownian motion Bt with (possibly random) initial condition X0 P R if the following holds

i) tXtu is adapted to tFtu ,
ii) tXtu is continuous ,

iii) Xt “ X0 `
şt
0 µpXtq dt`

řm
j“1

şt
0 σjpXtqdBjptq almost surely .

Remark 1.3. Often, the choice of Brownian motion in the above definition is implicit. However,
it is important that the strong solution of an sde depends on the chosen Brownian motion driving it.
A conceptually useful way to restate strong existence, say for all t ě 0, is that there exists a measure
map Φ: pt, Bq ÞÑ XtpBq from r0,8q ˆ Cpr0,8q,Rdq Ñ Rd such that Xt “ Φpt, Bq solves (6.2) and
Xt is measurable with respect to the filtration generated by Bt.
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Definition 1.4. We say that a strong solution to (6.1) (driven by a Brownian motion Bt) is
strongly unique if for any two solutions Xt, Yt with the same initial condition X0 of (6.1) we have
that

P rXt “ Yt for all t P r0, T ss “ 1 .

Remark 1.5. By definition, the strong solution of a sde is continuous. For this reason, to prove strong
uniqueness it is sufficient to prove that two solutions Xt, Yt satisfy

P rXt “ Yts “ 1 for all t P r0, T s .

Indeed, assuming that Xt is a version of Yt, by countable additivity, the set A “ tω : Xtpωq “ Ytpωq for all t P
Q`u has probability one. By right-continuity (resp. left-continuity) of the sample paths, it follows that X and
Y have the same paths for all ω P A.

2. Examples of SDEs

We now consider a few useful examples of sdes that have a strong solution.

2.1. Geometric Brownian motion. The geometric Brownian motion, or Black Scholes model
in finance, is a stochastic process Xt that solves the sde

dXt “ µXt dt` σXt dBt, , (6.4)

where µ, σ P R are constants. This model can be used to describe the evolution of the price Xt of a
stock, which is assumed to have a mean increase and fluctuations with variance that depend both
linearly on the stock price Xt. The coefficients µ, σ are called the percentage drift and percentage
volatility, respectively. We see immediately that (6.4) has a solution by Itô’s formula: letting
fpxq “ log x we have that

d logXt “
1

Xt
pµXt dt` σXt dBtq ´

1

2

1

X2
t

σ2X2
t dt “ pµ´

1

2
σ2q dt` σ dBt ,

Therefore, by integrating and exponentiating, that the solution of the equation reads

Xt “ X0 exp

„ˆ

µ´
1

2
σ2

˙

t` σBt



.

The uniqueness of this solution will be proven shortly.

2.2. Stochastic Exponential. Let Xt be an Itô process with differential dXt “ µt dt`σt dBt.
We consider the following sde:

dUt “ Ut dXt (6.5)

with initial condition U0 “ u0 P R. Note that often one chooses u0 “ 1. Since the above sde is
analogous to the ode df “ f dt whose solution is given by the exponential function fptq “ expptq,
the process Ut solving (6.5) is often called the stochastic exponential and one writes Xt “ EpXqt.
The following result ensures that this process exists and is unique:

Proposition 2.1. The sde (6.5) has a unique strong solution, given by

Ut “ EpXqt :“ U0 exp

„

Xt ´X0 ´
1

2
rXst



“ U0 exp

„
ż t

0

ˆ

µs ´
1

2
σ2
s

˙

ds`

ż t

0
σs dBs



. (6.6)

Proof. If u0 “ 0, then it is immediate by (6.5) that Ut ” 0 for all t ě 0 and it is the
only solution. Now suppose u0 ‰ 0. We start by proving existence. The proposed solution is
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clearly adapted, so defining Vt “ Xt ´X0 ´
1
2 rXst only have to verify that eVt satisfies (6.5), i.e.,

dpeVtq “ eVt dXt. First, using Itô’s formula, we get

dVt “ dXt ´
1

2
drXst “ dXt ´ σ

2
t dt (6.7)

dpeVtq “ eVt
ˆ

dVt `
1

2
drV st

˙

. (6.8)

Note that (6.7) implies rV st “ rXst, because the
ş

σ2
t dt part is of finite variation. Therefore

dVt “ dXt ´
1
2drV st. Plugging it back to (6.8), we have the desired equality.

We next check that the solution is unique. Suppose we have another solution Ũ that satisfies (6.5).

Notice that U is nonzero when u0 ‰ 0, we can compute dpŨt{Utq

dpŨt{Utq “ Ũt dp1{Utq `
1

Ut
dŨt ` drŨ , U´1st

“ Ũt

„

´
dUt
U2
t

`
drU st
U3
t



`
Ũt dXt

Ut
` drŨ , U´1st

“
Ũtσ

2
t dt

Ut
` drŨ , U´1st.

We need the stochastic differential of U´1.

dpU´1q “ ´
dUt
U2
t

`
drU st
U3
t

“ ´
dXt

Ut
`
σ2
t dt

Ut

6 drŨ , U´1st “ ´σ
2
t ŨtU

´1
t dt

Plugging this back gives dpŨt{Utq “ 0. So the ratio of the two solution stays a constant for all t ě 0.

Since both solutions start at u0, we conclude PrŨt “ Ut,@t ě 0s “ 1. �

Similarly to the above definition. we introduce the stochastic logarithm Xt “ LpUqt of a process
Ut with a stochastic differential dUt “ µ1t dt` σ1t dB1t and Ut ‰ 0 as the solution to the following sde:

dXt “
dUt
Ut

andXt “ 0 . (6.9)

Again we have that the solution to the above sde exists and is unique.

Proposition 2.2. Under the conditions listed above, the sde (6.9) has a unique solution given
by

LpUqt “ log

ˆ

Ut
U0

˙

`

ż t

0

drU st
U2
t

.

Furthermore, as suggested by the framework of stochastic calculus, the above operators are
inverse wrt each other:

Proposition 2.3. If u0 “ 1 we have LpEpXqqt “ Xt and if Ut ‰ 0 then EpLpUqqt “ Ut.

Proof. It is enough to check that dXt “ dpEpXqtq{EpXqt and dUt “ LpUqtdLpUqt . �

2.3. Linear SDEs. Let tαtu, tβtu, tγtu, tδtu be given (i.e., independent on Xt) continuous
stochastic processes adapted to the filtration tFtu. We consider the family of sdes given by

dXt “ pαt ` βtXtq dt` pγt ` δtXtq dBt . (6.10)

We proceed to solve such family of sdes, which includes as special cases some of the examples treated
previously in this course. We do so in two steps:
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i) First we consider the case where αt “ γt ” 0. In this case we should solve the sde

dUt “ βtUt dt` δtUt dBt ,

which by Proposition 2.1, choosing U0 “ 1 and defining dY “ βt dt` δt dBt has the unique
solution

Ut “ EpY qt “ exp

„
ż t

0

ˆ

βs ´
1

2
δ2
s

˙

ds`

ż t

0
δsdBs



.

ii) We now proceed to consider the full sde (6.10), and make the ansatz of a separable solution,
i.e., assume that Xt “ UtVt where dVt “ at dt ` bt dBt for unknown processes tatu, tbtu.
Then we compute

dXt “ Ut dVt ` Vt dUt ` drU, V sptq

“ Utat dt` Utbt dBt ` VtβtUt dt` VtδtUt dBt ` btδtUt dt

“ patUt ` btδtUt ` βtXtq dt` pbtUt ` δtXtqdBt .

We notice that the above expression coincides with the rhs of (6.10) if

at “
αt ´ δtγt

Ut
and bt “

γt
Ut
.

This uniquely defines the process Vt (whose initial condition is fixed by the fact that U0 “ 1
to be V0 “ X0) as

Vt “ X0 `

ż t

0

αs ´ δsγs
Us

ds`

ż t

0

γs
Us

dBs ,

which in turn defines the solution to (6.10) as Xt “ Ut ¨ Vt.

Example 2.4. Letting a, b P R, consider the following sde on t P p0, T q:

dXt “
b´Xt

T ´ t
dt` dBt with X0 “ a . (6.11)

It is clear that this is a linear sde with

αt “
b

T ´ t
, βt “

1

T ´ t
, γt “ 1 , δt “ 0 .

Therefore, the solution to (6.11) is given by

Xt “ a

ˆ

1´
t

T

˙

` b
t

T
` pT ´ tq

ż t

0

1

T ´ s
ds . (6.12)

Since
şt
0pT ´ sq

´1ds ă 8 for all t ă T the Itô integral in (6.12) is a martingale. Furthermore, as
we have proven in Homework 2 it is a gaussian process. Hence, Xt is also a Gaussian process, with
E rXts “ a` pa´ bqt{T and covariance structure

CovpXs, Xtq “ pT ´ tqpT ´ sqCov

˜

ż minps,tq

0

1

T ´ q
dBq,

ż minps,tq

0

1

T ´ q
dBq `

ż maxps,tq

minps,tq

1

T ´ q
dBq

¸

“ pT ´maxpt, sqqpT ´minpt, sqqVar

˜

ż minps,tq

0

1

T ´ q
dBq

¸

“ minps, tq ´
st

T

where in the second equality we have used that the covariance of independent random variables is 0.
The above expression suggests that the variance of the process Xt is 0 at t “ 0 and t “ T , and
maximized at t “ T {2, while the expected value of the process Xt is on the line interpolating between
a and b. Hence the name Brownian Bridge: the process above can be seen as a Brownian motion
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with initial condition B0 “ a and conditioned on its final value BT “ b. Indeed, one can prove (cfr
Klebaner, Example 5.11) that

lim
tÑT

pT ´ tq

ż t

0

1

T ´ s
dBs “ 0 a.s. .

3. Existence and Uniqueness for SDEs

In this section we prove a theorem giving sufficient conditions on the coefficients µp¨q, σp¨q for
the existence and uniqueness of the solution to the associated sde. We will consider solutions to the
equation

dXt “ µpt,Xtq dt` σpt,Xtq dBt (6.13)

Note that we have assumed explicit dependence on time t of the drift and diffusion coefficients as
this will allow us to weaken the conditions of the following theorem:

Theorem 3.1. Fix a terminal time T ą 0. Assume that σpt, xq and µpt, xq are globally Lipschitz
continuous, i.e., that there is a positive constant K so that for any t P r0, T s and any x and y we
have |µpt, xq ´ µpt, yq| ` |σpt, xq ´ σpt, yq| ď K|x´ y| . Then the sde (6.13) with initial condition
X0 “ x has a solution

Xt “ x`

ż t

0
µps,Xsqds`

ż t

0
σps,Xsq dBs ,

and this solution is strongly unique. Furthermore the solution satisfies is in L2pΩˆ r0, T sq, i.e.,

E
„
ż t

0
X2
sds



ă 8 .

It is clear that in order for the solution Xt to be well defined we need that
ż t

0
|µps,Xsq|ds ă 8 and

ż t

0
σps,Xsq

2 ds ă 8 a.s.

However, the assumptions of Theorem 3.1, while being easier to check, are more strict than the ones
above. It is useful to recall that these assumptions are needed even for odes to have existence and
uniqueness: we remind in the following examples how the non-Lipschitz character of the drift can

Example 3.2 (Existence). The ode

dx

dt
“ x2 with xp0q “ 1

has a drift coefficient µpxq “ x2 that is not uniformly Lipschitz continuous (although it is locally
Lipschitz continuous) because it grows faster than linearly. This ode has a solution xptq “ 1

1´t .

However, it is clear that this solution is only well defined for all t P p0, 1q and diverges for tÑ 1. In
other words, the solution to this ode does not exist beyond t “ 1.

Example 3.3 (Uniqueness). The ode

dx

dt
“ 2

a

|x|

is not locally Lipschitz continuous at x “ 0. The solution of this ode with initial condition x0 “ 0 is
not unique. Indeed, it is immediate to check that

x1,t “ 0 and x2,t “ t2 ,

are both solution to this equation with the given initial condition.

3.1. Proof of Theorem 3.1.
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Preparatory results. We start by proving two very useful lemmas:

Lemma 3.4. (Gronwall’s inequality) Let yptq be a nonnegative function such that

yptq ď A`D

ż t

0
ypsq ds (6.14)

for nonnegative A,D P R. Then yptq satisfies

fptq ď A exp pDtq

Proof of Lemma 3.4. By repeatedly iterating the (6.14) we obtain

yptq ď A`

ż t

0
Dypsq ds

ď A`

ż t

0
D

ˆ

A`

ż s

0
Dypqq dq

˙

ds

ď A`A

ż t

0
D ds`

ż t

0
D

ż s

0
Dypqq dq ds

ď A`ADt`D2

ż t

0

ż s

0

ˆ

A`D

ż s

0
yprq dr

˙

dq ds

ď A`ADt`AD2

ż t

0

ż s

0
dq ds`D3

ż t

0

ż s

0

ż q

0
yprqdr dq ds ď . . .

ď A`ADt`A
D2t2

2
`A

D3t3

3!
`D4

ż t

0

ż s

0

ż q

0

ż r

0
ypτqdτ dr dq ds .

We notice that repeating the above procedure k times we will obtain the first k terms of the Taylor
expansion of A expDt plus a remainder term resulting from an integral iterated k ` 1 times. For
finite T we can bound such integral by defining the constants

C :“

ż T

0
ypsqds ă 8 and G :“ A`DC ,

so that yptq ď G. Consequently, we can bound the remainder term by Gtk`1Dk`1{k! which vanishes
exponentially fast in the limit k Ñ8, uniformly in t P r0, T s.

Alternative proofs assuming the existence and uniqueness of solutions to odes can be found in
any good ode or dynamics book. For instance [6] or [5]. �

Lemma 3.5. Let tynptqu be a sequence of functions satisfying

‚ y0ptq ď A ,

‚ yn`1ptq ď D

ż t

0
ynpsq ds ă 8 @n ą 0, t P r0, T s ,

for positive constants A,D P R, then ynptq ď CDntn{n! .

Proof. the proof of this result goes by induction: the first step is trivial, while for the induction
step we have

yn`1ptq ď D

ż t

0
ynpsqds ď D

ż t

0
C
Dntn

n
! ds “ C

Dn`1tn`1

pn` 1q!
.

�
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Uniqueness for sde. If X1ptq and X2ptq are two solutions then taking there difference produces

X1ptq ´X2ptq “

ż t

0
rµps,X1psqq ´ µps,X2psqqs ds`

ż t

0
rσps,X1psqq ´ σps,X2psqqs dBs

We now use the fact that

maxtpa´ bq2, pa` bq2u ď pa´ bq2 ` pa` bq2 “ 2a2 ` 2b2

gives

|X1ptq ´X2ptq|
2
ď2

ˇ

ˇ

ˇ

ˇ

ż t

0
rµps,X1psqq ´ µps,X2psqqs ds

ˇ

ˇ

ˇ

ˇ

2

` 2

ˇ

ˇ

ˇ

ˇ

ż t

0
rσps,X1psqq ´ σps,X2psqqs dBs

ˇ

ˇ

ˇ

ˇ

2

ďpIq ` pIIq

Next recall that Holders (or Cauchy-Schwartz) inequality implies that p
şt
0 f dsq2 ď t

şt
0 f

2 ds (apply
Holder to the product 1 ¨ f with p “ q “ 2.) Hence

EpIq ď 2tE
ż t

0
rµps,X1psqq ´ µps,X2psqqs

2 ds ď 2tK2

ż t

0
E |X1psq ´X2psq|

2 ds

Applying Itô’s isometry to the second term gives

EpIIq “2

ż t

0
E |σps,X1psqq ´ σps,X2psqq|

2 ds ď 2K2

ż t

0
E |X1psq ´X2psq|

2 ds

Putting this all together and recalling that t P r0, T s gives

E |X1ptq ´X2ptq|
2
ď 2K2pT ` 1q

ż t

0
E |X1psq ´X2psq|

2 ds

Hence by Gronwall’s inequality Lemma 3.4 we conclude that E |X1ptq ´X2ptq|
2
“ 0 for all t P r0, T s.

Hence X1ptq and X2ptq are identical almost surely.

Existence for sde. The existence of solutions is proved by a variant of Picard’s iterations. Fix
an initial value x, we define a sequence processes Xnptq follows. By induction, the processes have
continuous paths and are adapted.

X0ptq “ x

X1ptq “ x`

ż t

0
µps, xqds`

ż t

0
σps, xqdBs

...
...

...

Xn`1ptq “ x`

ż t

0
µps,Xnpsqqds`

ż t

0
σps,XnpsqqdBs

Fix t ě 0, we will show that Xnptq converges in L2. Hence there is a random variable Xptq P

L2pΩ,F , P q and Xn
L2

ÝÑ Xptq. Let ynptq “ E
“

pXn`1ptq ´Xnptqq
2
‰

, we will verify the two conditions
in Lemma 3.5. First, for n “ 0 and any t P r0, T s,

y0ptq “ E
“

pX1ptq ´X0ptqq
2
‰

ď 2E

«

ˆ
ż t

0
µps, xqds

˙2
ff

` 2E

«

ˆ
ż t

0
σps, xqdBs

˙2
ff

ď 2E

«

ˆ
ż t

0
K|1` x|ds

˙2
ff

` 2E

«

ˆ
ż t

0
K|1` x|dBs

˙2
ff

ď C ă 8,
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where the second inequality uses the fact that the coefficients are growing no faster than linearly.
Second, similar computation as for the uniqueness yields

yn`1ptq ď 2K2p1` T q

ż t

0
ynpsqds @t P r0, T s, n “ 0, 1, 2 . . .

which is finite by induction. Lemma 3.5 implies

ynptq “ E
“

pXn`1ptq ´Xnptqq
2
‰

ď C
p4K2 ` 4K2T qn

n!
,

which goes to zero uniformly for all t P r0, T s. We thus conclude Xnptq converges in L2 uniformly
and their L2-limit, Xptq P L2pΩ,F , P q.
It remains to show that the limit process Xptq solves (6.13). Since Xn

L2

ÝÑ X, we have

Erµpt,Xnptqq ´ µpt,Xptqqs
2 ` Erσpt,Xnptqq ´ σpt,Xptqqs

2

ď K2ErpXnptq ´Xptqq
2s `K2ErpXnptq ´Xptqq

2s

Ñ 0, uniformly in t

By Itô’s isometry and Fubini:

E

«

ˆ
ż t

0
σps,XnpsqqdBs ´

ż t

0
σps,XpsqqdBs

˙2
ff

“ E

«

ˆ
ż t

0
σps,Xnpsqq ´ σps,XpsqqdBs

˙2
ff

“

ż t

0
E
“

pσps,Xnpsqq ´ σps,Xpsqqq
2
‰

ds
nÑ8
ÝÑ 0 .

Similarly, by Cauchy-Schwarz inequality we have that :

E

«

ˆ
ż t

0
µps,XnpsqqdBs ´

ż t

0
µps,Xpsqqds

˙2
ff

“ E

«

ˆ
ż t

0
µps,Xnpsqq ´ µps,Xpsqqds

˙2
ff

“ t

ż t

0
E
“

pµps,Xnpsqq ´ µps,Xpsqqq
2
‰

ds
nÑ8
ÝÑ 0 .

We thus have

Xptq “ x`

ż t

0
µps,Xpsqqds`

ż t

0
σps,XpsqqdBs,

i.e., Xptq solves (6.13).

Remark 3.6. Looking through the proof of Theorem 3.1 we see that the assumption of global
Lipschitz continuity can be weakened to the following assumption

i) |µpt, xq| ` |σpt, xq| ă Cp1` |x|q (necessary for existence) ,
ii) |µpt, xq ´ µpt, yq| ` |σpt, xq ´ σpt, yq| ď C|x´ y| (necessary for uniqueness) .

4. Weak solutions to SDEs

Until now we have studied strong solutions to sdes, i.e., solutions for which a Brownian motion
(and a probability space) is given in advance, and that are constructed based on such Brownian
motion. If we are only given some functions µpxq and σ without fixing a Brownian motion, we may
be able to construct a weak solution to an sde of the form (6.1). Such solutions allow to choose a
convenient Brownian motion (and consequently a probability space!) for the solution Xt to satisfy
the desired sde.
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Definition 4.1. A weak solution of the stochastic differential equation (6.1) with initial condition
X0 „ ρ0 for a given probability distribution ρ0 is a continuous stochastic process Xt defined on some
probability space pΩ,F ,Pq such that for some Brownian motion Bt and some filtration tFtu such
that Bjptq P Ft and for any 0 ď s ă t, Bjptq ´Bjpsq is independent of Fs, the process Xt is adapted
and satisfies the stochastic integral equation (6.2).

In other words, in the case of a weak solution we are free to chose some convenient Brownian
motion that allows Xt to be a solution. In this sense, these solutions are also distributional solutions,
i.e., solutions that have the “right” marginals.

Because two solutions Xt, Yt may live on different probability spaces, we cannot compare their
paths as in the case of strong solutions. Instead, we weaken the concept of strong uniqueness to the
one of weak uniqueness, i.e., uniqueness in law of the solution process:

Definition 4.2. The weak solution of a sde is said to be weakly unique if any two solutions
Xt, Yt have the same law, i.e., for all tti P r0, T su, tAi P Bu we have

P

«

č

i

tXti P Aiu

ff

“ P

«

č

i

tYti P Aiu

ff

.

Example 4.3. Consider the sde dYt “ dBt with initial condition Y0 “ 0 . This sde has clearly
a strong solution, which is Yt “ Bt. If we let Wt be another Brownian motion (possibly defined on
another probability space) then Wt will not be, in general, a strong solution to the above sde (in the
case that the two probability spaces are different, the two solutions cannot even be compared). It
will, however, be a weak solution to the sde, as being a Brownian motion completely determines the
marginals of the process.

We will now consider an example for which there exists a weak solution, but not a strong
solution:

Example 4.4 (Tanaka’s sde). For certain µ and σ, solutions to (6.1) may exist for some
Brownian motion and some admissible filtrations but not for others. Consider the sde

dXt “ signpXtqdBt, X0 “ 0; (6.15)

where σpt, xq “ signpxq is the sign function

signpxq “

"

`1, if x ě 0
´1, if x ă 0.

The function σpxq is not continuous and thus not Lipschitz. A strong solution does not exist for
this sde, with the filtration F “ pFtq chosen to be Ft :“ σpBs, 0 ď s ď tq. Suppose Xt is a strong
solution to Tanaka’s sde, then we must have

F̃t :“ σpXs, 0 ď s ď tq Ď Ft. (6.16)

Notice that for any T ě 0,
şT
0 E

“

signpXtq
2
‰

ds ă 8, the Itô integral
şt
0 signpXtqdBs is well defined

and Xt is a martingale. Moreover, the quadratic variation of Xt is

rXst “

ż t

0
rsignpXtqs

2ds “

ż t

0
1 ¨ ds “ t,

thus Xt must be a Brownian motion (by Lévy’s characterization, to be proved later). We may

denote Xt “ B̃t to emphasize that it is a Brownian motion. Now multiplying both sides of (6.15) by
signpXtq, we obtain

dBt “ signpB̃tqdB̃t. (6.17)
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and thus Bt “
şt
0 signpB̃sqdB̃s. By Tanaka’s formula (to be shown later), we then have

Bt “ |B̃t| ´ L̃t

where L̃t is the local time of B̃t at zero. It follows that Bt is σp|B̃s|, 0 ď s ď tq-measurable. This
leads to a contradiction to (6.16), because it would imply that

Ft Ď σp|B̃s|, 0 ď s ď tq Ĺ σpB̃s, 0 ď s ď tq “ F̃t.
Still, as we have seen above, choosing Xt “ B̃t there exists a Brownian motion Bs such that Tanaka’s
sde holds. Such pair of Brownian motions forms a weak solution to Tanaka’s equation.

5. Markov property of Itô diffusions

The solutions (weak or strong) to stochastic differential equations are referred to as diffusion
processes (or Itô diffusions).

Definition 5.1. An Itô process dXt “ µt dt` σt dBt is an Itô diffusion if µt, σt are measurable
wrt the filtration tFX

t u generated by Xt for all t P r0, T s, i.e.,

µt, σt P FX
t .

Remark 5.2. It is clear that solution tXtu to the sde dXt “ µpt,Xtqdt ` σpt,XtqdBt for
continuous functions µ, σ is an Itô diffusion. For this reason, such sdes are called of diffusion-type.

Recall Def. 7.13 that a Markov process is a process whose future depends on its past only
through its present value, while if this property holds also for stopping times, the process is said to
have the strong Markov property (cfr Def. 7.17).

Theorem 5.3. The solution tXtu to the sde

dXt “ µpt,Xtq dt` σpt,Xtq dBt , (6.18)

has the strong Markov property.

While we do not present the proof of this result, which can be found in [14], it should be
intuitively clear why solutions to (6.18) have the Markov property. Indeed, we see that the drift
and diffusion coefficients of the above sde only depend on the time and on the value of Xt at that
time (and not on its past value). This fact, combined with the independence of the increments of
Brownian motion results in the Markov (and the strong Markov) property of such solutions.
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CHAPTER 7

PDEs and SDEs: The connection

Throughout this chapter, except when specified otherwise, we let tXtu be a solution to the sde

dXt “ µpt,Xtq dt` σpt,Xtq dBt . (7.1)

As we have seen in the last chapter, solutions to the above equation are referred to as diffusion
processes. This name comes from the fact that Brownian motion, the archetypal diffusion process,
was invented to model the diffusion of a dust particle in water. Similarly, in the world of partial
differential equations, diffusion equations model precisely the same type of phenomenon. In this
chapter we will see that the correspondence between these two domains goes well beyond this point.

1. Infinitesimal generators

Having seen in the previous chapter that solutions to sdes possess the strong markov property,
we introduce the following operator to study the evolution of their finite-dimensional distributions:

Definition 1.1. The infinitesimal generator for a continuous time Markov process Xt is an
operator A such that for any function f ,

Atfpxq :“ lim
dtÓ0

ErfpXt`dtq|Xt “ xs ´ fpxq

dt
, (7.2)

provided the limit exists. The set of function for which the above limit exists is called the domain
DpAtq of the generator.

This operator encodes the infinitesimal change in the probability distribution of the process Xt.
One way of seeing this is by choosing fpxq “ 1Apxq for a set A P Rd.

We now look at some examples where we find the explicit form of the generator for Itô diffusions:

Example 1.2. The infinitesimal generator for a standard one-dimensional Brownian motion Bt
is

A “
1

2

d2

dx2

for all f that are C2 with compact support. To derive this, we first apply Itô’s formula to any f P C2

and write

fpBtq “ fpB0q `

ż t

0

d2

dx
fpBsqdBs `

ż t

0

1

2

d2

dx2
fpBsqds

“ fpB0q `

ż t

0
f 1pBsqdBs `

ż t

0

1

2

d2

dx2
fpBsqds

Apply this formula to two time points t and t` r, we have

fpBt`rq “ fpBtq `

ż t`r

t
f 1pBsqdBs `

ż t`r

t

1

2

d2

dx2
fpBsqds
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When f has compact support, f 1pxq is bounded and suppose |f 1pxq| ď K and thus for each t,
ż t

0
E
`

f 12pBsq
˘

ds ď

ż t

0
K2ds “ K2t ă 8.

Hence the first integral has expectation zero, due to Itô’s isometry. It follows that

ErfpBt`rq|Bt “ xs “ fpxq ` E
"
ż t`r

t
f 1pBsqdBs `

ż t`r

t

1

2

d2

dx2
fpBsqds

ˇ

ˇ

ˇ

ˇ

Bt “ x

*

“ fpxq ` E
"
ż t`r

t
f 1pBsqdBs `

ż t`r

t

1

2

d2

dx2
fpBsqds

*

“ fpxq ` E
ż t`r

t

1

2

d2

dx2
fpBsqds

where the second equality is due to the independence of the post-t process Bt`s ´ Bt and Bt.
Subtracting fpxq, dividing by r and letting r Ñ 0 on both sides, we obtain

Afpxq “ lim
rÓ0

ErfpBt`rq|Bt “ xs ´ fpxq

r
“ lim

rÓ0

E
”

şt`r
t

1
2
d2

dx2 fpBsqds
ı

r

“

d
´

E
”

şt`r
t

1
2
d2

dx2 fpBsqds
¯ı

dr

p˚q
“

d
şt`r
t

1
2E

”

d2

dx2 fpBsq
ı

ds

dr

“
1

2

d2

dx2
fpBsq

ˇ

ˇ

ˇ

ˇ

s“t

“
1

2

d2

dx2
fpBtq “

1

2

d2

dx2
fpxq

In the above calculation, we inverted the order of the integrals using Fubini-Tonelli’s theorem.

Remark 1.3. Here we omit the subscript t in the generator A because Brownian motion is
time-homogeneous, i.e.,

ErfpBt`dtq|Bt “ xs ´ fpxq

dt
“

ErfpBs`dtq|Bs “ xs ´ fpxq

dt

and thus Atfpxq “ Asfpxq. The generator A “ 1
2
d2

dx2 does not change with time.

The procedure to obtain the infinitesimal generator of Brownian motion can be straightforwardly
generalized to the case of Itô diffusions:

Example 1.4. Assume that Xt satisfies the sde (7.1), then its generator At is

Atfpxq “ µpt, xq
d

dx
fpxq `

σ2pt, xq

2

d2

dx2
fpxq (7.3)

for all f P C2 with compact support.The computation is similar to the Brownian motion case. First

apply Itô’s formula to fpXtq and get

fpXt`rq “ fpXtq`

ż t`r

t

"

µps,Xsq
d

dx
fpXsq `

σ2ps,Xsq

2

d2

dx2
fpXsq

*

ds`

ż t`r

t
σps,Xsq

d

dx
fpXsqdBs

Then using the fact that f P C2 with compact support, the last integral has expectation zero.

Conditioning on Xt “ x, computing ErfpXt`rq|Xt“xs´fpxq
r , exchanging integrals by Fubini-Tonelli and

taking r Ñ 0, we conclude that the generator has the form (7.3).

The above example can be further generalized to the case when the function f also depends on time:
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Example 1.5. Consider the two dimensional process pt,Xtq, where the first coordinate is
deterministic and the second coordinate Xt satisfies (7.1). We treat it as a process Yt “ pt,Xtq P R2.
In this case, the generator of Yt, according to the definition in (7.2) is given by

Atfpt, xq :“ lim
dtÓ0

ErfpYt`dtq|Yt “ pt, xqs ´ fpt, xq
dt

“ µpt, xq
B

Bx
fpt, xq `

σ2pt, xq

2

B2

Bx2
fpt, xq `

B

Bt
fpt, xq (7.4)

for any f P C1,2 that has compact support.

Formally speaking, if At is the generator of Xt, what At does to f is to map it to the “drift
coefficient” in the stochastic differential of fpXtq, i.e.,

dfpXtq “ AtfpXtq ¨ dt` (something) ¨ dBt

Remark 1.6. The notation here is slightly different from [Klebaner], where Klebaner always
uses Lt to denote the operator on functions f P C1,2 so that

Ltfpt, xq “ µpt, xq
B

Bx
fpt, xq `

σ2pt, xq

2

B2

Bx2
fpt, xq (7.5)

and call such Lt the “generator of Xt”. Comparing this form with (7.3) and (7.4), and since Lt
acts on C1,2 functions, we can relate Lt to the generator At of pt,Xtq, i.e.,

Ltfpt, xq `
B

Bt
fpt, xq “ Atfpt, xq

When we look at martingales constructed from the generators, At will give a more compact (and
maybe more intuitive) notation.

Exercise. Find the generator At of pXt, Ytq, where Xt and Yt satisfies

dXt “ µpt,Xtqdt` σpt,XtqdBt
dYt “ αpt, Ytqdt` βpt, YtqdBt

What if Xt and Yt are driven by two independent Brownian motions?

2. Martingales associated with diffusion processes

Suppose Xt solves (7.1) and At is its generator (see (7.3)). For f P C2, we know from Itô’s
formula that

fpXtq “ fpX0q `

ż t

0
AsfpXsqdt`

ż t

0
σps,Xsqf

1pXsqdBs

Under proper conditions, the third term on the right is a well-defined Itô integral and also a
martingale. We can construct martingales by isolating this integral, i.e., let

Mt :“ fpXtq ´ fpX0q ´

ż t

0
AsfpXsqds

ˆ

“

ż t

0
σps,Xsqf

1pXsqdBs

˙

, (7.6)

and we will see that for certain µ, σ and f functions, Mt will be a martingale. First of all, if Xt is a
solution to (7.1) (either weak or strong), then, by definition, Mt is always Gt :“ σpXs, 0 ď s ď tq
measurable. So from now on, for the purpose of constructing martingales, we will only say “Xt

solves the sde (7.1)” without specifying whether Xt is a strong or a weak solution. Recall that if
ż t

0
Erσ2ps,Xsqf

12pXsqs ds ă 8, (7.7)
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then the Itô integral
şt
0 σps,Xsqf

1pXsqdBs is a martingale. Therefore, the usual technical step is to
prove (7.7) in order to conclude that Mt is a martingale.
Theorems 6.2 in [Klebaner] gives a set of conditions for Mt to be a martingale:

Condition 1. Let the following assumptions hold:

i) µpt, xq and σpt, xq are locally Lipschitz in x with a Lipschitz constant independent of t and
are growing at most linearly in x; and

ii) f P C2 and f 1 is bounded,

Condition (i) implies that (7.1) has a strong solution, but more importantly, it controls the
speed of growth of the solution Xt (see Theorem 5.4 and also the proof in Theorem 6.2 of [Klebaner]
for more details); (ii) controls the magnitude of f , which together with (i) ensure the finiteness of
the integral in (7.7). [9, Theorem 6.3] gives a n alternative set of conditions to Condition 1, however,
the proof follows the same idea. The above result can be summarized in the following theorem

Theorem 2.1. Let tXtu be a solution to (7.1), f a function such that Condition 1 holds, then
Mt defined in (7.6) is a martingale.

We now generalize the above result to the case when f is time-dependent. Let Xt solve (7.1). If
At is the generator of the two dimensional process pt,Xtq (see the expression in (7.4)), then for any
function fpt, xq P C1,2

Mt :“ fpt,Xtq ´ fp0, X0q ´

ż t

0
Asfps,Xsqds (7.8)

can be a martingale if µ, σ and f satisfy certain conditions. Again, using Itô’s formula, we see that

Mt “

ż t

0
σps,Xsq

B

Bx
fps,XsqdBs

The approach to show that Mt is a martingale is the same as above. For example, if Condition 1 (ii)
above is modified to

Condition 2. Let the following assumptions hold:

i) µpt, xq and σpt, xq are locally Lipschitz in x with a Lipschitz constant independent of t and
are growing at most linearly in x; and

ii)’ f P C1,2 and B
Bxfpt, xq is bounded for all t and x.

then, we can conclude that Mt defined in (7.8) is a martingale:

Theorem 2.2. Let tXtu be a solution to (7.1), f a function such that Condition 2 holds, then
Mt defined in (7.8) is a martingale.

One advantage of using At instead of Lt is that we can express Mt in the same form, that is,

Mt :“ fpXtq ´ fpX0q ´
şt
0AsfpXsqds, provided At is chosen to be the generator of Xt (which might

be high-dimensional). The following are a few immediate consequences, stated under Condition 2.
However, one should keep in mind that there are other conditions, under which these claims are
also true.

Corollary 2.3 (Dynkin’s formula). Suppose that Xt solves (7.1) and that Condition 2 holds.
Let At be the generator of pt,Xtq (see (7.4)). Then for any t P r0, T s,

Erfpt,Xtqs “ fp0, X0q ` E
„
ż t

0
Asfps,Xsqds



,

The result is also true if t is replaced by a bounded stopping time τ P r0, T s.

82



Corollary 2.4. Assume that Xt solves (7.1) and that Condition 2 holds. If f solves the
following pde

pAtfpt, xq “q µpt, xq
B

Bx
fpt, xq `

σ2pt, xq

2

B2

Bx2
fpt, xq `

B

Bt
fpt, xq ” 0,

then fpt,Xtq is a martingale.

Example 2.5. Consider Xt “ Bt, then σ ” 1 and µ ” 0, which satisfies Condition 2 (i). Then,
for any fpt, xq that satisfies Condition 2 (ii’) (or conditions in Theorem 6.3 of Klebaner) and solves

1

2

B2

Bx2
fpt, xq `

B

Bt
fpt, xq ” 0,

fpt, Btq is a martingale. For example, fpt, xq “ x, x2 ´ t, x3 ´ 3tx, et{2 sinpxq, or ex´t{2.

3. Connection with PDEs

In the previous section we have seen that under proper conditions the solution f of some pde

can be used to construct a martingale. In this section, we will see that the solutions of certain pdes
may be represented by the expectation of the solution of the sde.
Throughout this section we will assume that Xt solves the sde (7.1) whose coefficients satisfy
Condition 2 (i), and At is the generator of pt,Xtq as given in (7.4). Furthermore, we assume that
f satisfies Condition 2 (ii’). Note that other conditions, under which Mt defined in (7.8) is a
martingale, would also work.

3.1. Kolmogorov Backwards Equation.

Theorem 3.1. Under the standing assumptions, if fpt, xq solves the pde
#

Atf “ 0 for all t P p0, T q

fpT, xq “ gpxq
, (7.9)

for some function g such that Er|gpXT q|s ă 8. Then,

fpt, xq “ EpgpXT q|Xt “ xq, for all t P r0, T s.

Proof. Under the standing assumptions and the fact that Atf “ 0, we know that fpt,Xtq is a
martingale, due to Corollary 2.4. Then for any t P r0, T s,

ErfpT,XT q|Fts “ fpt,Xtq

Using the boundary condition, we have fpT,XT q “ gpXT q. The result then follows from the Markov
property of the solution to the diffusion-type sde, i.e.,

fpt,Xtq “ ErgpXT q|Fts “ ErgpXT q|Xts.

�

Remark 3.2. Note that the above theorem, assuming that fpt, xq solves the given pde, represents
expectation values of the process Xt in terms of such solutions. Under suitable regularity conditions
on the coefficients of the sde (7.1) and on the boundary condition gpxq one can show that such
expected value is the unique solution to the pde (7.9). These results, however, go beyond the scope
of this course and will not be presented here. We refer the interested reader to, e.g., [14].

Definition 3.3. For a Itô diffusion tXtu solving (7.1) the pde (7.9) is called the Kolmogorov
Backwards equation.
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The name of the above pde is due to the fact that it has to be solved backwards in time, i.e., the
boundary condition in (7.9) is fixed at the end of the time interval of interest. This may seem at
first counterintuitive. One possible way to interpret this fact is that bringing the time derivative on
the other side of the equality we obtain ´Btf “ Ltf , where Lt is the generator defined in (7.5). In
this form, the “arrow of time” is given by the fact that σ2 has nonnegative values and corresponds
to the second derivative “widening the support” of f , and the negative sign in front of the time
derivative corresponds to an evolution in the “reverse” direction. Another way of understanding
the fact that the direction of time is reversed in (7.9) is the following: in order to establish an
expectation wrt a certain function in the future (e.g., the value of an option at expiration), an
operator that evolves such function should project it backwards to the information we have at the
moment, i.e., the value of Xt

Example 3.4. Letting gpxq “ 1Apxq, we have that being able to solve (7.9) is equivalent to
knowing

E r1ApXT q|Xt “ xs “ P rXT P A|Xt “ xs .

Example 3.5. Letting Xt be the solution to the Black Scholes model dXt “ µXt dt` σXt dBt
and gpxq “ V pxq some value function of an option at time T , then being able to solve (7.9) is
equivalent to knowing the expected value of that option at expiration: E rV pXT q|Xt “ xs.

We now state an extension of Theorem 3.1 which deals with the case where the right side of the
pde is nonzero.

Theorem 3.6. Under the standing assumptions, if fpt, xq solves the pde
#

Atfpt, xq “ ´φpxq for all t P p0, T q

fpT, xq “ gpxq

for some bounded function φ : RÑ R and g such that Er|gpXT q|s ă 8. Then,

fpt, xq “ E
ˆ

gpXT q `

ż T

t
φpXsqds

ˇ

ˇ

ˇ

ˇ

Xt “ x

˙

, for all t P r0, T s.

Proof. By Theorem 2.2 we have that

Mt :“ fpt,Xtq ´ fp0, X0q ´

ż t

0
Asfps,Xsqds

is a martingale. Plugging in Atfpt, xq “ ´φpxq and taking conditional expectation of MT |Ft, since
Mt “ EpMT |Ftq we get

fpt,Xtq ´ fp0, X0q ´

ż t

0
Asfps,Xsqds “ EpfpT,XT q|Ftq ´ fp0, X0q ´ E

ˆ
ż T

0
Asfps,Xsqds

ˇ

ˇ

ˇ

ˇ

Ft
˙

which can be rewritten as

fpt,Xtq “ E
„

gpXT q `

ż T

t
φpXsqds

ˇ

ˇ

ˇ

ˇ

Ft


Finally, by the Markov property of Itô diffusions, we obtain

fpt, xq “ E
„

gpXT q `

ż T

t
φpXsqds

ˇ

ˇ

ˇ

ˇ

Xt “ x



�
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3.2. Feynman-Kac formula. Theorem 3.1 can be generalized even further:

Theorem 3.7 (Feynman-Kac Formula). Under the standing assumptions, if fpt, xq solves
#

Atfpt, xq “ rpt, xqfpt, xq for all t P r0, T s

fpT, xq “ gpxq
, (7.10)

where rpt, xq and gpxq are some bounded functions, then

fpt, xq “ E
´

e´
şT
t rps,Xsq dsgpXT q

ˇ

ˇ

ˇ
Xt “ x

¯

.

Furthermore, fpt, xq above is the unique solution to (7.10).

Proof. The proof of uniqueness of the solution goes beyond the scope of this lecture and we
do not prove it here. As in the previous cases, we want to show that the content of the expectation
value is a martingale. Therefore, consider

Mτ :“ e´
şτ
t rps,Xsq dsfpτ,Xτ q .

Defining Uτ “ e´
şτ
t rps,Xsq ds, Yτ “ fpτ,Xτ q we apply Itô’s formula to obtain

dMτ “ dpUτYτ q “ UτdpYτ q ` YτdpUτ q ` drU, Y sτ .

Recall from the chapter on the stochastic exponential that Uτ “ Eprpτ,Xτ qq and that therefore
dUτ “ rpτ,Xτ qUτ dτ . Furthermore, we recognize that Uτ has finite variation, so drU, Y s “ 0.
Combining these observations we obtain by Itô’s formula for f , that

dMτ “ Uτ

˜

„

Bτfpτ,Xτ q ` µpτ,Xτ qBxfpτ,Xτ q `
1

2
σpτ,Xτ q

2B2
xxfpτ,Xτ q



dτ

` σpτ,Xτ qBxfpτ,Xτ qdBτ ´ rpτ,Xτ qfpτ,Xτ qdτ

¸

“ Uτ ppAτ ´ rpτ,Xτ qqfpτ,Xτ q ` σpτ,Xτ qBxfpτ,Xτ q dBτ q .

We immediately realize that the drift term in the above formula vanishes by assumption, and that
the Itô integral term is a martingale by the standing assumptions on f , σ and µ. Consequently, the
expected vylue of the martingale is constant and we have that

fpt, xqe0 “Mt “ ErMT |Fts “ E
”

e´
şT
t rps,XsqdsgpXT q

ˇ

ˇ

ˇ
Xt “ x

ı

�

Example 3.8 (Example 3.5 continued). Let us consider the Black Scholes model i.e., dXt “

µXt dt` σXt dBt for σ, µ P R. We consider the case where one can cash his/her option and obtain
a risk-free interest that satisfies the ode

dXt “ rXt dt ,

for a positive constant r P R. Then, one needs to factor such possible, risk-free earning in the
value V pt,Xtq of the asset Xt (the underlying), i.e., compare the expected value at future time T ,
V pXT q “ V ˚pXT q with the projected risk-free value today:

erpT´tqV pt,Xtq “ E rV ˚pXT q|Xt “ xs

or, in other words,

V pt,Xtq “ E
”

e´rpT´tqV pXT q|Xt “ x
ı

.
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The above is an example of the expected value in Theorem 3.7, and therefore obeys the pde
#

BtV pt, xq ` µxBxV pt, xq `
1
2σ

2x2B2
xxV pt, xq ´ r V pt, xq “ 0 for all t P r0, T s

V pT, xq “ V ˚pxq
,

which is called the Black Scholes equation.

4. Time-homogeneous Diffusions

In this section we now consider a class of diffusion processes whose drift and diffusion coefficients
do not depend explicitly on time:

Definition 4.1. If Xt solves

dXt “ µpXtq dt` σpXtq dBt (7.11)

then Xt is a time-homogeneous Itô diffusion process.

Intuitively, the evolution of such processes does not depend on the time at which the process is
started, i.e., P rXt P A|X0 “ x0s “ P rXt`s P A|Xs “ x0s for all A P BpRq, s P T s.t. t` s P T . In
other words, their evolution is invariant wrt translations in time, whence the name time-homogeneous.

Definition 4.2. Given a sde with a unique solution we define the associated Markov semigroup
Pt by

pPtφqpxq “ ExφpXtq

To see that this definition satisfies the semigroup property observe that the Markov property
states that

pPt`sφqpxq “ ExφpXt`sq “ ExEXsφpXtq “ ExpPtφqpXsq “ pPsPtφqpxq .

Note that for the class of processes introduced above the infinitesimal generator is time-independent,
i.e., we have Atf “ Af . As a further consequence of the translation invariance (in time) of the sde

(7.11), the fact that the final condition of the backward Kolmogorov equation is at a specific time T
is not relevant in this framework. This enables us to “store” the time-reversal in the function itself
and look at the backward Kolmogorov equation as a forward equation as we explain below.

Let f´px, tq be a bounded, C2,1 function satisfying

Bf´
Bt

“ Lf´
f´px, 0q “ gpxq

(7.12)

where L is the generator defined in (7.5). For simplicity we also assume that g is bounded and
continuous. Then we have the analogous result to Theorem 3.1

Theorem 4.3. under Mt “ f´pXt, T ´ tq is a martingale for t P r0, T q.

Proof. The proof is identical to the Brownian case. We start by applying Itô’s formula

f´pXs, T ´ sq ´ f´pX0, T q “

ż s

0

“

´
Bf´
Bt
pXγ , T ´ γq `

`

Lf´
˘`

Xγ , T ´ γ
˘

ı

dγ

`

ż s

0

Bf´
Bx

`

Xγ , T ´ γ
˘

dBγ .

As before the integrand of the first integral is identically zero because Bf´
Bt “ Lf´. Hence only the

stochastic integral is left on the right-hand side. �

And as before we have
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Corollary 4.4. In the above setting

f´px, tq “ Erg
`

Xt

˘

|X0 “ xs

The restriction to bounded and continuous g is not needed.

Proof of Cor. 4.4. Since s ÞÑ f´pXs, T ´ sq ´ f´pX0, T q is a martingale,

Erf´pXT , 0q|X0 “ xs “ ErupX0, T q|X0 “ xs

because at s “ 0 we see that f´pXs, T ´ sq ´ upXp0q, T q “ 0. Since ErupX0, T q|X0 “ xs “ upx, T q
and Erf´pXT , 0q|X0 “ xs “ ErgpXT q|X0 “ xs, the proof is complete. �

For a more detailed discussion of Poisson and Dirichlet problems we refer to [14].

5. Stochastic Characteristics

To better understand Theorem 4.3 and Corollary 4.4, we begin by considering the deterministic case

Bf´
Bt

“ pb ¨∇qf´ (7.13)

f´px, 0q “ fpxq

We want to make an analogy between the method of characteristics used to solve (7.13) and the results in
Theorem 4.3 and Corollary 4.4. The method of characteristics is a method of solving (7.13) which in this
simple setting amounts to finding a collection of curves (“characteristic curves”) along which the solution
is constant. Let us call these curves xptq were t is the parametrizing variable. Mathematically, we want
f´pξptq, T ´ tq to be a constant independent of t P r0, T s for some fixed T . Hence the constant depends only on
the choice of ξptq. We will look of ξptq “ pξ1ptq, ¨ ¨ ¨ , ξdptqq which solve an ODE and thus we can parametrize
the curves ξptq by there initial condition ξp0q “ x. It may seem odd (and unneeded) to introduce the finial
time T . This done so that f´pT, xq “ f´pT, ξp0qq and to keep the analogy close to what is traditionally done
in sdes. Differentiating f´pξptq, T ´ tq with respect to t, we see that maintaining constant amounts

d
ÿ

i“1

Bf´
Bxi

pξptq, T ´ tq
dξi
dt
ptq “

Bf´
Bt
pξptq, T ´ tq “

d
ÿ

i“1

bipξptqq
Bf´
Bxi

pξptq, T ´ tq

where the last equality follows from (7.13). We conclude that for this equality to hold in general we need

dξ

dt
“ bpξptqq and ξp0q “ x .

Since f´pξptq, T ´ tq is a constant we have

f´pξp0q, T q “ f´pξpT q, 0q ùñ f´px, T q “ fpξpT qq (7.14)

which provides a solution to (7.13) to all points which can be reached by curves ξpT q. Under mild assumptions
this is all of Rd.

Looking back at Theorem 4.3, we notice that differently from the ode case we did not find a sde Xt

which keeps f´pXt, T ´ tq constant in the fully fledged sense. However, we have obtained something very
close to it: We chose t ÞÑ f´pXt, T ´ tq to be a martingale, i.e., a process that is constant on average! This
is the content of Theorem 4.3 and Corollary 4.4 (putting the accent on the expectation part of the result),
which mimicks the result of (7.14), only with the addition of expected values. Hence we might be provoked
to make the following fanciful statement.

Stochastic differential equation are the method of characteristics for diffusions. Rather than
follow a single characteristic back to the initial value to find the current value, we trace a
infinite collection of stochastic curves each back to its own initial value which we then average
weighting with the probability of the curve.
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6. A fundamental example: Brownian motion and the Heat Equation

We now consider the simple but fundamental case of standard Brownian motion.
Let us consider a compact subset D Ă R2 with a smooth boundary BD and a fpxq defined on

BD.
The Dirichlet problem: We are looking for a function upxq such that

∆u “
B2u

B2y1
`
B2u

B2y2
“ 0 for y “ py1, y2q inside D.

lim
yÑx

upyq “ fpxq for all x P BD.

Let Bpt, ωq “ pB1pt, ωq, B2pt, ωqq be a two dimensional Brownian motion. Define the stopping time

τ “ inftt ą 0 : Bptq R Du

Let Ey be the expectation with respect to the Wiener measure for a Brownian motion starting
from y at time t “ 0. Let us define φpxq “ EyfpBpτqq. We are going to show that φpxq solves the
Dirichlet problem.

Lemma 6.1. With probability 1, τ ă 8. In fact, Eτ r ă 8 for all r ą 0.

Proof.

Ptτ ě nu ď Pt|Bp1q ´Bp0q| ď diamD, |Bp2q ´Bp1q| ď diamD, . . . , |Bpnq ´Bpn´ 1q| ď diamDu

ď

n
ź

k“1

Pt||Bpkq ´Bpk ´ 1q| ď diamDu “ αn where α P p0, 1q

Hence
ř8
n“1 Ptτ ě nu ă 8 and the Borel-Cantelli lemma says that τ is almost surely finite. Now

lets look at the moments.

Eτ r “
ż

xrPtτ P dxu ď
8
ÿ

n“1

nrP
 

τ P pn´ 1, ns
(

ď

8
ÿ

n“1

nrP
 

τ ě n´ 1
(

ď

8
ÿ

n“1

nrαn ă 8

�

Lets fix a point y in the interior of D. Lets put a small circle of radius ρ around y so that the
circle in contained completely in D. Let τρ,y be the first moment of time Bptq hits the circle of
radius ρ centered at y.

Because the law of Brownian motion is invariant under rotations, we see that Bpτρ,yq is distributed
uniformly on the circle centered at y. (Lets call this circle Sρpyq.)

Theorem 6.2. φpxq solves the Laplace equation.

Proof. i) We start by proving the mean value property. To do so we invoke the Strong
Markov property of Bptq. Let τS “ inftt : Bptq P Sρpyqu and zϑ “ pρ cosϑ, ρ sinϑq be the
point on Sρpyq at angle ϑ. We notice that any path from y to the boundary of D must pass
through Sρpyq. Thus we can think of φpyq as the weighted average of E

 

fpBpτqq
ˇ

ˇBpτSq “ zϑ
where ϑ moves use around the circle Sρpyq. Each entry in this average is weighted by the
chance of hitting that point on the sphere starting from y. Since this chance is uniform
(all points are equally likely), we simply get the factor of 1

2π to normalize things to be a
probability measure.

φpyq “
1

2π

ż 2π

0
dϑE

 

fpBpτqq
ˇ

ˇBpτSq “ zϑ
(

“
1

2π

ż 2π

0
dϑφpzϑq (7.15)
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ii) φpxq is infinitely differentiable. This can be easily shown but let us just assume it since we
are doing this exercise in explicit calculation to improve our understanding, not to prove
every detail of the theorems.

iii) Now we see that φ satisfies ∆φ “ B2φ
By2

1
`
B2φ
By2

2
“ 0. We expand about a point y in the interior

of D.

φpzq “φpyq `
Bφ

By1
pz1 ´ y1q `

Bφ

By2
pz2 ´ y2q

`
1

2

„

B2φ

By2
1

pz1 ´ y1q
2 `

B2φ

By2
2

pz2 ´ y2q
2 `

B2φ

By1By2
pz1 ´ y1qpz2 ´ y2q



`Op|z ´ y|3q

Now we integrate this over a circle Sρpyq centered at y of radius ρ. We take ρ to by
sufficiently small so that the entire disk in the domain D. By direct calculation we have

ż

Sρpyq
pz1 ´ y1qdz “ 0,

ż

Sρpyq
pz2 ´ y2qdz “ 0,

ż

Sρpyq
pz1 ´ y1qpz2 ´ y2qdz “ 0

and
ż

Sρpyq
pz1 ´ y1q

2dz “ pconstqρ2,

ż

Sρpyq
pz2 ´ y2q

2dz “ pconstqρ2 .

Since by the mean value property,

φpyq “ pconstq

ż

Sρpyq
φpzqdz

we see that

0 “ pconstqρ2

ˆ

B2φ

By2
1

`
B2φ

By2
2

˙

`Opρ3q .

And thus,

∆φ “
B2φ

By2
1

`
B2φ

By2
2

“ 0

�
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CHAPTER 8

Martingales and Localization

This chapter is dedicated to a more in-depth study of martingales and their properties. Some
of the results exposed here are fairly general, and their proof in full generality required tools that
are more advanced than the ones we have at our disposal. For this reason, some of the proofs will
be given in a simplified setting/under stronger assumptions together with a reference for the more
general result.

1. Martingales & Co.

We recall the definition of a martingale given at the beginning of the course, extending it slightly.

Definition 1.1. tXtu is a Martingale with respect to a filtration Ft (Ft-martingale for short)
if for all t ą s we have

i) Xt is Ft-measurable ,

ii) Er|Xt|s ă 8 ,

iii) ErXt|Fss “ Xs a.s. .

Similarly, Xt is a Ft-supermartingale [Ft-submartingale] is it satisfies conditions i) and ii) above,
and

ErXt|Fss ď Xs , rErXt|Fss ě Xss a.s. .

When the filtration is clear from the context we simply say that a process is a [super/sub-]martingale.

Super- and Submartingales extend the idea of a process that is constant in expectation to
processes that are, respectively, nonincreasing and nondecreasing in expectation. It is clear that a
martingale is both a supermartingale and a submartingale, while a supermartingale that is also a
submartingale is a martingale.

Proposition 1.2. A supermartingale [submartingale] Mt is a martingale on r0, T s if and only
if E rMT s “ E rM0s.

Proof. The “only if” direction follows by definition: if Mt is a martingale then E rMT s “ E rM0s

and it is both a super- and a submartingale. For the “if” assume that Mt is a supermartingale
and E rMT s “ E rM0s. Assume by contradiction that it is not a martingale, i.e., that there is a set
W Ď Ω of positive probability such that E rMt|Fss ăMs for all ω PW . Then by the supermartingale
property of Mt we have that

E rMT s ď E rMts “ E rE rMt|Fsss ă E rMss ď E rM0s ,

which contradicts the assumption. �

Remark 1.3. By Jensen’s inequality on conditional expectations we have for any convex function
g : RÑ R, a martingale Mt satisfies

E rgpMtq|Fts ě gpE rMt|Fssq “ gpMsq ,

so application of a convex [concave] map to a martingale makes it a submartingale [supermartingale].
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Recall that a random variable X is [square-]integrable if E r|X|s ă 8 [E
“

X2
‰

ă 8]. The
condition of simple integrability of a random variable X can be equivalently stated as the condition

lim
nÑ8

E
“

|X|1|X|ąn
‰

“ 0 . (8.1)

Indeed, on one hand as limnÑ8 |X|1|X|ąn “ 0 a.s. and E
“

|X|1|X|ąn
‰

ď E r|X|s ă 8 we have by

the dominated convergence theorem1 that limnÑ8 E
“

|X|1|X|ąn
‰

“ E r0s “ 0. On the other hand,
we have that

E r|X|s “ E
“

|X|1|X|ďn
‰

` E
“

|X|1|X|ąn
‰

ď n` E
“

|X|1|X|ąn
‰

, (8.2)

and by using that both summands on the right hand side are bounded (the first by definition and
the second by assumption) we obtain that E r|X|s ă 8.

We now generalize the definitions above to stochastic processes.

Definition 1.4. A stochastic process Xt on T “ r0, T s (where possibly T “ 8) is

i) integrable if suptPT E r|Xt|s ă 8 ,

ii) square integrable if suptPT E
“

X2
t

‰

ă 8 (i.e., the second moments are uniformly bounded) ,

iii) uniformly integrable if limnÑ8 suptPT E
“

|Xt|1|Xt|ąn
‰

“ 0

The introduction of (8.1) allows to separate the concepts of simple and uniform integrability for
stochastic processes as in the latter definition the limit is taken after the supremum. As one would
expect, uniform integrability is stronger than simple integrability: similarly to (8.2) one has

sup
tPT

E r|Xt|s “ sup
tPT

E
“

|Xt|1|Xt|ďn
‰

` sup
tPT

E
“

|Xt|1|Xt|ąn
‰

ď n` sup
tPT

E
“

|Xt|1|Xt|ąn
‰

ă 8 .

For the converse result we need stronger assumptions. We give below examples of such results:

Proposition 1.5. A stochastic process tXtu is uniformly integrable if, either

i) It is dominated by a random variable Y defined on the same probability space, i.e., Xtpωq ď
Y pωq such that E r|Y |s ă 8,

ii) There exists some positive function Gpxq on p0,8q with limxÑ8Gpxq{x “ 8 such that

sup
tPT

E rGp|Xt|qs ă 8 .

Proof. We only prove the first result, for which we have that

lim
nÑ8

sup
tPT

E
“

|Xt|1|Xt|ąn
‰

ď lim
nÑ8

E
“

|Y |1|Y |ąn
‰

ă 8 .

For the proof of the second result we refer e.g., to [16]. �

In ii) of the above theorem we see that we need something sligthly better than simple integrability
to have uniform integrability. In particular we see that Gpxq “ x1`ε for any ε ą 0 satisfies condition
ii) of the above theorem. In particular, all square integrable martingales are uniformly integrable.

Theorem 1.6. Let Y be an integrable random variable on a filtered probability space pΩ,F ,P,Ftq,
then

Mt :“ E rY |Fts (8.3)

is a uniformly integrable martingale.

Proof. We refer to Klebaner [9, Proof of Thm. 7.9]. �

1See Theorem 0.2 in the appendix for a reminder of this theorem
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We define a martingale such as the one in (8.3) as closed by the random variable Y . In particular,
for any finite time interval r0, T s by definition every martingale is closed by its value at T since
E rMT |Fts “Mt and we have the following corollary.

Corollary 1.7. Any martingale Mt on a finite time interval is uniformly integrable.

The above results can be extended to infinite time intervals.

Theorem 1.8 (Martingale convergence theorem). Let Mt on T “ r0,8q be an integrable
[sub/super]-martingale. Then there exists an almost sure (i.e., pointwise) limit limtÑ8Mt “ Y ,
and Y is an integrable random variable.

The above theorem does not establish a correspondence between the random variables in terms
of expected values. In particular, we may have cases where the theorem above applies but we have
limtÑ8 E rMts ‰ E rY s:

Example 1.9. Consider the martingale Mt “ exprBt´ t{2s. Because it is positive, we have that

sup
tPT

E r|Mt|s “ sup
tPT

E rMts “ E rM0s “ 1 ă 8 ,

so it converges almost surely to a random variable Y by Theorem 1.8. However, we see that by the
law of large numbers for Brownian motion Bt{tÑ 0 a.s. and therefore

E rY s “ E
”

lim
tÑ8

Mt

ı

“ E
”

lim
tÑ8

etpBt{t´1{2q
ı

“ 0 ,

which differs from limtÑ8 E rMts “ 1.

The above observation neans in particular that the conditions of Theorem 1.8 do not guarantee
convergence in the L1 norm. Under the stronger condition of uniform integrability of the process
Xt one obtains the same result with convergence in L1 norm and consequently the closedness of the
martingale:

Theorem 1.10. Let Mt be a uniformly integrable martingale on T “ r0,8q, then it converges
as tÑ8 in L1 and a.s. to a random variable Y . Conversely, if Mt converges in L1 to an integrable
random variable Y then it is square integrable and converges almost surely. In both cases Mt is
closed by Y .

2. Optional stopping

After studying martingales per se, we consider their relation with stopping times. In particular,
we will see that martingales behave nicely with respect to stopping times. To be more explicit, given
a stochastic process Xt and recalling the definition Def. 7.15 of a stopping time τ , we denote by
τ ^ t “ minpτ, tq and define the stopped process

Xτ
t :“ Xτ^t “

#

Xt if t ă τ

Xτ else
.

The following theorem gives an example of the nice relationship between martingales and stopping
times: it says that the martingale property is maintained by a process when such process is stopped.

Theorem 2.1. For a Ft-martingale Mt and any stopping time τ , the process Mτ^t is a Ft-
martingale (and therefore a Fτ ^ t-martingale), so

E rMτ^ts “ E rM0s for all t ą 0 . (8.4)
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Martingales are often thought of as fair games because of their property of conserving their
expected value: It is impossible, on average, to make positive gains by playing such game. Under
this interpretation, Theorem 2.1 states that even if a player is given the possibility of quitting the
game use any betting strategy, he/she will not be able to make net gains at time t provided that
his/her strategy only depends on past information (cfr. Def. 7.15 of stopping time). However, the
above property is lost if the player is patient enough, as the following example shows:

Example 2.2. Let Bt be a Standard Brownian motion (a martingale, hence an example of a
“fair game”: you can think of it as a continuous version of betting one dollar on every coin flip) and
define τ1 :“ inftt : Bt ě 1u (the strategy of stopping as soon as you have a net gain of 1$). Then
by definition we have that Bτ “ 1 ‰ 0 “ E rB0s.

A similar situation to the one described above holds when considering the “martingale” betting
strategy of doubling your bet every time you loose a coin flip. This strategy leads to an almost
sure net win of 1$ if one is patient enough (and has enough money to bet). As the examples above
shows, stopped martingales may lose the property of conserving the expected value in the limit
tÑ8. The following theorem gives sufficient conditions for the martingale property to hold in this
limit, i.e., for the expected value of a game to be conserved at a stopping time τ :

Theorem 2.3 (Optional stopping theorem). Let Mt be a martingale, τ a stopping time, then
we have E rMτ s “ E rM0s if either of the following conditions holds:

‚ The stopping time τ is bounded a.s, i.e., DK ă 8: τ ď K ,

‚ The martingale Mt is uniformly integrable ,

‚ The stopping time is finite a.s. (i.e., Prτ “ 8s “ 0), Mt is integrable and

lim
tÑ8

E rMt1τąts “ 0 .

Proof. �

Under the gaming interpretation of above, we see that a game is “fair”, i.e., it is impossible
to make net gains, on average, using only past information, if any of the conditions i)-iii) hold. In
particular, in the case of coin-flip games (or casino games) we see that a winning strategy does not
exist as condition ii) holds: there is only a finite amount of money in the world, so the martingale is
uniformly bounded, and in particular uniformly integrable. A simplified example of such a situation
is given next:

Example 2.4. Let Bt be a Standard Brownian motion on on the interval a ă 0 ă b and
define the stopping time τ “ τab “ inftt P r0,8q : Bt R pa, bqu. The stopped process Bτ ^ t is
uniformly bounded and in particular uniformly integrable. Hence, by Theorem 2.3 we have that
E rBτ s “ E rB0s “ 0. However, we also have that Bτ “ b with probability p and Bτ “ a with
probability 1´ p, therefore

0 “ E rBτ s “ a ¨ p1´ pq ` b ¨ p ñ P rBτ “ bs “ p “
´a

b´ a
,

which we have concluded based on considerations based on the martingale properties of Bt and
therefore extends to any martingale for which τab is finite a.s..

We conclude the chapter by presenting the converse of Theorem 2.3:

Proposition 2.5. Let Xt be a stochastic process such that for any stopping time τ , Xτ is
integrable and E rX0s “ E rXτ s. Then Xt is a martingale.

Proof. We refer to Klebaner [9, Proof of Thm. 7.17]. �
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3. Localization

This section is devoted to the use of stopping times for the study of the properties of stochastic
processes. As we have seen, the stopped process may have some properties that the original process
did not have (e.g., uniform integrability on r0,8q in Example 2.4). One can generalize such situation
to a sequence of stopping times, such as the following example:

Example 3.1. Consider, similarly to Example 2.4, a Standard Brownian motion Bt on the
interval p´n, nq for n P N. Then we can define the stopping times τn :“ inftt : Bt R p´n, nqu. For
each n ą 0, the process is uniformly integrable.

In the above example, by taking the limit nÑ 8 one would approach the original setting of
unbounded Brownian motion by approximating it with uniformly bounded stopped processes. This
prices can be extremely useful to obtain stronger results as the ones obtained previously in the
course, as we will see later in this section, and justifies the following definition:

Definition 3.2. A property of a stochastic process Xt is said to hold locally if there exists
a sequence tτnu of stopping times with the property limnÑ8 τnpωq “ 8 a.s. such that the stopped
process Xτn^t has such property. In this case, the sequence tτnu is called the localizing sequence.

A particularly useful example is the one of the martingale property:

Definition 3.3. An adapted process Mt is a local martingale if there exists a sequence of
stopping times tτnu such that limnÑ8 τnpωq “ 8 a.s. and the stopped process Mτn^t is a martingale
for all n.

It is clear that if a property holds in the original sense, then it also holds locally: one just has
to take τn “ n ą t. On the contrary a local martingale is in general not a martingale:

Example 3.4. Consider the Itô integral
şt
0 exprB2

s sdBs , for t ă 1{4 and define τn :“ inftt ą

0 : exprB2
s s “ nu. The process Mτn^t is a martingale, since we can write it as

Mτn^t “ Ut “

ż t

0
exprB2

s s1exprB2
s sďn

dBs

is square integrable by Itô isometry. However, we have that

E
“

expr2B2
t s
‰

“
1

2πt

ż 8

´8

e2x2
e´x

2{p2tq dx

which diverges for t ą 1{4, implying that Mt is not integrable.

We now list some results that, besides allowing to practice the use of localization methods, give
sufficient conditions for a local martingale to be a martingale.

Proposition 3.5. Let Mt be a local martingale such that |Mt| ăď Y for an integrable random
variable Y , then Mt is a uniformly integrable martingale.

Proof. Let τn be a localizing sequence, then for any n and s ă t we have

E rMt^τn |Fss “Ms^τn .

Because τn Ò 8 a.s. we have the pointwise convergence limnÑ8Xs^τn “ Xs. Furthermore by our
assumptions Mt is integrable, and we can apply Dominated Convergence Theorem2 to obtain that

E rMt|Fss “ E
”

lim
nÑ8

Xt^τn |Fs
ı

“ lim
nÑ8

E rXt^τn |Fss “ lim
nÑ8

Xs^τn “Ms ,

showing that Mt is a martingale. By Proposition 1.5 we establish uniform integrability of Mt. �

2a version of this theorem is presented in the appendix
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Proposition 3.6. A non-negative local martingale Mt, for t P r0, T s is a supermartingale.

Proof. Let tτnu be the localizing sequence of Mt. Then for any t we have that limnÑ8 τn^t “ t
a.s and therefore that limnÑ8Mτn^t “ Mt. Consequently, by Fatou’s lemma on conditional
expectations we have

E rMt|Fss “ E
”

lim inf
nÑ8

Mτn^t|Fs
ı

ď lim inf
nÑ8

E rMτn^t|Fss “ lim inf
nÑ8

Mτn^s “Ms a.s. ,

where in the second equality we have used that the limit exists. In particular, we have that
E rMts ď E rM0s ă 8. �

Corollary 3.7. A non-negative local martingale Mt on T “ r0, T s for T ă 8 is a martingale
if and only if E rMT s “M0

Proof. This is a direct result of Proposition 1.2 and Proposition 3.6. �

Remark 3.8. As explained in [9] there exists a necessary and sufficient condition for a local
martingale to be a martingale: for the local martingale to be of “Dirichlet Class”, i.e., such that
such that the collection of random variables

X “ tXτ : τ is a finite stopping timeu

is uniformly integrable, i.e., supXPX limnÑ8 E
“

|X|1|X|ąn
‰

“ 0.

We now give some slightly more advanced examples of the use of localization procedure. We
begin by revisiting the problem of proving moment bounds for Itô integrals.

Moment Bounds for Itô Integrals. We let It “
şt
0 σsdBs. We want to prove the moment

bounds

E|It|2p ď p2p´ 1qp2p´ 3q ¨ ¨ ¨ 3 ¨ 1 ¨M2ptp ,

under the assumption that |σs| ďM a.s.
The case p “ 1 follows from the Itô isometry. Therefore, we now proceed to prove the induction

step. Let us assume the inequality for p´ 1 and use it to prove the inequality for p. For any N ą 0,
we define

τN “ inftt ě 0 :

ż t

0
|Is|

4p´2σ2
sds ě Nu

Applying Itô formula to x ÞÑ |x|2p and evaluating at the time t^ τN produces

|It^τN |
2p “ pp2p´ 1q

ż t^τN

0
|Is|

2pp´1qσ2
s ds` 2p

ż t^τN

0
|Is|

2p´1σsdBs “ pIq ` pIIq

now by the induction hypothesis

EpIq ď pp2p´ 1q

ż t

0
E|Is|2pp´1qσ2

s ds ď p2p´ 1qp2p´ 3q ¨ ¨ ¨ 3 ¨ 1 ¨ pM2p

ż t

0
sp´1 ds

ď p2p´ 1qp2p´ 3q ¨ ¨ ¨ 3 ¨ 1 ¨M2ppt^ τN q
p ď p2p´ 1qp2p´ 3q ¨ ¨ ¨ 3 ¨ 1 ¨M2ptp

If we define

Ut “

ż t

0
|Is|

2p´1σs1sďτNdBs

then Ut is a martingale since
ż t

0
|Is|

4p´2|σs|
21sďτN ds “

ż t^τN

0
|Is|

4p´2|σs|
2 ds ď N .
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Since t ^ τN is a bounded stopping time, the optional stopping lemma says that EUt^τN “ 0.
However as noted above

EpIIq “ EUt^τN
so one obtains

E|It^τN |
2p ď p2p´ 1qp2p´ 3q ¨ ¨ ¨ 3 ¨ 1 ¨M2ptp .

Since |Is| is almost surely finite, we know that τN is finite with probability one. Hence |It^τN |
2p Ñ

|It|
2p almost sure. Then by Fatou’s lemma we have

E|It|2p ď lim
NÑ8

E|It^τN |
2p ď p2p´ 1qp2p´ 3q ¨ ¨ ¨ 3 ¨ 1 ¨M2ptp (8.5)

SDEs with Superlinear Coefficients. Let b : Rd Ñ Rd and σpiq : Rd Ñ Rd be such that for
any R ą 0 there exists a C such that

|bpxq ´ bpyq| `
m
ÿ

i“1

|σpiqpxq ´ σpiqpyq| ď C|x´ y|

|bpxq| ` |σpxq| ď C

for any x, y P B0pRq, where B0prq :“ tx P Rd : }x}2 ă Ru.
Consider the sde

dXt “ bpXtq dt`
m
ÿ

i“1

σpiqpXtqdB
piq
t (8.6)

For any R let bR and σ
piq
R be are globally bounded and globally Lipchitz functions in Rd such

that bRpxq “ bpxq and σRpxq “ σpxq in B0pRq.
Since bR and σR satisfy the existence and uniqueness assumptions of Chapter 6.3, there exists a

solution X
pRq
t to the equation

dX
pRq
t “ bRpX

pRq
t q dt`

m
ÿ

i“1

σ
piq
R pX

pRq
t qdB

piq
t (8.7)

For any N ą 0 and R ą 0 we define the stopping time

τR :“ inftt ě 0 : |X
pRq
t | ą Ru

Theorem 3.9. If

P
„

lim
RÑ8

τR “ 8



“ 1

there there exists a unique strong solution to (8.6).

Proof. Fix a T ą 0. For R P N let ΩR “
 

τR ă T ă τR`1

(

. By the assumption

P

«

8
ď

R“1

ΩR

ff

“ 1 .

Also notice that the ΩR are disjoint for R “ 1, 2, . . . and we can define the process

Xtpωq “ X
pRq
t pωq for t P r0, T s if ω P ΩR .

Since sup |X
pRq
t pωq| ă R, we know that bpX

pRq
t pωqq “ bpRqpX

pRq
t pωqq and σpX

pRq
t pωqq “ σpRqpX

pRq
t pωqq

for all t P r0, T s. Hence Xt as defined solves the original equation. Uniqueness comes from the fact
that solutions to (8.7) are unique. �
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4. Quadratic variation for martingales

Recall the definition of quadratic variation of a stochastic process:

Definition 4.1. The quadratic variation of an adapted stochastic process Xt is defined as

rXst :“
p

lim
NÑ8

jN
ÿ

j“0

´

XtNj`1
´XtNj

¯2

where limp denotes a limit in probability and ttNj u is a set partitioning the interval r0, ts defined by

ΓN :“ tttNj u : 0 “ tN0 ă tN1 ă ¨ ¨ ¨ ă tNjN “ tu (8.8)

with |ΓN | :“ supj |t
N
j`1 ´ t

N
j | Ñ 0 as N Ñ8.

The process defined above is a sum of positive contributions and is therefore nondecreasing in t
a.s..

Now let Mt be a [local] martingale. In light of Remark 1.3 we know that M2
t is a [local]

submartingale. Hence, we would like to know if we can transform M2
t back to a martingale, for

example by subtracting a “compensation process” removing the nondecreasing part of the squared
process. It turns out that such process exists and is precisely the quadratic variation process. The
intuition behind this result comes from the following computation: assume that s ă t, then we have

E rMtMss “ E rMsE rMt|Fsss “ E
“

M2
s

‰

where in the second equality we have used the martingale property. As a consequence of this we can
write

E
“

pMt ´Msq
2
‰

“ E
“

M2
t

‰

´ 2E rMtMss ` E
“

M2
s

‰

“ E
“

M2
t

‰

´ E
“

M2
s

‰

. (8.9)

In particular this implies that the summands in the definition of quadratic variation can be expressed,
on expectation, as differences of expectation values that cancel telescopically, leading to (part of)
the following theorem.

Theorem 4.2. This theorem can be stated in the martingale and local martingale version:

i) Let Mt be a square-integrable martingale, then the quadratic variation process rM st exists
and M2

t ´ rM st is a martingale.
ii) Let Mt be a local martingale, then the quadratic variation process rM st exists and M2

t ´rM st
is a local martingale.

Proof. We only prove point i) of the theorem above. Point ii) follows for locally square
integrable martingales by localization, i.e., by substituting t Ñ τn ^ t where τn is the localizing
sequence. Repeating the calculation leading to (8.9) with conditional expectations we obtain

E
“

M2
t ´M

2
s |Fs

‰

“ E

»

–

jN
ÿ

j“1

pMtNj
´MtNj´1

q2|FtNj´1

fi

fl .

Now, taking the limit in probability of the right hand side (we do not prove that such limit exists
here, but we refer to [16]) and rearranging we obtain that E

“

M2
t ´ rM st|Fs

‰

“ M2
s ´ rM ss as

desired . �

We conclude this section by proving a surprising result about martingales with finite first
variation.

Lemma 4.3. Let Mt be a continuous local martingale with finite first variation. Then Mt is
almost surely constant.
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The intuition behind the above result is quite simple: considering a continuum time interval,
constraining a continuous martingale on behaving “nicely” in order to have finite first variation
(for example monotonically or in a differentiable way) the martingale would somehow have to be
“consistent with its trend at t´” (except of course in a set of measure 0) and could therefore not
respect the constant conditional expectation property. In other words, martingales with finite first
variation are too “stiff” to be different from the identity function.

Remark 4.4. Note that continuity is a key requirement in the above result: jump processes
(constant between jumps, discontinuous when jumps occur) give an example of martingales that are
not constant but that have finite first variation.

Proof of Lemma 4.3. We assume for this proof that Mt is a [locally] bounded martingale.
We will eventually show that the variance of Mt is zero and hence Mt is constant. Picking some
partition of time 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tk “ t, recalling (8.9) we consider the variance at time t

EM2
t “ E

ÿ

´

M2
tn ´M

2
tn´1

¯

“ E
ÿ

pMtn ´Mtn´1q
2

ď E sup
tn
|Mtn ´Mtn´1 |

ÿ

|Mtn ´Mtn´1 |

Since the first variation V ptq “ lim∆TÑ0
ř

|Mtn ´Mtn´1 | was assumed to be finite we obtain

EM2
t ď pconstqE lim

∆TÑ0
sup
tn
|Mtn ´Mtn´1 |

this limit is zero because M was assumed to be continuous.
Hence the variance of Mt is zero and thus Mt is constant almost surely. Thus Mt is constant for

any countable collection of times. Use the rational numbers and then continuity to conclude that it
is constant and the same constant for all times. �

5. Lévy-Doob characterization of Brownian motion

In the beginning of this course we have given several equivalent conditions on the continuity
and the marginals of a process to guarantee that such process is a Brownian motion. Using the
intuition on martingales that we have developed in the previous sections we are now ready to give a
different set of conditions that allow to draw the same conclusion:

Theorem 5.1 (Lévy-Doob). If Xptq is a continuous martingale such that

i) Xp0q “ 0,

ii) Xptq is a square integrable-martingale with respect to the filtration it generates,

iii) Xptq2 ´ t is a square integrable-martingale with respect to the filtration it generates

then Xptq is a standard Brownian motion.

It is important the Xptq be continuous. For example if Nt is a jump process Nt ´ t and
pNt ´ tq

2 ´ t are both martingales but Nt ´ t is quite different from Brownian motion.

Proof. Our proof essentially follows that of Doob found in [2], which approaches the problem
as a central limit theorem, proved through a clever trick using a telescopic sum. Fix a positive
integer N and an ε ą 0. Define

τpε,Nq “ infts ą 0 : sup
s1ăs2ăs

|s1´s2|ă1{N

|Xps1q ´Xps2q| “ εu .

If there is no such time s, set τ “ 8. Fix a time t. We what to show that the random variable Xptq

has the same Gaussian distribution as Bt. To do this it is enough to show that EeiαXptq “ e´α
2t{2,
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that is show that they both have the same characteristic functions (Fourier transform). It is a
standard result in basic probability that if a sequence of random variables have characteristic

functions which converge for each α to e´α
2t{2 then the sequence of random variables has a limit and

it is Gaussian. See [1] for a nice discussion of characteristic functions and convergence of probability
measures. Hence, we will show that

E
!

eiαXpt^τq
)

Ñ e´
α2t
2 `Opεq as N Ñ8 for any ε ą 0.

Since ε will be arbitrary and the left hand side is independent of ε, this will imply the result.
Partition the interval r0, ts with point tk “

kt
N . Set

I “

ˇ

ˇ

ˇ

ˇ

ˇ

E

#

N
ź

j“1

eiαpXj´Xj´1q ´

N
ź

j“1

e´
α2

2
ptj´tj´1q

+ˇ

ˇ

ˇ

ˇ

ˇ

where Xj :“ Xptj ^ τq. In general, observe that the following identity holds

A1A2A3 ¨ ¨ ¨AN ´B1B2 ¨ ¨ ¨BN “A1A2 ¨ ¨ ¨AN´1pAN ´BN q

`A1A2 ¨ ¨ ¨AN´2pAN´1 ´BN´1qBN

`A1A2 ¨ ¨ ¨AN´3pAN´2 ´BN´2qBN´1BN

...

`pA1 ´B1qB2B3 ¨ ¨ ¨BN .

Hence

I “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E

$

&

%

N
ÿ

k“1

N´k´1
ź

j“1

eiαpXj´Xj´1q

ˆ

eiαpXN´k´XN´k`1q ´ e´
α2

2
ptN´k´tN´k`1q

˙ N
ź

j“N´k`1

e´
α2

2
ptj´tj´1q

,

.

-

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

All of the terms in the first product have modulus one and all of the terms in the second product
are less than one. Hence

I ď E

#

N
ÿ

k“1

ˇ

ˇ

ˇ
E
"

eiαpXN´k´XN´k`1q ´ e´
α2

2
ptN´k´tN´k`1q

ˇ

ˇ

ˇ
FtN´k^τ

*

ˇ

ˇ

ˇ

+

Now observe that by Taylor’s theorem

eiα∆kX ´ e´
α2

2
∆kt “ iα∆kX ´

α2

2
p∆kXq

2 `
α2

2
∆kt`Op∆kXq

3 `Op∆ktq
2

where ∆kX “ Xk ´Xk´1 and ∆kt “ tk ´ tk´1. The constants implied by Op∆kXq
3 and Op∆ktq

2

can be taken to be uniformly bounded for ε P p0, ε0s and N P rN0,8q for some ε0 ą 0 and N0 ă 8.
Observe that by using the martingale assumptions on X and the optional stopping lemma, we have
that

E
 

∆N´kX|FtN´k^τ
(

“ 0

E
 

p∆N´kXq
2|FtN´k^τ

(

“ ∆N´kpt^ τq ď tN´k ´ tN´k´1 .

Here ∆kpt^ τq “ tk ^ τ ´ tk ^ τ . By our definition of τ , |∆N´kX| ď ε. So we have

E
 

|∆N´kX|
3|FtN´k^τ

(

ď
`

sup
k,ω
|∆N´kX|

˘

E
 

p∆N´kXq
2|FtN´k^τ

(

ď εE
 

p∆N´kXq
2|FtN´k^τ

(

.
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And thus,

I ď E

#

N
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

Etiα∆kX|FtN´ku ´ Et
α2

2
p∆kXq

2|FtN´ku `
α2

2
∆kt` Cp∆ktq

2 ` CEtp∆kXq
3|FtN´k^τu

ˇ

ˇ

ˇ

ˇ

+

ď

«

´N

ˆ

t

N

˙

α2

2
`N

ˆ

t

N

˙

α2

2
` CN

ˆ

t

N

˙2

` CεN

ˆ

t

N

˙

ff

“ C
t

N
` εCt

Observe that τ Ñ8 as N Ñ8 for any fixed ε. Hence we have that
ˇ

ˇ

ˇ

ˇ

E
!

eiαXptq
)

´ e´
α2t
2

ˇ

ˇ

ˇ

ˇ

ď lim
NÑ8

I ď εCt

Notice that the left hand side is independent of ε. Since C and t are fixed and ε was any arbitrary
number in p0, ε0s, we conclude that

E
!

eiαXptq
)

“ e´
α2t
2

�

We now give a slightly different formulation of the Levy-Doob theorem. Let Mt be a continuous
martingale. Then by Theorem 4.2 if rM st “ t condition ii) of Theorem 5.1 is satisfied and we obtain
the following result.

Theorem 5.2 (Levy-Doob theorem). If Mt is a continuous martingale with rM st “ t and
M0 “ 0 then Mt is standard Brownian motion.

6. Random time changes

Let Mt be a contiguous martingale with respect to the filtration Ft. Since the quadratic variation
map t ÞÑ rM st is non-decreasing, we can define its left-inverse by

τt “ infts ě 0 : rM ss ě tu (8.10)

and the limiting value

rM s8 “ lim
tÑ8

rM st

Theorem 6.1 (Dambis-Dubins-Schwartz). Let Mt, τt be as above. If rM s8 ą T then Bt “Mτt

is a Brownian motion on the interval r0, T s with respect to the filtration Gt “ Fτt . Conversely, there
exists a standard Brownian motion Bt such that Mt “ BrMst for t ě 0. This result also holds when
Mt is a continuous local martingale.

Remark 6.2. Theorem 6.1 shows that any continuous martingale is just the time change of
Brownian motion with rM st giving the rate at which fluctuations are injected into the system. This
intuition is particularly useful in finance, where rM st can be thought of a measure of the volatility
of the process.

Proof of Theorem 6.1. By the definition of τt as the left-inverse of the map t ÞÑ rM st we

have that rB̂st “ rM sτt “ t. Hence M2
τt ´ t is a martingale. By localizing the stopping time τt to

τt ^ s for a finite s if necessary (i.e., to allow for the application of the optional stopping theorem)
we have that

EpB̂t|Gsq “ EpMτt |Fτsq “Mτs “ B̂s

and consequently we see that B̂t is also a martingale. Hence the by the Levy-Doob Theorem
(Theorem 5.2), B̂t is a standard Brownian motion. The converse result follows from the first: for B̂t
defined above we see by the definition of τt that B̂rMst “MτrMst

“Mt since τrMst “ t. �
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For martingales that can be written as

dMt “ Ht dBt ,

we know that rM st “
şt
0H

2
s ds. Therefore, by the above theorem if

ş8

0 H2
s ds “ 8 we can write Mt

as

Mtpωq “ B̂

ˆ

ω,

ż t

0
H2
s pωqds

˙

, (8.11)

for a Brownian motion B̂pω, sq that can be constructed from Mt. We note that we can explicitly

invert the time-change: letting fpt, ωq “
şt
0Hspωq

2 ds we have

Htpωq “
a

Btfpt, ωq

This implies that Mt, i.e., the time-changed Brownian motion B̂pω, fpt, ωqq satisfies the sde

dMt “ dB̂pfptqq “
a

Btfptq dBt , (8.12)

where, in general, B ‰ B̂! We also note that, if Hspωq “ Hs i.e., Hs is a deterministic process, the
time-change is deterministic and the interpretation of the above calculation simplifies (cfr the next

example). Furthermore, in this case, changing time for another Brownian motion B̃ still satisfies
(8.11) in distribution.

Example 6.3. We consider the time-change Hs “ σeαs i.e.,

fptq “

ż t

0
σ2e2αs “ σ2 e

2αt ´ 1

2α
.

Then we have that the process B̂pfptqq is the (weak) solution to the sde dXt “ σeαt dBt . Now,
consider the process

Ut :“ e´αtXt “ e´αtB̂

ˆ

σ2 e
2αt ´ 1

2α

˙

.

By Itô’s product rule we see that this process satisfies

dUt “ ´αUt dt` σ dBt ,

which is the well know sde for the Ornstein-Uhlenbeck process (cfr. Langevin equation).

Time Change for an SDE. We now extend the above reasoning and use it to construct a
new way of solving sdes.
Consider the simple one dimensional sde

dXt “ σpXtq dBt

with σpxq ą 0. We can rewrite the above equation as

dBt “
1

σpXtq
dXt .

Now, by Theorem 6.1 we write Xt as a time-changed Brownian motion Xtpωq “ B̂pω, rXstq, and in
the new timescale τ defined by rXst we have that the sde reads

dMτ “
1

σpB̂τ q
dB̂τ .

In the following, by abuse of notation we will denote the new timescale as the old one, i.e.,
τ “ t. We assume that

ş8

0 σ´2pB̂sqds “ 8 almost surely (A simple condition which ensures this is
|σpxq| ď c ă 8 for all x.) Now we would like to invert the change of time we just performed i.e., go
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back to the timescale where M¨ is a Brownian motion. Similarly to the previous paragraph, we do
this by defining the inverse transformation:

rM st “

ż t

0
σ´2pB̂sqds “: Gptq and τt “ G´1ptq “ infts : rM ss ą tu . (8.13)

In other words, we are now in the same setting as in the previous section, where fptq “ G´1ptq. At
the same time, by the inverse function theorem we obtain

f 1ptq “ BtG
´1ptq “

`

G1pG´1ptqq
˘´1

“

¨

˚

˝

1

σ
´

B̂pG´1ptqq
¯2

˛

‹

‚

´1

“ σpB̂pτtqq
2

Inserting this into (8.12) we finally obtain

dXt “ dB̂τt “ σpB̂τtqdBt “ σpXtq dBt (8.14)

Remark 6.4. We note that the above calculation can be performed for a general choice of
time-change

Hptq “

ż t

0
hpXsq ds , and τt “ H´1ptq ,

resulting in the sde for Yt “ Xτt given by

dYt “
σpYtq
a

hpYtq
dBt ,

which for the choice of H “ σ2 gives the standard Brownian motion as a solution. Inverting this
time transformation as done above will give the solution to the original sde. Note again that the
time-changed Brownian motion is a weak solution to the original sde, since we first choose a
Brownian motion according to which we solve in the sde in the new timescale, and then we transform
it back to the original timescale, mapping the solution to another Brownian motion.

Now consider the full-fledged sde

dXt “ µpXtq dt` σpXtq dBt (8.15)

where µ : Rd Ñ Rd, σ : Rd ˆRm,d and Bt is a m-dimensional Brownian motion. As we have done is
Remark 6.4, we define the time change

Hptq :“

ż t

0
hpXsqds and τt “ H´1ptq “ infts : Hpsq ą tu . (8.16)

Then we can show the following result:

Theorem 6.5. Let Xt be the solution to (8.15), then the process Yt “ Xτt is a weak solution to
the sde

dYt “
µpYtq

hpYtq
dt`

σpYtq
a

hpYtq
dBt .

Proof. With the same definitions as above define dMt “
a

hpXtqdBt and Bt “ Mτt . Since

rM st “
şt
0 hpXsq dt we see that Bt is a standard Brownian motion. Observe that dτt “ hpXτtq

´1 dt
and

dBt “
1

a

hpXτtq
dBτt

103



Defining Yt “ Xτt , we have that

dYt “
1

hpXτtq
dXτt “

1

hpXτtq

`

µpXτtqdt` σpXτtq dBτt
˘

“
µpYtq

hpYtq
dt`

σpYtq
a

hpYtq

1
a

hpXτtq
dBτt

“
µpYtq

hpYtq
dt`

σpYtq
a

hpYtq
dBt

�

Note that, similarly to all the cases above, it is only a weak solution since the Brownian motion
Bt was constructed at the same time as the solution Yt. A strong solution required that the Brownian
motion be specified in advance.

Example 6.6. We consider the equation for the squared Bessel process (cfr problem sets)

dXt “ δdt` 2
a

XtdBt

and define the time change

τ “
σ2

2νp2´ δq

ˆ

1´ exp

ˆ

´
2νt

2´ δ

˙˙

.

Then by the above theorem we obtain

dX̃t “ δτ 1ptqdt` 2

b

X̃t

a

τ 1ptqdBptq .

Now defining

Yt “ exppνtqX̃
1´δ{2
t ,

we have that

dYt “ νYtdt` exppνtqp1´
δ

2
qX̃

´δ{2
t dX̃t ` exppνtq

ˆ

2p´
δ

2
qp1´

δ

2
qτ 1ptqX̃

´δ{2
t

˙

dt .

and combining with the definition of τ and dX̃t we obtain that Yt “ Xτ solves

dYt “ νYtdt` σY
1´δ
2´δ

t dWt

Remark 6.7. The same argument shows that if

dXt “ htµpXtqdt`
a

htσpXtqdBt

for some positive, adapted stochastic process ht, then if τt “
şt
0 h
´1
s ds and Yt “ Xτt we have

dYt “ µpYtq dt` σpYtqdB̂t

for the standard Brownian motion B̂t “Mτt where Mt “
şt
0 hsdBs.

7. Martingale inequalities

We now present some very useful inequalities that allow to control the fluctuations of martingales.
The first result is due to Doob and controls the probability distribution of the maximum of a
martingale on a certain time interval. For this reason these inequalities are sometimes called Doob’s
maximal inequalities. The first one bounds from above the probability that the supremum of a
martingale in an interval exceeds a certain a certain value λ, while the second bounds the first
moment of such distribution, i.e., the expected value of the supremum on the given interval.
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Theorem 7.1 (Doob’s Martingale Inequality). Let Mt be a martingale (or a positive submartin-
gale) with respect to the filtration Ft. Then for T ą 0 and for all λ ą 0

P
„

sup
0ďtďT

|Mt| ě λ



ď
Er|MT |

ps

λp
for all p ě 1 ,

and

E
„

sup
0ďtďT

|Mt|



ď

ˆ

p

p´ 1

˙p

Er|MT |
ps for all p ą 1 .

Before turning to the proof, we remark the similarity of the first inequality with Markov’s
inequality, i.e., given a random variable X, for every p ě 1 we have

P r|X| ą λs ď
E r|X|ps
λp

.

The difference of the two inequalities is the supremum, under the condition of the process Mt being
a martingale, in Doob’s inequality.

Proof. First of all we note that by convexity of |x| and xp on R` the process |Mt|
p is a

submartingale. Consequently defining the stopping time

τλ :“ inftt : |Mt| ą λu ,

we have by Doob’s optional stopping theorem

E r|Mτλ^t|
ps ď E r|Mt|

ps . (8.17)

At the same time, we have that

E r|Mτλ^t|
ps “ E r|Mτλ^t|

p1τλďts ` E r|Mτλ^t|
p1τλąts

“ λP rτλ ď ts ` E r|Mt|
p1τλąts . (8.18)

Combining (8.17) and (8.18) we finally obtain

P

«

sup
sPr0,ts

|Ms| ě λ

ff

“ P rτλ ď ts ď
E r|Mt|

p1τλďts
λp

ď
E r|Mt|

ps

λp

where in the last passage we have used the nonnegativity of |Mt|. �

The above result is key to derive numerous results in stochastic calculus. We have seen one
example in the proof of Theorem 7.2. We can also use it to bound the supremum of Itô integrals:

Example 7.2. Under the assumption that σs ď M ă 8 we have shown in Section 3 that

E
”

|
şt
0 σs dBs|

p
ı

ă 8. Consequently, by Doob’s inequality (recall that for a martingale Mt, |Mt|
p is

a positive submartingale for p ě 1) we have

E

«

sup
tPp0,T q

|

ż t

0
σs dBs|

p

ff

ď C2E
„

|

ż t

0
σs dBs|

2p



ă 8 .

We now introduce the very useful Burkholder-Davis-Gundy inequalities.

Theorem 7.3 (Burkholders-Davis-Gundy Inequality). Let Xt be a local martingale, then for
any p ě 1

cpE
“

rXts
p
‰

ď E
”

sup
0ďsďt

|Xs|
2p
ı

ď CpE
“

rXts
p
‰

where cp, Cp are constants independent of the process, depending only on p.
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Proof. We only prove the upper bound of this result, under the simplifying assumption that

Xt “
şt
0 fspωqdBs for a bounded process fs ďM for M ă 8. For the complete versions of the proof

see [4, 8, 15].
Doob’s Lp maximal inequality combined with Itô’s formula implies that

E
„

sup
0ďsďt

|Xs|
2p



ď

ˆ

p

p´ 1

˙p

E
“

|Xt|
2p
‰

(8.19)

“

ˆ

p

p´ 1

˙p

E
„

2pp2p´ 1q

2

ż t

0
|Xs|

2pp´1qfpsq2ds` 2p

ż t

0
|Xs|

2p´1fpsqdBs



.

Next we introduce the stopping time

τN “ inftt ě 0 :

ż t

0
|Xs|

4p´2|fs|
2ds ě Nu

Let IN ptq “ 2p
şt
0 |Xs^τN |

2p´1fs^τNdBs. Since the integrand is bounded by the construction of τN
we have that EIN ptq “ 0. Notice that

E
„

2p

ż t^τN

0
|Xs|

2p´1fpsqdBs



“ ErIN pt^ τN qs “ 0

where the last equality follows from the Optional Stopping Theorem. Next observe that

E
„
ż t

0
|Xs|

2pp´1qfpsq2ds



ďE
„

sup
0ďsďt

|Xs|
2pp´1q

ż t

0
fpsq2ds



“ E
„

sup
0ďsďt

|Xs|
2pp´1qrXts



and by Holder’s inequality with powers p “ p and q “ p{pp´ 1q we have that

E
„

sup
0ďsďt

|Xs|
2pp´1qrXts



ďE
„

sup
0ďsďt

|Xs|
2p

1´ 1
p

E
”

rXspt

ı
1
p

Putting everything together produces

E
„

sup
0ďsďt^τN

|Xs|
2p



ď CE
„

sup
0ďsďt^τN

|Xs|
2p

1´ 1
p

E
”

rXspt^τN

ı
1
p

By the definition of the stopping time everything is finite, hence we can divide thought by the first
term on the right to obtain

E
„

sup
0ďsďt^τN

|Xs|
2p


1
p

ď CE
”

rXspt^τN

ı
1
p
.

We realize that both right- and left hand side are uniformly bounded, under our assumption, by

(8.5) and by
şt
0 f

2
s ds ă tM2 respectively. The proof is concluded by raising both sides to the power

p and, by means of dominated convergence theorem, removing the stopping time by taking the limit
as N Ñ8. �

8. Martingale representation theorem

We conclude this chapter by introducing a last fundamental result about martingales, strengthen-
ing the connection between martingales and Ito integrals. Recall that Itô integrals of square-integrable
processes are martingales. The Martingale Representation theorem, a quite remarkable result, es-
sentially establishes that the converse result is also true: every martingale can be expressed as the
Itô integral of a square-integrable process. Furthermore, such process is unique among the family of
predictable processes. As suggested by the name, predictable processes are those whose value at
time t can be predicted given the information before time t. Examples of such processes are given
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by processes that are continuous from the left, i.e., for which limsÒtXs “ Xt.
A precise definition of this class of processes is given below:

Definition 8.1. Given a filtered probability space pΩ,F ,P, tFtutě0q, then a continuous-time stochastic
process tXtutě0 is predictable if X, considered as a mapping from Ω ˆ R`, is measurable with respect to
the σ-algebra generated by all left-continuous adapted processes.This σ-algebra is also called the predictable
σ-algebra.

One can think about predictable processes as processes that an external observer can control, as
exemplified below:

Remark 8.2. This example lives in discrete time, where predictability implies that Xn`1 P Fn.
Suppose we have a certain amount of money Vn at a certain time tn. We decide to invest a certain
percentage Xn of this money in a title with value Sn at time tn and put the remaining part 1´Xn

in our bank account. Sn can be modeled as a random variable, but so can Xn: our fund’s allocation
varies based on how the title’s value fluctuates. Seeing the σ algebra Fn as information from the
values of Sn up to time tn. What makes Sn and Xn different is that we have control of the amount
of money Xn`1 that we want to invest at the time tn in the title Sn because this decision must be
made before tn`1. In other words, the value of Xn`1 must depend exclusively the information up to
time tn, i.e., Xn`1 P Fn.

Theorem 8.3 (Martingale representation theorem). Let Mt be a square-integrable [or local]
FBt -martingale on p0, T q (where possibly T “ 8) then there exists a square-integrable process Cs [or

a process Cs s.t. P
”

şT
0 C

2
s ds ă 8

ı

“ 0] such that

Mt “M0

ż t

0
Cs dBs .

We do not prove the above result here, but refer to [16] for a proof. We note that the result is
restricted to FB

t . This result is especially useful in finance, as we will see in the final chapters of
this course.
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CHAPTER 9

Girsanov’s Theorem

1. An illustrative example

We begin with a simple example. We will frame it in a rather formal way as this will make the
analogies with later examples clearer.

One-dimensional Gaussian case. Let us consider the probability space pω,P,Fq where Ω “ R
and P is the standard Gaussian with mean zero on variance one. (For completeness let F be the

Borel σ-algebra on R.). We define two random variables Z and Z̃ on this probability space. As
always, a real valued random variable is a function from Ω into R. Let us define

Zpωq “ ω and Z̃pωq “ ω ` µ

for some fixed constant µ. Since ω is drawn under P with respect the N p0, 1q measure on R we have

that Z is also distributed N p0, 1q and Z̃ is distributed N pµ, 1q.
Now let us introduce the density function associated to P as

φpωq “
1
?

2π
expp´

ω2

2
q

Now we introduce the function

Λµpωq “
φpω ´ µq

φpωq
“ exp

´

ωµ´
µ2

2

¯

Since Λµ is a function from Ω to R is can be viewed as a random variable and we have

EPΛµ “

ż

ω
ΛµpωqPpdωq “

ż 8

´8

Λµpωqφpωqdω “

ż 8

´8

φpω ´ µqdω “ 1

since φpω´ µq is the density of a N pµ, 1q random variable. Hence Λµ is a L1pΩ,Pq random variable.
Hence we can define a new measure Q on Ω by

Qpdωq “ ΛµpωqPpdωq.

This means that for any random variable X on Ω we have that the expected value with respect to
the Q, denoted by EQ is define by

EQrXs “ EPrXΛµs

Furthermore observe that for any bounded f : RÑ R,

EQfpZq “ EPrfpZqΛµs “

ż 8

´8

fpZpωqqΛµpωqφpωqdω “

ż 8

´8

fpωqφpω ´ µqdω

“

ż 8

´8

fpω ` µqφpωqdω “ EPfpZ̃q

Which implies that the distribution of Z under the measure Q is the same as the distribution of Z̃
under distribution P.
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Example 1.1 (Importance sampling). Let f : R Ñ R, and let X be distributed N pµ, 1q. We
have that

EfpXq “
1
?

2π

ż 8

´8

fpxqe´
px´µq2

2 dx

for some µ P R.
For n large and tXiu

n
1 iid N p0, 1q, we estimate the above expected value by sampling, i.e.,

ErfpXqs «
1

n

n
ÿ

i“1

fpXiq

The problem of the above method is that for not-so-large values of µ ( e.g., µ ą 6), taking for example
f “ 1Xă0 we would need a very large amount of samples before sampling the tail of N pµ, 1q, i.e.,
elements that are relevant for our estimation.
However, let Y be distributed N p0, 1q. Then by the procedure outlined above we have:

ErfpXqs “
1
?

2π

ż 8

´8

fpxq
e´

px´µq2

2

e´
x2

2

e´
x2

2 dx “ E
„

fpY qeµY´
µ2

2



«
1

n

n
ÿ

i“1

fpYiqe
µYi´

µ2

2

for tYiu
n
i“1 iid N p0, 1q. Under this new distribution, the indicator function often positively to the

sampling, and we need significantly less samples to obtain an accurate estimate of the expectation.

Multidimensional Gaussian case. Now let’s consider a higher dimensional version of the
above example. Let Ω “ Rn and let P be n-dimensional Gaussian probability measure with
covariance σ2I where σ ą 0 and I is the nˆ n dimensional covariance matrix. In analogy to before,
we define for ω “ pω1, . . . , ωnq P Rn

φpωq “
1

p2πσ2q
n
2

exp
´

´
1

2σ2

n
ÿ

i“1

ω2
i

¯

and for µ “ pµ1, . . . , µnq P Rn

Λµpωq “
φpω ´ µq

φpωq
“ exp

´ 1

σ2

n
ÿ

i“1

ωiµi ´
1

2σ2

n
ÿ

i“1

µ2
i

¯

Then if we define the Rn valued random variables Zpωq “ pZ1pωq, . . . , Znpωqq and Z̃pωq “

pZ̃1pωq, . . . , Z̃npωqq “ Zpωq ` µ. Then if we define Qpdωq “ ΛµpωqPpdωq then following the same

reasoning as before that the distribution of Z under Q is the same as the distribution of Z̃ under P.

2. Tilted Brownian motion

Consider the tilted Brownian motion process

dXt “ µdt` dBt ,

where Bt is standard Brownian Motion, µ P R. Furthermore, let 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tn ď T , and
f, g : Rn Ñ R such that fpx1, x2, . . . , xnq “ gpx1, x2 ´ x1, . . . , xn ´ xn´1q.
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The to compute the expectation of f we write:

E
“

gpXt1 , Xt2 ´Xt1 , . . . , Xtn ´Xtn´1q
‰

“

ż

Ωˆ¨¨¨ˆΩ

¨

˝

gpx1, x2 ´ x1, . . . , xn ´ xn´1q

p2πq
n
2 t

1
2
1 pt2 ´ t1q

1
2 ¨ ¨ ¨ ptn ´ tn´1q

1
2

˛

‚

n
ź

i“1

e
´
rpxi´xi´1q´µpti´ti´1q

2s
2

2pti´ti´1q
ź

dxi

In light of what has been discussed in the previous section, we transform the above in iid Gaussian
distributions:

n
ź

i“1

e
´
rpxi´xi´1q´µpti´ti´1q

2s
2

2pti´ti´1q “

n
ź

i“1

e
´
pxi´xi´1q

2

2pti´ti´1q

n
ź

i“1

eµpxi´xi´1q´
1
2
µ2pti´ti´1q

“eµxn´
1
2
µ2tn

n
ź

i“1

e
´
pxi´xi´1q

2

2pti´ti´1q .

Now we can consider the multiplication as the desired measure of Gaussian distribution and the
prefactor as the random variable Λµpω, tq:

E rfpXt1 , . . . , Xtnqs “ E
”

fpBt1 , . . . , Btnqe
µBtn´

1
2
µ2tn

ı

“ E rfpBt1 , . . . , BtnqΛµpω, tqs

We note en passant that the “coefficient” Λµpω, tq can be written as a martingale Mtpωq, more

precisely the exponential martingale Mt “ eµBt´
1
2
µ2t (we are going to define this concept more

precisely in the next section).

3. Girsanov’s Theorem for sdes

We now introduce some notation to generalize the above observations to the framework of
measure theory. Let pΩ,Fq be a measurable space, then

Definition 3.1. Given two measures µ, ν, we say that ν is absolutely continuous wrt (denoted
by µ ν ! µ if

µpAq “ 0 ñ νpAq “ 0 for all measurable sets A.

Provided that a measure Q is absolutely continuous wrt another measure P, the following
theorem from measure theory ensures that it is possible to perform the changes of measure that we
carried out in the previous section, i.e., it is possible to define a random variable Λ (the reweighting
factor) that compensates for such change of measure.

Theorem 3.2 (Radon Nikodym). Let P,Q be two probability measures on pΩ,Fq, such that
Q ! P , then there exists a measurable function Λ : Ω ÞÑ R (a random variable) such that EP rΛs “ 1
and

QrAs “ EP r1AΛs “

ż

A
Λpωq dPpωq @A P F .

We denote such function

Λpωq “
dQ
dP
pωq ,

and we refer to it as the Radon Nikodym derivative.
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The assumption of absolute continuity guarantees that the Radon Nikodym derivative is well
defined. Indeed, in the case where both probability measures have densities ρP, ρQ, Λ “ ρQ{ρP and
absolutely continuity guarantees that the above ratio is well defined (i.e., it does not explode).

We now present, without proof, a lemma from measure theory that allows to obtain most of the
results in this chapter.

Lemma 3.3 (General Bayes rule). Let µ and ν be probability measures on pΩ,Fq with dνpωq “
fpωqdµpωq for some f P L1pµq. Let X be a random variable with:

Eν |X| “

ż

|Xpωq|dνpωq “

ż

|Xpωq|fpωqdµpωq

If G Ă F is a σ-algebra, then:

Eν rX|GsEµ rf |Gs “ Eµ rfX|Gs

Before using the above theorem in the context of stochastic processes, we recall the concept of
stochastic exponential of a process Xt, given by

EpXqt “ exp

ˆ

Xt ´X0 ´
1

2
rXst

˙

.

Recall that the stochastic integral of a process Xt are defined as the solution to the abbrsde

dUt “ Ut dXt . (9.1)

When Xt wr know by the Martingale representation theorem Theorem 8.3 that we can express
dXt “ Cs dBt for a predictable process Cs. Therefore, by (9.1) stochastic exponentials of local
martingales are local martingales themselves, as summarized in the following theorem. This result
also gives a sufficient condition (called the Novikov condition) for the stochastic exponential of a
(local) martingale to be a true martingale.

Theorem 3.4 (Exponential Martingale). If Mt is a local martingale with M0 “ 0 (like, for

instance, every
şt
0 as dBs with P

”

şt
0 a

2
s ds ă 8

ı

“ 1) then the stochastic exponential EpMqt is a

continuous positive local martingale, and hence a supermartingale. Furthermore, if

E
„

exp

ˆ

1

2
rM sT

˙

ă 8 , (Novikov)

then EpMqt is a martingale on r0, T s with E pEpMqtq “ 1 .

Remark 3.5. Other conditions guaranteeing that the stochastic exponential of a local martingale
is a true martingale exist. Some of them are summarized in [9, Thm. 8.14 – 8.17]. Furthermore, if

Mt has the form Mt “
şt
0 as dBs, then the condition as ď cpsq ă 8 for all P p0, T q is a sufficient

condition for EpMqt to be a martingale.

We finally come to the first version of Girsanov’s theorem. This result allows to do something
very similar to what was done in the first section of this chapter: Switching to a new probability
measure so that an “unnatural” random variable becomes a normal-distributed one. This result can
be generalized to the framework of stochastic processes: Girsanov’s theorem allows, under some
conditions summarized below, to transform an Itô process

dYt “ atpωq ` dBt (9.2)

on a given probability space pΩ,F ,Pq to the “simplest” stochastic process we encountered in this
course, i.e., Brownian motion, by changing the measure on that space.
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Theorem 3.6 (Girsanov I). Let Yt be defined as in (9.2) with Bt a Brownian motion under P.

Assume that
şt
0 asdBs is well defined, define the stochastic exponential

Λt “ exp

„

´

ż t

0
as dBs ´

1

2

ż t

0
a2
s ds



.

and assume that Λt is a martingale on r0, T s with respect to P (i.e., a P-martingale). Then under
the (equivalent) probability measure

dQ
dP
pωq “ ΛT pωq (9.3)

the process Yt is a Brownian motion B̂t on r0, T s.

Proof. We want to show that Yt is a SBM wrt Q. To do so, by Lévy’s characterization of
Brownian motion Theorem 5.2, it is sufficient to show that

i) Yt is a local martingale wrt Q ,
ii) rY st “ t ,

provided that Y0 “ 0 (which we assume without loss of generality).
Part ii) follows from the following computation:

drB̃st “ drY st “ pat dt` dBtq ¨ pat dt` dBtq “ drBst “ dt ,

provided that quadratic variation of processes are unchanged by absolutely continuous changes of
probability measures such as the one defined by ΛT . To show this, because the quadratic variation
process is defined as a limit in probability, it is enough to show that for a sequence of random
variables tXnu, if limp

nÑ8Xn “ X in probability in P then the same holds in Q. To this aim, let
An :“ t|Xn ´X| ą εu and assume P rAns Ñ 0 then by integrability of ΛT we can apply dominated
convergence theorem and obtain that

QrAns “ EP r1AnΛT s Ñ 0 .

For part i) we apply Itô’s product rule to Kt “ YtΛt and obtain dKt “ ΛtdYt ` YtdΛt ` dYtdΛt.
Combining this with the sde for ΛT ,

dΛt “ ´ΛtatdBt

we obtain

dKt “ Λtpat dt` dBtq ´ YtΛtatdBt ´ ΛtatdB
2
t

“Λtpat dt` dBtq ´ YtΛtatdBt ´ Λtat dt

“Λtp1´ YtatqdBt

and so Kt is a martingale wrt P.
Now, we have that

EQ rYt|Fss “
EP rΛtYt|Fss
EP rΛt|Fss

“
Ks

Λs
“ Ys ,

implying that Ys is a martingale wrt Q. �

Remark 3.7. We note that instead of proving part ii) of the above theorem one could also have
applied Theorem 5.1, i.e., we could have shown that K2

t ´ t is a martingale. The proof of this result
follows the same lines of the one of part i) above
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Example 3.8 (Brownian motion Tracking a Continuous Function). We would like to estimate
the probability that during the interval r0, T s Brownian motion Bt stays in a “tube” of radius ε
around a given differentiable function hptq P C1pRq with hp0q “ 0. More precisely, we would like to
estimate the following probability:

P
ˆ

sup
0ďtď1

|Bt ´ hptq| ă ε

˙

ą 0

Let the event G be given by:

G “ t|Bs ´ hpsq| ă ε, s P r0, 1su

“ t|Xs| ă ε, s P r0, 1su

for the process Xs “ Bs ´ hpsq which has differential

dXs “ ´h
1psqds` dBs

Then by the above theorem we define the change of measure

Λt “ ep
şt
0 h
1psqdBs´

1
2

şt
0 |h

1psq|2dsq

Because h1psq is continuous on a compact interval it is uniformly bounded and the Novikov condition
holds. Hence we can define the measure dQ “ ΛtdP, by the above theorem under Q, Xt is a standard
BM. Therefore we can write

QpGq “
ż
ˆ

dQ
dP

˙

1GdP ď

˜

ż
ˆ

dQ
dP

˙2

dP

¸
1
2

PpGq
1
2

where in the step inequality we have used Cauchy-Schwartz inequality and so:

P
ˆ

sup
0ďtď1

|Bt ´ hptq| ă ε

˙

ě
Qpsupp0,1q |B̂s| ă εq2

ş

´

dQ
dP

¯

dQ

Looking at the above inequality we see that we have reduced the estimation of the relevant probability
to the estimation of the probability of Brownian motion exiting an interval and the expected value of
the random variable Λ1.

The above result can be extended to the d-dimensional setting with nontrivial diffusion coefficient
σpXtq. Furthermore, we may be interested in transforming Yt (in the distributional sense) to a
different Itô process Xt different than Brownian motion. Conditions to do this are summarized in
the following more general theorem:

Theorem 3.9 (Girsanov II). Let Xt, Yt P Rd be processes satisfying

dXt “ µpXt, tq dt `σpXt, tqdBt ,

dYt “ pµpYt, tq ` γpω, tqqdt `σpYt, tqdBt ,

with Y0 “ X0 “ x for a m-dimensional P-Brownian motion Bt on t P r0, T s. Suppose that there
exists a process upω, tq such that

σpYtqupω, tq “ γpω, tq .

Furthermore let

Λt :“ exp

„

´

ż t

0
upω, sq dBs ´

1

2

ż t

0
upω, sq2 ds



, (9.4)

Then if Λt is a P-martingale on r0, T s and Q is defined as in (9.3) we have that

dYt “ µpYt, tqdt ` σpYt, tq dB̂t ,
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for a Q-Brownian motion

B̂t “

ż t

0
upω, sq ds`Bt .

Proof. It follows from Theorem 3.6 that B̂t is a Brownian motion wrt Q. Furthermore we
observe that

dYt “ pµpYt, tq ` γpω, tqqdt ` σpYt, tqpdB̂t ´ upω, tq dtq

“ pµpYt, tq ` γpω, tqqdt ` σpYt, tqdB̂t ´ γpω, tq dt

“ µpYt, tq dt ` σpYt, tqdB̂t

as desired. �

We note that the above result can be added to our arsenal of methods to find weak solutions to
sdes! Indeed, let Xt, Yt be defined by:

/ dXt “ µ1pXtq dt` σpXtqdBt

, dYt “ µ2pYtq dt` σpYtqdBt

X0 “ Y0 “ x

and assume that we cannot solve / but have an idea on how to solve ,. Then we can define upyq
by:

σpyqupyq “ µ2pyq ´ µ1pyq

and set, as in Theorem 3.9

Λt “ e´
şt
0 upYsqdBs´

1
2

şt
0 |upYsq|

2ds

which allows us to define the measure dQ “ ΛtdP. Then by Theorem 3.9 we have that

B̂t “ Bt `

ż t

0
upYsqds

is a standard Brownian motion under Q, and

dYt “ µ1pYtq dt` σpYtqdB̂t

“ µ1pYtq dt` σpYtq rupYtqdt` dBts

“ µ1pYtq dt` µ2pYtq dt´ µ1pYtqdt` σpYtqdBt

“ µ2pYtq dt` σpYtqdBt

Hence, Yt in Q solves the same sde as Xt, but with a different Brownian motion. This implies that
the Law of Yt on Cp0, T ;Rdq (and therefore all of its marginals) is equivalent to the Law of Xt on
Cp0, T ;Rdq. Hence we can write the unknown marginals for the process / in P as

EP rfpXtqs “ EQ rfpYtqs “ EP rfpYtqΛT s ,

i.e., as an expectation on a process that we know multiplied by a weighting factor that can be
estimated/computed.
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CHAPTER 10

One Dimensional sdes

1. Natural Scale and Speed measure

We now want to consider sdes which do not satisfy the Lipschitz assumptions of Chapter 3. Let
b and σ be bounded, continuous real-valued functions with σ uniformly bounded from below by a
positive constant. Consider the sde

dXt “ bpXtq dt` σpXtq dBt (10.1)

We want to find a function φ : R Ñ R so that if we define Yt “ φpXtq then Yt is a martingale.
Applying Itô’s formula gives

dYt “ pLφqpXtqdt` φ1pXtqσpXtq dBt . (10.2)

where L is the generator of the process Xt defined by

pLφqpxq “ bpxqφ1pxq `
1

2
σ2pxqφ2pxq

Assuming that our choice of φ is such that φ1 is bounded, Yt will be a martingale if pLφqpxq “ 0.
This implies that

plog φ1q1 “
φ2

φ1
“ ´

2b

σ2
implies φpxq “

ż x

α
exp

´

´

ż y

β

2b

σ2
pzqdz

¯

dy

for any choice of α and β. Notice that by construction φ is twice-differentiable, positive and
monotone increasing function of R onto R. Hence φ is invertible and we can understand φ as a
warping of R so that Xt becomes a Martingale. For this reason, the function φ is called the natural
scale for the process Xt.

In light of (10.2), Yt “ φpXtq satisfies

dYt “ pφ
1σqpφ´1pYtqqdBt (10.3)

which shows that Yt not only is a Martingale but it is again an sde.
In the discussion of random time changes, we saw that the when the martingale Mt was solves

the sde

dMt “ gpMtqdBt (10.4)

then if we consider Mt on the time scale

τptq “

ż t

0

1

g2pMsq
ds

then Bt “Mτptq is a Brownian motion. Since the rate of randomness injection into the system, as
measured by the quadratic variation, for a Brownian motion is one, this time changes is given a
distinguished status. The measure on R which gives this time change is 1

g2pxq
when integrated along
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the trajectory so called the speed measure. In the setting of (10.4), the speed measure, denoted
mpxqdx, would be

mpxq “
1

g2pxq
.

Returning to the setting with a drift term (10.1), we look for the time change of the resulting
martingale after the system has been put on its natural scale. Looking at (10.3), we see that

1

rpφ1σqpφ´1pyqqs2
dy (10.5)

is the speed measure for the system expressed in the y variable where y “ φpxq. Undoing this
transform using and using dy “ φ1pxqdx shows the speed measure in the original variables to be

mpxqdx “
1

pφ1σ2qpxq
dx

2. Existence of Weak Solutions

In the previous section we saw how to transform the one-dimensional sde (10.1) in to a
Brownian motion by warping space and changing time. Noticing that each of these processes was
reversible/invertible, we now reverse our steps to turn a Brownian motion in to a solution of (10.1).

Let Bt be a standard Brownian motion. Looking back at (10.3) and (10.5), we define Yt by

dYt “ pφ
1σqpφ´1pYtqqdBt

The equation has a weak solution given by Yt “ BTt where

Tt “

ż t

0

“

pφ1σqpφ´1pBsqq
‰2
ds .

Next we define Xt “ ψpYtq where for notation compactness we have defined ψ “ φ´1 then Itô’s
formula tells up that

dXt “ ψ1pYtqdY `
1

2
ψ2pYtqdrY st

Need to finish argument

3. Exit From an Interval

Let Mt “ φpXtq where φ is the natural scale and Xt solves (10.1). And define the hitting time

τy “ inftt ě 0 : Xt “ yu

Assuming that X0 “ x P pa, bq we define the exit time of the interval by

τpa,bq “ τa ^ τb .

By the construction of φ, Mt is a martingale. Hence since τpa,bq ^ t is a bounded stopping time, the
Optional Stopping lemma says that

ExMτpa,bq^t “ ExM0 “ φpxq

If we assume that σpyq ą 0 for all y P ra, bs then it is possible to show that

Exτpa,bq ă 8 .

This in turn implies that τpa,bq ^ tÑ τpa,bq as tÑ8. Hence we have that

φpxq “ExMτpa,bq “ Pxpτa ď τbqMτa ` Pxpτb ď τaqMτb

“Pxpτa ď τbqφpaq ` p1´ Pxpτa ď τbqqφpbq
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Rearranging produces

Pxpτa ď τbq “
φpxq ´ φpaq

φpbq ´ φpaq
(10.6)

Another way to find this formula is to set upxq “ Pxpτa ď τbq. Then upxq solves the pde

pLuqpxq “ 0 x P pa, bq, upaq “ 1, and upbq “ 0

It is not heard to see that the above formula solves this pde. (Try the case when Xt is a standard
Brownian motion to get started).

Now we derive a formula for vpxq “ Exτpa,bq. Since it is a solution to

pLvq “ ´1 x P pa, bq and vpaq “ vpbq “ 0

one finds

vpxq “ Exτpa,bq “ 2
φpxq ´ φpaq

φpbq ´ φpaq

ż b

x

“

φpbq ´ φpzq
‰

mpzqdz

` 2
φpbq ´ φpxq

φpbq ´ φpaq

ż x

a

“

φpzq ´ φpaq
‰

mpzqdz

4. Recurrence

Definition 4.1. A one-dimensional diffusion is recurrent if for all x, Ppτx ă 8q “ 1.

Theorem 4.2. If a ă x ă b then

i) PxpTa ă 8q “ 1 if and only if φp8q “ 8.
ii) PxpTb ă 8q “ 1 if and only if φp´8q “ ´8.

iii) Xt is recurrent if and only if φpRq “ R if and only if both φp8q “ 8 and φp´8q “ ´8.

proof of Theorem 4.2. �

5. Intervals with Singular End Points

Let rα, βs be an interval such that on any rr, ls Ă pα, βq we have that the coefficients bpxq and
σpxq are bounded and σpxq positive on rr, ls. Under these assumptions the only points were σ can
vanish or σ and β become infinite are α and β. Without loss of generality, we assume that x P pα, βq.

If we define

Iα “

ż 0

α

“

φp0q ´ φpzqsmpxqdz Iβ “

ż β

0

“

φpzq ´ φp0qsmpxqdz

Jα “

ż 0

α

“

Mp0q ´Mpzqsφ1pxqdz Jβ “

ż β

0

“

Mpzq ´Mp0qsφ1pxqdz

then we have the following result.

Theorem 5.1. Let γ P tα, βu, then

i) Iγ ă 8 if and only if Xt can reach the point γ.
ii) Jγ ă 8 if and only if Xt can escape the point γ.

Following Feller, we have the following boundary point classification.

Iq Jq Boundary Type of q
ă 8 ă 8 regular point
ă 8 “ 8 absorbing point
“ 8 ă 8 entrance point
“ 8 “ 8 natural point
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APPENDIX A

Some Results from Analysis

Recalling that, given a probability space pΩ,Σ,Pq and a random variable X on such a space we
define the expectation of a function f as the integral

E rfpXqs “
ż

Ω
fpωqPpdωq ,

where P denotes the (probability) measure against which we are integrating. The following results
are stated for a general measure µ (i.e., not necessarily a probability measure).

Theorem 0.1 (Hölder inequality). Let pΩ,Σ, µq be a measure space and let p, q P r1,8s with
1{p` 1{q “ 1. Then, for all measurable real- or complex-valued functions f and g on Ω,

ż

Ω
|fpxqgpxq|dµpxq ď

ˆ
ż

Ω
|fpxq|pdµpxq

˙
1
p
ˆ
ż

Ω
|gpxq|qdµpxq

˙
1
q

.

Theorem 0.2 (Lebesgue’s Dominated Convergence theorem). Let tfnu be a sequence of mea-
surable functions on a measure space pΩ,Σ, µq. Suppose that the sequence converges pointwise to a
function f and is dominated by some integrable function g in the sense that

|fnpxq| ď gpxq

for all numbers n in the index set of the sequence and all points x P S. Then f is integrable and

lim
nÑ8

ż

Ω
|fn ´ f | dµ “ 0

which also implies

lim
nÑ8

ż

Ω
fn dµ “

ż

Ω
f dµ

Theorem 0.3 (Fatou’s Lemma). Given a measure space pΩ,Σ, µq and a set X P Σ , let tfnu be
a sequence of pΣ,BRě0q-measurable non-negative functions fn : X Ñ r0,`8s. Define the function
f : X Ñ r0,`8s by setting

fpxq “ lim inf
nÑ8

fnpxq,

for every x P X. Then f is pΣ,BRě0q-measurable, and
ż

Ω
f dµ ď lim inf

nÑ8

ż

Ω
fn dµ.

where the integrals may be finite or infinite.

Remark 0.4. The above theorem can in particular be used when f is the indicator function 1An
for a sequence of sets tAnu P Σ, obtaining

µplim inf
nÑ8

Anq “

ż

Ω
lim inf
nÑ8

1An dµ ď lim inf
nÑ8

ż

Ω
1An dµ “ lim inf

nÑ8
µpAnq .
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APPENDIX B

Exponential Martingales and Hermite Polynomials

Let σpt, ωq be a bounded adapted stochastic process. Define Ipt, ωq “
şt
0 σspωqdBps, ωq. We

showed that

EIpt, ωq :“ eIpt,ωq´
1
2
rIspt,ωq “ exp

ˆ
ż t

0
σspωqdBpsωq ´

1

2

ż t

0
σspωq

2ds

˙

was a martingale. Ept, ωq is often called the exponential martingale of I. This is reasonable because
of the following analogy. In the standard ODE setting we have

dY ptq “ Y ptqaptq dt ùñ Y ptq “ Y p0q exp

ˆ
ż t

0
apsqds

˙

.

The analogous sde is

dZpt, ωq “ Zpt, ωqdIpt, ωq “ Zpt, ωqσpt, ωqdBpt, ωq

or

Zptq “ Zp0q `

ż t

0
Zps, ωqσspωqdBps, ωq

The solution to this is Zpt, ωq “ EIpt, ωq. Hence it is reasonable to call it the stochastic exponential.
From the sde representation it is clear that EIpt, ωq is a martingale, assuming Ipt, ωq is a nice process
(bounded for example). (The Novikov condition is another criteria (in [8] or [17] for example)).

Just as the exponential can be expanded in a basis of homogeneous polynomials, it is reasonable
to ask if something similar can be done with the stochastic exponential. (A function fpxq is
homogeneous of degree n if for all γ P R, fpγxq “ γnfpxq.) For the regular exponential, we have

eγX “
8
ÿ

n“0

γn
Xn

n!
.

Hence we look for HnpI, rIsq such that

EγIpt, ωq “ eγIpt,ωq´γ
2 1

2
rIspt,ωq “

8
ÿ

n“0

γn
Hn

´

Ipt, ωq, rIspt, ωq
¯

n!
.

Since the stochastic exponential is a martingale, it is reasonable to expect that the Hn

`

It, rIst
˘

should be martingales. In fact, you can argue that the Hn must be mean zero martingales by
varying γ. Recall that from its definition rγIspt, ωq “ γ2rIspt, ωq. Hence if we want Hn

`

γIt, rγIst
˘

“

γnHn

`

It, rIst
˘

, we are lead to look for polynomials of the form

Hnpx, yq “
ÿ

0ďmďtn{2u

Cn,mx
n´2mym .
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In homework 2, you found the conditions on the Cn,m so that HnpI, rIsq was a martingale. In fact,
these polynomial are well known in many areas of math and engineering. They are the Hermite
polynomials. They can also defined by the following expression

Hnpx, yq “ ynH̄n

ˆ

x
?
y

˙

H̄npzq “ p´1qne
z2

2
dn

dzn

ˆ

e´
z2

2

˙

Here the H̄n are the standard Hermite polynomial (possible with a different normalization than you
are used to).

We now have two different expressions for the stochastic exponential of γIpt, ωq with zp0q “ 1.
Namely, setting Zpt, ωq “ EγI , we have

Zpt, ωq “ 1` γ

ż t

0
Zps, ωqσspωqdBps, ωq

and

Zpt, ωq “
8
ÿ

k“0

γn
Hn

´

Ipt, ωq, rIspt, ωq
¯

n!

The first expression has Z on the right hand side. At least formally, we can repeatedly insert the
expression of Zps, ωq. Suppressing the ω dependence, we obtain

Zptq “ 1` γ

ż t

0
Zps1qσps1qdBps1q

“ 1` γ

ż t

0
Zps1qσps1qdBps1q ` γ

2

ż t

0

ż s1

0
Zps2qσps2qdBps2qσps1qdBps1q

“ 1` γ

ż t

0
Zps1qσps1qdBps1q ` ¨ ¨ ¨

` γn
ż t

0

ż s1

0
¨ ¨ ¨

ż sn´1

0
ZpsnqσpsnqdBpsnq ¨ ¨ ¨σps1qdBps1q

“

8
ÿ

k“0

γk
ż t

0

ż s1

0
¨ ¨ ¨

ż sk´1

0
σpskqdBpskq ¨ ¨ ¨σps1qdBps1q

Now if we equate like powers of γ, we obtains

Hn

`

Iptq, rIsptq
˘

“ Hn

´

ż t

0
σdB,

ż t

0
σ2ds

¯

“ n!

ż t

0
¨ ¨ ¨

ż sn´1

0
σpsnqdBpsnq ¨ ¨ ¨σps1qdBps1q

From this expression, it is again clear that Hn

`

Iptq, rIsptq
˘

is a martingale.
For more information along the lines of this section first see [12] and then see [19, 17].

126


