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CHAPTER 1

Introduction

1. Motivations

EVOLUTIONS IN TIME WITH RANDOM INFLUENCES/RANDOM DYNAMICS. Let N(t) be the
“number of rabbits in some population” or “the price of a stock”. Then one might want to make a
model of the dynamics which includes “random influences”. A (very) simple example is

dN(t)

e a(t)N (t) where a(t) = r(t) + “noise” . (1.1)

Making sense of “noise” and learning how to make calculations with it is one of the principal
objectives of this course. This will allow us predict, in a probabilistic sense, the behavior of N (t).
Examples of situations like the one introduced above are ubiquitous in nature:

i) The gambler’s ruin problem We play the following game: We start with 3$ in our
pocket and we flip a coin. If the result is tail we loose one dollar, while if the result is
positive we win one dollar. We stop when we have no money to bargain, or when we reach
9%. We may ask: what is the probability that I end up broke?

ii) Population dynamics/Infectious diseases As anticipated, (1.1) can be used to model
the evolution in the number of rabbits in some population. Similar models are used to
model the number of genetic mutations an animal species. We may also think about
N(t) as the number of sick individuals in a population. Reasonable and widely applied
models for the spread of infectious diseases are obtained by modifying (1.1), and observing
its behavior. In all these cases, one may be interested in knowing if it is likely for the
disease/mutation to take over the population, or rather to go extinct.

iii) Stock prices We may think about a set of M risky investments (e.g. a stock), where the
price N;(t) for i € {1,... M} per unit at time ¢ evolves according to (1.1). In this case, one
one would like to optimize his/her choice of stocks to maximize the total value Zf\i 1 iN;(t)
at a later time T'.

CONNECTIONS WITH DIFFUSION THEORY AND PDES. There exists a deep connection between
noisy processes such as the one introduced above and the deterministic theory of partial differential
equations. This starling connection will be explored and expanded upon during the course, but we
anticipate some examples below:

i) Dirichlet problem Let u(z) be the solution to the PDE given below with the noted
boundary conditions. Here A = ch + g—y. The amazing fact is the following: If we start a
Brownian motion diffusing from a point (xg, o) inside the domain then the probability
that it first hits the boundary in the darker region is given by u(xg,yo)-

ii) Black Scholes Equation Suppose that at time ¢ = 0 the person in 4ii) is offered the
right (without obligation) to buy one unit of the risky asset at a specified price S and at
a specified future time t = 7. Such a right is called a European call option. How much
should the person be willing to pay for such an option? This question can be answered by
solving the famous Black Scholes equation, giving for any stock price N(t) the right value
S of the European option.



2. Outline For a Course

What follows is a rough outline of the class, giving a good indication of the topics to be covered,

though there will be modifications.
i) Weeks 1-2: Motivation and Introduction to Stochastic Process
(a) Motivating Examples: Random Walks, Population Model with noise, Black-Scholes,

Dirichlet problems
(b) Themes: Direct calculation with stochastic calculus, connections with PDES
(c) Introduction: Probability Spaces, Expectations, o-algebras, Conditional expectations,

Random walks and discrete time stochastic processes. Continuous time stochastic pro-
cesses and characterization of the law of a process by its finite dimensional distributions

(Kolmogorov Extension Theorem). Markov Process and Martingales.

ii) Weeks 3-4: Brownian motion and its Properties
(a) Definitions of Brownian motion (BM) as a continuous Gaussian process with indepen-
dent increments. Chapman-Kolmogorov equation, forward and backward Kolmogorov
equations for BM. Continuity of sample paths (Kolmogorov Continuity Theorem).

BM and more Markov process and Martingales.
(b) First and second variation (a.k.a variation and quadratic variation) Application to BM

iii) Week 5: Stochastic Integrals
) The Riemann-Stieltjes integral. Why can’t we use it ?

a
(b) Building the It6 and Stratonovich integrals (Making sense of “Sé odB.)
(c) Standard properties of integrals hold: linearity, additivity

) Ito isometry: E(§ fdB)? =Ef{ f2ds.
eek 6: It6’s Formula and Applications

(
c
(
W
(a) Change of variable
(b) Connections with ppEs and the Backward Kolmogorov equation
W
(a
(

)

d
iv
b
v) Week 7: Stochastic Differential Equations
) What does it mean to solve an SDE ?
b) Existence of solutions (Picard iteration), Uniqueness of solutions
vi) Week 8-9: Stopping Times
(a) Definition. o-algebra associated to stopping time. Bounded stopping times. Doob’s
optional stopping theorem
(b) Dirichlet Problems and hitting probabilities
(¢) Localization via stopping times

vii) Week 10: Levy-Doob theorem and Girsonov’s Theorem
(a) How to tell when a continuous martingale is a Brownian motion

a
(b) Random time changes to turn a Martingale into a Brownian motion
6



(c) Hermite Polynomials and the exponential martingale

(d) Girsanov’s Theorem, Cameron-Martin formula, and changes of measure
(1) The simple example of i.i.d Gaussian random variables shifted
(2) Idea of Importance sampling and how to sample from tails
(3) The shift of a Brownian motion
(4) Changing the drift in a diffusion

viii) Week 11: Feller Theory of one dimensional diffusions
(a) Speed measures, natural scales, the classification of boundary point.
ix) Week 12-13: Applications

(a) Option Pricing and the Black-Scholes equation

(b) Population biology and Chemical Kinetics

(¢) Stochastic Control, Signal Processing and Reinforcement learing






CHAPTER 2

Probabilistic Background

1. Countable probability spaces

ExXAMPLE 1.1. We begin with the following motivating example. Consider a random sequence
w = {w;}¥, where

1 with probability p
w; =
! —1  with probability 1 — p

independent of the other w;’s. We will also write this as
P[(wi,ws, ... ,wN) = (s1,82,...,55)] = p"*+ (1 — p)N "+
for s; = £1, where ny := |{i : s; = +1}|. We can group the possible outcomes with wy = +1:
Al ={we : w =1}.
and compute the probability of such an event:

P[Ai] = > Plw] =p.

weA1

Let Q be the set of all such sequences of length N (i.e. @ = {—1,1}" ), and consider now the
sequence of functions {X,, : Q — Z} where

Xo(w) = 0 (2.1)
Xp(w) = Z wj
=1

forme{l,---  N}. This sequence is a random walk of length N (a simple example of a stochastic
process) and we can compute its expectation:

E[X;]= ), iP[Xa=i]=2p"-2(1-p)>=2(2p—1).
1€{—2,0,2}
This expectation changes if we assume that we have some information on the state of the random
walk at an earlier time:

E[Xo|X1=1]= ) P[Xo=i[X1=1]=2p+0(1—p)=2p.
1€{—2,0,2}

We now recall some basic definitions from the theory of probability which will allow us to put
this example on solid ground.

In the above example, the set  is called the sample space (or outcome space). Intuitively, each
w €  is a possible outcome of all of the randomness in our system. The subsets of Q2 (the sets of
outcomes we want to compute the probability of) are referred to as the events and the measure
given by P on subsets A < 2 is called the probability measure, giving the chance of the various
outcomes. Finally, each X, is an example of an integer-valued random wvariable. We will refer to
this collection of random variables as random walk.
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In the above setting where the outcome space €2 consists of a finite number of elements, we are
able to define everything in a straightforward way. We begin with a quick recalling of a number of
definitions in the countably infinite (possibly finite) setting.

If Q is countable it is enough to define the probability of each element in §2. That is to say give
a function p: Q — [0, 1] with Y} _,p(w) = 1 and define

Plw] = p(w)
for each w € ). An event A is just a subset of 2. We naturally extend the definition of P to an
event A by

weA

Observe that this definition has a number of consequences. In particular, if A; are disjoint events,
that is to say A; € Q and A; n A, = & if i # j then

U Ai] = > P[A]
i=1 i-1

and if A°:= {w € Q with w ¢ A} is the compliment of A then P[A] =1 — P[A°].
Given two event A and B, the conditional probability of A given B is defined by
P[A n B]
P[B]

For fixed B, this is just a new probability measure P[ - |B] on 2 which gives probability P[w|B] to
the outcome w € Q.

A random variable taking values in some set X is a function X: 2 — X. In particular a
real-valued random wvariable X is simply a real-valued function X : £ — R. Throughout this
course we will almost exclusively consider real-valued random variables. We can then define the
expected value of a random variable X (or simply the expectation of X) as

E[X]:= > aP[X=2]=) X(w)P[w]
z€Range(X) weld

Here we have used the convention that {X = z} is short hand for {w € Q : X(w) = x} and the defini-
tion of Range(X) = {z € X : Jw, with X (w) = 2} = X 1(2). We can further define the covariance
of two random variables X, Y in the same space as Cov [X,Y]| =E[(X —E[X])- (Y —E[Y])] and

P

P[A|B] := (2:2)

Var [X] := Cov[X,X] =E [X2 ~E [X]Q] .

Two events A and B are independent if P[A n B] = P[A|P[B]. Two random variable are
independent if P[X = z,Y = y] = P[X = z]P[Y = y]|. Of course this implies that for any events
A and B that P[X € A,Y € B] = P[X € AJP[Y € B] and that E[XY] = E[X]|E[Y] and that
Cov [X,Y] =0. A collection of events A; is said to be mutually independent if

P[Ay A0 An] = [ [P[A].
i=1
Similarly a collection of random variable X; are mutually independent if for any collection of sets

from their range A; one has that the collection of events {X; € A;} are mutually independent. As
before, as a consequence one has that

E[X1... Xn] = | [E[X:].

10



Given two X-valued random variables Y and Z, for any z € Range(Z) we define the conditional
expectation of Y given {Z = z} as

EY|Z=2z:= ), yP[Y =ylZ=12] (2.3)
yeRange(Y")

Which is to say that E[Y|Z = z] is just the expected value of Y under the probability measure
which is given by P[ - |Z = z].
In general, for any event A we can define the conditional expectation of Y given A as

BY[A]= 3] yPY =yl 4] (2.4
yeRange(Y)

We can extend the definition E[Y|Z = z] to E[Y|Z] which we understand to be a function of Z which
takes the value E[Y|Z = z] when Z = z. More formally E[Y|Z] := h(Z) where h: Range(Z) — X
given by h(z) = E[Y|Z = z].

EXAMPLE 1.2 (Example 1.1 continued). Setting p = 1/2 we see that
E[(X3)?|X2 = 2] = Y iP[(X3)* = i| Xy = 2]
€N
= (1)*P[X3 = 1| X2 = 2] + (3)°P[X3 = 3| X2 = 2] = 5
Of course, Xo can also take the value —2 and 0. For these values of Xo we have
E[(X3)% Xy = —2] =(—1)?P[X3 = —1| X5 = —2] + (—3)*P[X3 = —3|Xy = 2] =5
E[(X3)% X2 = 0] =(—=1)*P[X3 = —1|X2 = 0] + (1)*P[X3 = 1| X2 = 0] = 1

Hence E[(X3)?|X2] = h(X2) where

hay - 7w =2
TN ifz=o0

By clever rearrangement one does not always have to calculate the function E[Y|Z] so explicitly.
Consider the following examples.

7 6
E[X7|Xe] = E [2 wi\Xﬁl =E [2 wi + wﬂXﬁ]

i=1 i=1
=E [Xs + w7|X¢] = E[X|Fs] + E[wr|Fs]
=X + E[wr] = X
since E[wr] = 0. We can also do a similar calculation for the previous example.
E[X3|X2] = E[(X2 + w3)?Xa] = E[X3 + 2w3 X2 + w3|Xo]
= E[X3] + 2E[w3]|E[X2] + E[w3] = X3 + 1

since E[ws] = 0 and E[w?] = 1. Compare this to the definition of h given above.
X

2. Uncountable Probability Spaces

If we consider Example 1.1 in the case N = oo (or even worse if we imagine our stochastic
process to live on the continuous interval [0, 1]) we need to consider © which have uncountably
many points. To illustrate the difficulties one can encounter in this setting let us condsider the
following example:

11



EXAMPLE 2.1. Consider 2 = [0,1] and let P be the uniform probability distribution on 2, i.e.,
that dmeasure that associates the same probability to each on the points in 2. We immediately see
that in order to have P[] to be finite we must have P [w] = 0 for all w € Q, as otherwise

P[Q] :P[Uw] = Y Plw] = .
weN we

For this reason it is not sufficient anymore to simply assign a probability to each point w € Q as we
did before. We have to assign a probability to sets:

P[(a,b)] =b—a for0<a<b<l1.

To handle the setting such as the one introduced above completely rigorously we need ideas
from basic measure theory. However if one is willing to except a few formal rules of manipulation,
we can proceed with learning basic stochastic calculus without needing to distract ourselves with
too much measure theory.

As we did in the previous section, we can define a real random variable as a function X : Q — R.
To define the measure associated by P to the values of this random variable we specify its Cumulative
Distribution Function (CDF) F(z) defined as P [X < z] = F(x). We say that a R-valued random
variable X is a continuous random variable if there exists an (absolutely continuous) density function
p: R — R so that

b

PX € [a,b]] = f o(z)da

a
for any [a,b] € R. By the fundamental theorem of calculus we see that p(x) satisfies p(x) = F'(z).
More generally a R™-valued random variable X is called a continuous random variable if there exists
a density function p: R™” — R5q so that

b1 bn
P[X € [a,b]] = J : f p(x1,...,zp)dxy -+ - day = f p(z)dr = J p(z)Leb(dx)
al Qan [avb] [avb]

for any [a,b] = [[[ai, bi] € R™. The last two expressions are just different ways of writing the same
thing. Here we have introduced the notation Leb(dz) for the standard Lebesgue measure on R™
given by dxi - - - dz,,.

If X and Y are R™-valued and R™-valued random variables, respectively, then the vector (X,Y)
is again a continuous R™*-valued random variable which has a density which is called the joint
probability density function (joint density for short) of X and Y. If Y has density py and pxy is
the joint density of X and Y we can define

PmemyzmzL”Z%ﬁm. (2.5)

Hence X given Y = y is a new continuous random variable with density = — p);ii((;j’)y) for a fixed y.

Finally, analogously to the countable case we define the expectation of a continuous random
variable with density p by

BH(X)] = | ha)pla)d.

n

The conditional expectation is defined using the density (2.5).

DEFINITION 2.2. A real-valued random variable X is Gaussian with mean p and variance o if

(@—p)®
MXeM_f L
A

s¢ 202 dx .
2ro

12



If a random wvariable has this distribution we will write X ~ N(u,0?). More generally we say
that a R™-valued random variable X is Gaussian with mean p € R™ and SPD covariance matrix
Y e GL(R") if

(x—p)'2" (& - u)] e

P[X € A] :leexp {— 4

While many calculations can be handled satisfactorily at this level, we will soon see that we
need to consider random variables on much more complicated spaces such as the space of real-valued
continuous functions on the time interval [0, 7] which will be denoted C([0,T];R). To give all of
the details in such a setting would require a level of technical detail which we do not wish to enter
into on our first visit to the subject of stochastic calculus. If one is willing to “suspend a little
disbelief” one can learn the formal rule of manipulation, much as one did when one first learned
regular calculus. The technical details are important but better appreciated after one fist has the
big picture.

3. General Probability Spaces and Sigma Algebras

To this end, we will introduce the idea of a sigma algebra (usually written o-algebra or o-field
in [Klebaner]). In Section 1, we defined our probability measures by beginning with assigning a
probability to each w € 2. This was fine when ) was finite or countably infinite. However, as we
have seen in Example 2.1, when €2 is uncountable as in the case of picking a uniform point from the
unit interval (2 = [0,1]), the probability of any given point must be zero. Otherwise the sum of all
of the probabilities would be oo since there are infinitely many points and each of them has the
same probability as no point is more or less likely than another.

This is only the tip of the iceberg. There are many more complicated issues. The solution is
to fix a collection of subsets of €2 about which we are “allowed” to ask “what is the probability
of this event?”. We will be able to make this collection of subsets very large, but it will not, in
general, contain all of the subsets of €2 in situations where €2 is uncountable. This collections of
subsets is called the o-algebra. The triplet (Q, F,P) of an outcome space €2, a probability measure
P and a o-algebra F is called a Probability Space. For any event A € F, the “probability of this
event happening” is well defined and equal to P[A]. A subset of Q which is not in F might not
have a well defined probability. Essentially all of the event you will think of naturally will be in the
o-algebra with which we will work. In light of this, it is reasonable to ask why we bring them up
at all. It turns out that o-algebras are a useful way to “encode the information” contained in a
collection of events or random variables. This idea and notation is used in many different contexts.
If you want to be able to read the literature, it is useful to have a operational understanding of
o-algebras without entering into the technical detail.

Before attempting to convey any intuition or operational knowledge about o-algebras we give
the formal definitions since they are short (even if unenlightening).

DEFINITION 3.1. Given a set ), a o-algebra F is a collection of subsets of 0 such that
i) Qe F
i) Ae F = A°=Q\AeF
iii) Given {A,} a countable collection of subsets of F, we have | Ji=, Ai € F.
In this case the pair (2, F) are referred to as a measurable space

For us a o-algebra is the embodiment of information.

13



ExaMPLE 3.2. If Q = R"™ or any subset of it, we talk about the Borel o-algebra as the g-algebra
generated by all of the intervals [a,b] with a,b € Q. This o-algebra contains essentially any event you
would think about in most all reasonable problems. Using (a,b), or [a,b) or (a,b] or some mizture
of them makes no difference.

Given any collection of subsets G of 2 we can talk about the “o-algebra generated by G” as
simply what we get by taking all of the elements of G and exhaustively applying all of the operations
listed above in the definition of a o-algebra. More formally,

DEFINITION 3.3. Given Q and F a collection of subsets of 2, o(F) is the o-algebra generated
by F. This is defined as the smallest (in terms of numbers of sets) o-algebra which contains F'.
Intuitively o(F') represents all of the probability data contained in F.

EXAMPLE 3.4 (Example 1.1 continued). We define
Fi={{we : w =1},{weQ : w =—-1}},

as a division of the possible outcomes fizing wi. This collection of sets generates a o-algebra on €,
given by
Fr1:={0,0{weQ : w=1}{weQ : w =—-1}}, (2.6)

representing the information we have on the process knowing w1 .

To complete our measurable space (2, F) into a probability space we need to add a probability
measure. Since we will not build our measure from its definition on individual w € 2 as we did in
Section 1 we will instead assume that it satisfies certain reasonable properties which follow from
this construction in the countable or finite case. The fact that the following assumptions is all that
is needed would be covered in a measure theoretical probability or analysis class.

DEFINITION 3.5. A measure P on a measurable space (2, F) is a probability measure if
i) PlQ] =1,
ii) P[A°] =1 —P[A] for all Ae F.
iii) Given {A;} a finite collection of pairwise disjoint sets in F,P [, Ai]l = 2 P[Ai] ,
In this case the triplet (2, F,P) is referred to as a probability space

DEFINITION 3.6. If (2, F) and (X, B) are measurable spaces, then £ : Q@ — X is a X-valued
random variable if for all B € B we have ¢~Y(B) € F. In other words, admissible events in X get
mapped to admissible events in 2.

Given any events A and B in F, we define the conditional probability just as before, namely

pra|p] = AN Bl [ﬁ[;]B]

Given real-valued random variable X on a probability space (2, F,P), we define the expected value
of X in a way analogous to before:

E(X) = f X (w)P(dw) -
Q
We will take for granted that this integral makes sense. However, it follows from the general theory

of measure spaces.

DEFINITION 3.7. Given a random variable on the probability space (Q, F,P) taking values in a
measurable space (X, B), we define the o-algebra generated by the random variable X as

o(X) = o({X'(B)|B e BY).

14



The idea is that o(X) contains all of the information contained in X. If an event is in o(X) then
whether this event happens or not is completely determined by knowing the value of the random
variable X.

ExaMPLE 3.8 (Example 1.1 continued). By definition (2.1), since X; = wy the o-algebra
generated by the random variable X1 is 0(X1) = F1 from (2.6). However, the o-algebra generated
by Xo = w1 + wo is given by

0(Xo) = {F, Q{weQ : (w,w) = (LD} {weQ : (wi,ws) = (-1, -1} {weQ : witws =0}}.

Note that this o-algebra is different than Fo = o({{w € Q : (wi,w2) = (s1,82)} : s1,52€ {—1,1}}).
Indeed, knowing the value of Xo is not always sufficient to know the value of wy = X1. Contrarily,
knowing the value of (w1,ws2) (contained in F2) definitely implies that you know the value of Xo. In
other words, (the information of) o(Xs) is contained in Fa, concisely o(X2) < Fa.

Now compare o(Xs) and o(Y) where Y = X3. Lets consider three events A = {Xy = 2},
B = {Xy =0}, C = {Xs is even}. Clearly all three events are in the o-algebra generated by Xo (i.e.
o(Xz2)) since if you know that value of Xo then you always know whether the events happen or not.
Nezxt notice that B € o(Y') since if you know that Y = 0 then X9 = 0 and if Y # 0 then Xy # 0.
Hence no mater what the value of Y is knowing it you can decide if Xo = 0 or not. However,
knowing the value of Y does not always tell you if Xo = 2. It does sometimes, but not always. If
Y = 0 then you know that Xo # 0. However if Y = 4 then Xo could be equal to either 2 or —2.
We conclude that A ¢ o(Y') but B € o(Y). Since Xo is always even, we do not need to know any
information to decide C' and it is in fact in both 0(X2) and o(Y'). In fact, C = Q and 2 is in any
o-algebra since by definition Q) and the empty set & are always included. Lastly, since whenever
we know Xy we know Y, it is clear that o(X2) contains all of the information contained in o(Y).
In fact it follows from the definition and the fact that o(Y') € 0(X3). To say that one o-algebra is
contained in another is to say that the second contains all of the information of the first and possibly
more.

DEFINITION 3.9. We say that a real-valued random variable X is measurable with respect to
o-algebra G if every set of the form X~ '([a,b]) is in G.*

Speaking intuitively, a random variable is measurable with respect to a given o-algebra if the
information in the o-algebra is always sufficient to fix the value of the random variable. Of course
the random variable X is always measurable with respect to o(X). More specifically, o(X) is the
smallest o-algebra G on 2 such that X is G-measurable. In the previous example, Y is measurable
with respect to o(X3) since knowing the value of X fixes the value of Y.

DEFINITION 3.10. If a random variable X is measurable with respect to a o-algebra F then we
will write X € F. While this is a slight abuse of notation, it will be very convenient.

EXAMPLE 3.11. Let X be a random variable taking values in [—1,1]. Let g be the function from
[—1,1] = {—1,1} such that g(x) = =1 if £ <0 and g(z) = 1 if x > 0. Define the random variable
Y by Y(w) = g(X(w)). HenceY is a random variable talking values in {—1,1}. Let Fy be the
o-algebra generated by the random variable Y. That is Fy = o(Y) := {Y"1(B) : B e B(R)}. In this
case, we can figure out exactly what Fy looks like. Since Y takes on only two values, we see that for
any subset B in B(R)(the Borel o-algebra of R)

1f X is a random variable taking values in a measurable space (X, B) (recall that B is a o-algebra over X) then
we require that X ' (B) € G for all B € B.
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(Y-1(-1):={w:Y(w)=—-1} if —1€B,1¢B
B Y1) = {w:Y(w) =1} ifle B,—1¢ B
Y (B):<g if —1¢B,1¢B
Q

if —1eB,1e B

\

Thus Fy consists of exactly four sets, namely {&,Q, Y ~1(=1),Y~Y(1)}. For a function f:Q — R
to be measurable with respect the o-algebra Fy, the inverse image of any set B € B(R) must be one
of the four sets in Fy. This is another way of saying that f must be constant on both Y ~(—1) and
Y~1(1). Note that together Y 1(=1) u Y 1(1) = Q.

We now re-examine the idea of a conditional expectation of a random variable with respect to a
o-algebra. To do so, we introduce the indicator function.

DEFINITION 3.12. Given (2, F,P) a probability space and A € F, the indicator function of A is

14(x) = {1 red (27)

0 otherwise

and is a measurable function. Fixing a probability space (2, F,P), we have

PROPOSITION 3.13. If X is a random variable on (2, F,P) with E[|X|] < w0, and G < F is a
o-algebra, then there is a unique random variable Y on (Q,G,P) such that

i) E[JY]] <o,
i) E[14Y] = E[14X] for all A€ G..

DEFINITION 3.14. We define the conditional expectation with respect to a o-algebra G as the
unique random variable Y from Proposition 3.13, i.e., E[X|G] :=Y .

The intuition behind Proposition 3.14 is that the conditional expectation WRT a o-algebra
G c F of a random variable X € F is that random variable Y € G that is equivalent or identical (in
terms of expected value, or predictive power) to X given the information contained in G. In other
words, Y = E[X|G] is the best approximation of the value of X given the information in G. The
previous definition of conditional expectation WRT a fixed set of events is obtained by evaluating
the random variable E[X|G] on the events of interest, i.e., by fizing the events in G that may have
occurred.

When we condition on a random variable we are really conditioning on the information that
random variable is giving to us. In other words, we are conditioning on the o-algebra generated by
that random variable:

E[X|Z]:=E[X|o(2)].
As in the discrete case, one can show that there exists a function h : Range(Z) — X such that
E[Y[Z(w)] := h(Z(w)),

and hence we can think about the conditional expectation as a function of Z(w). In particular, this
allows to define

E[Y|Z = 2] := h(z).
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EXAMPLE 3.15. When the set Q) is countable, we can write every random variable Y on € as
Yw) = > yly—y(w).
ye Range(Y")
Consequently, writing
EX|Z)w) = ), E[X|Z=z]lz-(w),
ze Range(2)
we obtain
E[1z—.(w)X ()] = E[1z—.(«)E[X|Z = z]] = E[X|Z = 2] - E[17_.(w)]
Now, recognizing that E[14] = P[A], if P[Z = z] # 0 we finally obtain
E[lz—.(w)X(w)] Z 2P[Z = 2, X = z]

/e P[Z =2

ze Range(X)
and recover (2.3).

We now list some properties of the conditional expectation:

e Linearity: for all a,5 € R we have
E[aX + BY|g] = aE[X|G] + BE[Y|d],
e if X is G-measurable then
E[XY|G] = XE[Y|G].

Intuitively, since X € G (X is measurable wrt the o-algebra G), the best approximation of
X on the sets contained in G is X itself, so we do not need to approximate it.
e Tower property: if G and H are both o-algebras with G < H, then

E[E[X[H]|9] = E[E[X|F][H] = E[X|]] .

Since G is a smaller g-algebra, the functions which are measurable with respect to it are
contained in the space of functions measurable with respect to H. More intuitively, being
measure with respect to G means that only the information contained in G is left free
to vary. E[E[X|#H]|G] means first give me your best guess given only the information
contained in ‘H as input and then reevaluate this guess making use of only the information
in G which is a subset of the information in 7. Limiting oneself to the information in G is
the bottleneck so in the end it is the only effect one sees. In other words, once one takes
the conditional expectation with respect to a smaller o algebra one is loosing information.
Therefore, by doing E [E [X|G] |H] one is loosing information (in the innermost expectation)
that cannot be recovered by the second one.

e Jensen’s inequality If g : T — R is convex? on I < R for a random variable X € G with

range(X) < I we have
9(E[X]|G) < E[g(X)|d],
e Chebysheff inequality For a random variable X € G we have that for any A > 0
E[|X||G
Bllx| > Alg] < NG

2A function g is convex on I < R if for all 2,y € I with [z,y] < I and for all A € [0, 1] one has g(Az + (1 — A)y) <
Ag(x) + (1= N)g(y)
17



e Optimal approximation The conditional expectation with respect to a o-algebra G ¢ F
by

E[Y|G] = argmin E[Y — Z]? (2.8)

Z meas w.r.t. G

This should be thought of as the best guess of the value of Y given the information in G.

ExAMPLE 3.16 (Example 3.11 continued). In the previous example, E{X|Fy} is the best
approzimation to X which is measurable with respect to Fy, that is constant on Y 1(—1) and
Y~=1(1).In other words, E{X|Fy} is the random variable built from a function Ry, composed with
the random wvariable Y such that the expression

E{(X = hmin(¥))?}

is minimized. Since Y (w) takes only two values in our example, the only details of hyin which mater
are its values at 1 and -1. Furthermore, since hpin(Y') only depends on the information in'Y, it
1s measurable with respect to Fy. If by chance X is measurable with respect to Fy, then the best
approzimation to X is X itself. So in that case E{X|Fy}(w) = X (w).

In light of (2.8), we see that
E[X[Y1,....Yi] = E[X|o(Y1,. .., Y3)]

This fits with our intuitive idea that o(Y7,...,Y)) embodies the information contained in the
random variables Y7,Y5, ... Y, and that E[X|o(Y1,...,Y))] is our best guess at X if we only know
the information in o (Y7, ..., Y%).

DEFINITION 3.17. Given (Q, F,P) a probability space and A, B € F, we say that A and B are
independent if

P[A n B] = P[A] - P[B] (2.9)
Similarly, random variables {X;} are jointly independent if for all C;,
P[X,€Cy and ... and X, € Cy] = [ [P[X; € Ci] (2.10)
i=1

It is important to note that given two independent random variables X and Y one has
E[XY] =E[X]-E[Y] (2.11)

4. Distributions and Convergence of Random Variables

DEFINITION 4.1. We say that two X-valued random variables X andY have the same distribution
or have the same law if for all bounded (measureable) functions f : X — R we have E[f(X)] =
E[f(Y)]. This equivalence is sometimes written

Law(X) = Law(Y) (2.12)

REMARK 4.2. FEither of the following are equivalent to two random variable X and Y on a
probability space (2, F,P) having the same distribution.

i) E[f(X)] = E[f(Y)] for all continuous f with compact support.
ii) P[X € A] =P[Y € A] for all A€ F.
There are many ways a sequence of random variables { X, },en can converge to another random
variable X:
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DEFINITION 4.3. Let { X, }nen be a sequence of random variables on a probability space (Q, F,P),
and let X be a random variable on the same space. Then

e almost sure convergence {X,} converges to X almost surely if
PlweQ : lim X,(w) = X(w)}] =1,
n—aoo

e convergence in probability {X,} converges to X in probability if, for all e >0
liI%O]P’[{w eQ : | Xp(w)— X(w)| >e}] =0,

e weak convergence {X,} converges weakly (or in distribution) to X if, for all Ae B
lin(}o P[X,(w) € A] = P[X (w) € A].

REMARK 4.4. The above definitions can be ordered by strength: we have the following implications
almost sure convergence = convergence in probability = weak convergence.

Moreover, we note that in order to have convergence in distributions the two random variables do
not need to live on the same probability space.

A useful method of showing that the distribution of a sequence of random variables converges to
another is to consider the associated sequence of Fourier transforms, or the characteristic function
of a random variable as it is called in probability theory.

DEFINITION 4.5. The characteristic function (or Fourier Transform) of a random variable X is
defined as

b(t) = Elexp(itX)]
for all t € R.

It is a basic fact that the characteristic function of a random variable uniquely determines its
distribution. Furthermore, the following convergence theorem is a classical theorem from probability
theory.

THEOREM 4.6. Let X,, be a sequence of real-valued random variables and let 1, be the associated
characteristic functions. Assume that there exists a function ¢ so that for each t € R

Tim 4, (1) = (1)

If ¢ is continuous at zero then there exists a random wvariable X so that the distribution of X,
converges to the distribution of X. Furthermore the characteristic function of X is 1.

EXAMPLE 4.7. Note that using a Fourier transform,
A A #222
E[ezkx] _ ezAm—T)‘ ,
for all \. Using this, we say that X = (X1,...,Xy) is a k-dimensional Gaussian if there exists
m e R* and R a positive definite symmetric k x k matriz so that for all A € R* we have

E[ei/\-x] _ ei)vm—% )
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CHAPTER 3

Brownian Motion and Stochastic Processes

1. An Illustrative Example: A Collection of Random Walks

Fixing an n > 0, let {f ck=1,---,2"} be a collection of independent random variables each
distributed as normal with mean zero and variance 27". For ¢t = k27" for some k € {1,--- ,2"}, we
define i

BM(t) = > el (3.1)
j=1

for intermediate times € [0, 1] not of the form k2~ for some k we define the function as the linear
function connecting the two nearest points of the form k27 ". In other words, if ¢ € [s,r] were
s=Fk2™" and r = (k + 1)27" then

B () = *

— 5 r—t
R =1¢))

B (s) +
We will see momentarily that B (") has the following properties independent of n:
( ) =0.

ii ()—Oforallte[()l]

i) B
i) E
iii) E]B )(t) = B™(s)|2 =t — s for 0 < s <t <1 of the form k27",
)
)

")

iv) The distribution of B (t) — B(™(s) is Gaussian for 0 < s < t < 1 of the form k27",

v) The collection of random variable

B(”)() B()( 1)

are mutually independent as long as 0 < tg <t; < -+ < t,, < 1 for some m and the t; are
of the form k27",

The first property is clear since the sum in (3.1) is empty. The second property for t = k27"
follows from

- (n)
= V' e =

since Eéj(»n) =. For general ¢, we have EB™(t) = L2EB™ (s) + L EB™ (r) with s,r of the form
k27" for different k.
To see the second moment calculation take s = m2™™ and t = k2™ and observe that

E [\B(")(t) —B(")(S)\Z] =E [( Zkl 5;’)( Zkl 5@)] = Zk: Zkl E[£&]

j=m {=m j=mil=m
k ko k k
= Y E[¢ +ZZE = > 2=k e m2 " =t —s
j=m j=ml=m j=m
;é
since §; and & are independent if j # ¢, and E[§;] = 0, and E [g?] — 9"
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Since B™(t) is just the sum of independent Gaussians, it is also distributed Gaussian with a
mean and a variance which is just the sum of the individual means and variances respectively.
Because for disjoint time intervals the differences of the B (t;) — B (t;_1) are sums over disjoint
collections of ¢/s, they are mutually independent.

Since all of these properties are independent of n it is tempting to think about the limit as
n — o and the mesh becoming increasingly fine. It is not clear that such a limit would exist as the
curves B™ become increasingly “wiggly.” We will see in fact that it does exist. We begin by taking
an abstract perspective in the next sections though we will return to a more concrete perspective at
the end.

2. General Stochastic Proceses

Motivated by the example of the previous section, we pause to discuss the idea of a stochastic
process more generally.

DEFINITION 2.1. Let (2, F,IP) be a probability space and let (X, B) be a measurable space. Also
let T be an indexing set which for our purposes will typically be R, R N, or Z. Suppose that for
each t € T we have X; : Q — X a measurable function. Then the set {X;} is a stochastic process
on T with values in X. Also, given w € §, &(w) : T — X is called a path or trajectory of &.

REMARK 2.2. Commonly used notations for stochastic processes include {X;}, X (w), X¢(w), ...

We want to define a type of equivalence between stochastic processes. But first of recall the
following notion of equivalence of random variables.

DEFINITION 2.3. We say that two stochastic processes have the same distribution or have the
same law of for all ty < --- <t, € T we have

Law(Xy,, ..., Xy,) = Law(Yy,, ..., Y;,)

where we think of the vector (Xy,,...Xy,) as a random variable taking values in the product space
xXm.
We would like to state a nice extension theorem for constructing stochastic processes, but first
we need a definition.
DEFINITION 2.4. Given a set of finite dimensional distributions {u} over an indexing set T on
X we say that the set is compatible if
i) Forallty <--- <tmy1 €T and Ay, ..., Ay € B we have

Ntl...tm (Al, Ce ,Am) = Mtl...tm+1 (Al, Ce ,Am, X)

i) Forallty < - - <tm, A1,...,Am € B, and o a permutation on m letters, we have

Htq..tm (A17 oo 7Am) = ,Ufta(l)...ta(m) (AJ(1)7 s 7A0'(m))

The first condition is roughly saying that if one considers a null condition (the total space) in
a higher-dimensional measure, one gets the same result without the null condition in the lower
dimensional measure. The second condition is saying that the order of the indexing of the p doesn’t
matter.

REMARK 2.5. The first of the above two requirements is sometimes called the Chapman-
Kolmogorov equation.
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THEOREM 2.6 (Kolmogorov Extension Theorem). Given a set of compatible finite dimensional
distributions {{u, .1, } with indexing set T, there exists a probability space (Q, F,P) and a stochastic
process { X} so that Xy has the required finite dimensional distributions, i.e. forallty < - - <t, €T
and Aq, ... A, € B we have

P[Xy, € Ay and ... and Xy, € Ap] = puy..t,, (A1, ... Ap) (3.2)

3. Definition of Brownian motion (Wiener Process)

Looking back at Section 1, the list of properties of B™ suggest a reasonable collection of
compatible finite distributions. Namely independent increments with each increment distributed
normally with mean zero and variance proportional to the time interval. and we make the following
definition.

DEFINITION 3.1. Standard Brownian motion {B:} is a stochastic process on R such that

i) By = 0 almost surely (i.e. P[{weQ : By #0}] =0),

ii) By has independent increments: for any t) <ty < ... <y,
By, B, — By, ..., B, — By, , are independent,

iii) The increments By — By are Gaussian random variables with mean 0 and variance given
by the length of the interval:

Var(B; — Bs) = |t — s|.

Since this is a compatible collection of finite dimensional distributions, Theorem 2.6 guarantees
the existence of the process we have described.

Looking back at B from (3.1) it might be reasonable to hope that the Brownian motion {B;}
defined above might be a continuous function of time. Notice that the above definition makes no
mention of the continuity. The following definition makes it clear what we mean by continuous.

DEFINITION 3.2. A stochastic process is continuous if all the trajectories t — Xy(w) are
continuous.

It turns out that the finite dimensional distributions can not guarantee that a stochastic process
is almost surely continuous. However they can imply that it is possible for a given process to be
continuous.

DEFINITION 3.3. A stochastic process {X;} is a version (or modification) of a second stochastic
process {Yi} if for all t, P[X; =Y;] = 1. Notice that this is a symmetric relation.

THEOREM 3.4 (Kolmogorov Continuity Theorem (a version)). Suppose that a stochastic process
{X+}, t = 0 satisfies the estimate:
for all T > 0 there exist positive constants «, 3, D so that

E[|X; — X,|*] < D|t — s|*™# ¥t s€[0,T], (3.3)
then there exist a version of X; which is continuous.

REMARK 3.5. The estimate in (3.3) holds for a Brownian motion. We give the details in
one-dimension. First recall that if X is a Gaussian random variable with mean 0 and variance o>
then E[X*] = 30*. Applying this to Brownian motion we have E|B; — By|* = 3|t — s|? and conclude
that (3.3) holds with « = 4, 5 =1, D = 3. Hence it is not incompatible with the all ready assumed
properties of Brownian motion to assume that By is continuous almost surely.
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Remark 3.5 shows that continuity is a fundamental attribute of Brownian motion. In fact we have the
following second (and equivalent) definition of Brownian motion which assumes a form of continuity as a
basic assumption, replacing other assumptions.

THEOREM 3.6. Let B; be a stochastic process such that the following conditions hold:
i) E(B? = constant,
ii) Bp = 0 almost surely,
iii) Byyp — By is independent of {Bs : s < t}.
iv) The distribution of By — By is independent of t = 0 (stationary increments),
v) (Continuity in probability.) For all 6 > 0,

}liHlOP[|Bt+h - Bt‘ > 5] =0
1—>
then By is Brownian motion. When EB(1)? = 1 we call it standard Brownian motion.
The process introduced above can be straightforwardly generalized to n dimensions:

DEFINITION 3.7. n-dimensional Standard Brownian motion {B:} is a stochastic process on R™
such that

i) By = 0 almost surely (i.e. P[{w: By # 0}] =0),

ii) B; has independent increments: for any t1 <ty < ... <1y,
By, Bt, — By, ..., B, — By, , are independent,

n

iii) The increments By — By are Gaussian random variables with mean 0 and variance given
by the length of the interval: denoting by (By); the i-th component of By

Var(Byi — (By);) = {'t‘ ol di=g

0 else

4. Constructive Approach to Brownian motion

Returning to the construction of Section 1, one might be tempted to hope that the random
walks B(™ converge to a Brownian motion B; as n — oo. While this is true that the distribution
of B™ converges weakly to that of B; as n — o0, a moments reflection shows that there is not
hope that the sequence converges almost surely since B and B(™*1 have no relation for a given
realization of the underlying random variable {£ ,gn)}

We will now show that by cleverly rearranging the randomness we can construct a new sequence
of random walks W™ (t) so that the stochastic process W™ has the same distribution as B(™ yet
W) will converge almost surely to a realization of Brownian motion.

We begin by defining a new collection of random variables {n,(cn)} from the {5,5,")}. We define

7750) to be a normal random variable with mean 0 and variance 1 which is independent of all of the

¢’s. Then for n > 0 and k € {1,...,2"} we define

n+1 1 n) 1 n)
) = Lok (1) _ Lo L

) _ L m 1o _
mot igk and M7y = 2"k 55k
Since each 771(:) is the sum of independent Gaussian random variables they are themselves Gaussian

random variables. It is easy to see that n,gn) is mean zero and has variance 27". Since for any

n>0and j,ke {1,...,2") with j # k, we see that En,(cn)nj(.n) = 0 and we conclude that because the
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variables are Gaussian that the collection of random variables {n]gn) cke{l,...,2%}} are mutually
independent. Hence if we define

k
= "
j=1

and at intermediate times as the value of the line connecting the two nearest points, then W has
the same distribution as B from Section 1.

THEOREM 4.1. With probability one, the sequence of functions (W(”) (t)) (w) on converges
uniformly to a continuous function By(w) as n — o0, and the process By(w) is a Brownian motion

n [0, 1].
ProOOF. Now for n > 0 and k € {1,...,2*} define

AR sup  [WO(e) - WD ()]
te[(k—1)2- k2]

and observe that

_ D
= ‘§nk Mok—1 ‘ = ’*

Since f,gn) is normal with mean zero and variance 2-("*2) we have by Markov inequality that

(n)4 —2(n+2
]P’[Z,gn)>5]< [|5ﬁ’]=3254 .

In turn since the {Z,gn) :k=1,...,2"} are mutually independent this implies that

' [ sup [W () - wD(e)] > 5] = Plsup 2" > 6] = 2"P[Z\") > 5]
te[0,1] %
3. 9—2(n+2)

<

= (n,d).

Since 9(n,27%) ~ ¢27"/5 for some ¢ > 0, we have that

0
Z [ sup W”)( t) — W(”+1)(t)| > 2_”/5] <.
n=1 te[0,1]

Hence the Borel-Cantelli lemma implies that with probability one there exists a random k(w) so
that if n > k then

sup ‘W(”) (t) — W("H)(t)! <275,
te[0,1]

In other words with probability one the {W(”)} form a Cauchy sequence. Let B; denote the limit.
It is not hard to see that B; has the properties that define Brownian motion. Furthermore since
each W is uniformly continuous and converge in the supremum norm to B;, we conclude that
with probability one By is also uniformly continuous. ([l
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5. Brownian motion has Rough Trajectories

In Section 4, we saw that Brownian motion could be seen as the limit of a ever roughening
path. This leads us to wonder “how rough is Brownian motion?” We know it is continuous, but is
it differentiable?

DEFINITION 5.1. The (standard) p-th variation on the interval (s,t) of any continuous function
f is defined to be

Vol f1(s,t) = Sll{pz |f (ter) = f ()P (3.4)
k
where the supremum is over all partitions
F:{{tk}282t0<t1<‘--<tn_1<tn:t}, (35)

for some n.
For a given partition {tx} let us define the mesh wi dth of the partition to be

D= sup [tx—teal.
0<k<N

The variations of Brownian motion are finite only for a certain range of g:

PROPOSITION 5.2. If By is a Brownian motion on the interval [0,T] with T < oo, then
Vp[B](0,T) <o a.s. if and only if  p>2. (3.6)

PROOF. See [20, 13| for details. O

The fact that large values of p imply boundedness of the quadratic variation may be surprising
at first. However, this results from the fact that in order for the supremum in (3.4) to diverge
for a continuous function we must consider a sequence I'"V of partitions with diverging number of
intervals. As these intervals become smaller, the variation that each of them captures becomes
smaller. These small contribution become even smaller if they are raised to a power p > 1, whence
the (possible) convergence. This concept is in close relation with the one of Hélder continuity.

Notice that if a function f has a nice bounded derivative on the interval [0, ¢] then V[ f](0,t) < oo
since

|F(tk) = ftrer)| = [t f(s) ds| < ( sup [f'(s)]) [tes1 — tal

s€[0,t]

we see that

Vi[f](0,t) < (' sup |f'(s)])t.

s€[0,t]

Similar considerations hold if f is Lipschitz continuous in [0,7"] with Lipschitz constant L:

VA[£1(0,8) = Y 1F(tk) = F(trpa)] < D Lltgsr — ty) = LT
P P

Hence (3.6) implies that with probability one Brownian motion can not have a bounded derivative
on any interval. In fact something much stronger is true. With probability one, Brownian motion is
nowhere differentiable as a function of time (see [13] for details).

From Proposition 5.2, we see that p = 2 is the border case. It is quite subtle. On one hand the
statement (3.6) is true, yet if one considers a specific sequence of shrinking partitions T’ () (such
that each successive partition contains the previous partition as a sub-partition) then

Qn(T) = Y IBU)) - BEM)P T s
T(N)
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Initially we will prove the following simpler statement.

THEOREM 5.3. Let TY) be a sequence of partitions of [0,T] as in (3.5) with limy_,. [TN)| — 0.
Then

(N (N)
B( — T .
7= 3 1B - BOIP (3.7)

in L?(,P).

COROLLARY 5.4. Under the conditions of the above theorem we have imy_,oo Qn(T) =T in
probability.

PROOF. We see that for any € > 0

Plw : | Zn(w) — T| > €] < “Z<€g T|2]Ho as [TV > o.

ProOOF OF THEOREM 5.3. Fix any sequence of partitions

M et 0=t <M <)~ 1y

n

of [0,T] with [T™)| — 0 as N — c0. Defining

N-1
N N
Zn = 2 B - BEHP,
k=1
we need to show that
E[Zy —T]?.

We have,
E[Zy —T)? = B[ZN]? — 2TE[ZN] + T% = E[ZN]? — T2.

Using the convenient notation AgB := B(t,(ﬁ)l) B(tlgN)) and At(N)

E[Zx]* = E[Y;(AnB)® ) (AcB)’]

= |t,(ji)1 - t,(gN)| we have that

n k
[Z(A B +E[ Y. (AxB)*(AnB)]
n#k
= 32 (Ant™)? 4 3 (ARt M) (At N)
n#k

since E(ArB)? = At and E(AxB)* =

(Agt™N))2 because AgB is a Gaussian random variable with
mean zero and variance Ayt@V).

The limit of the first term equals 0 as the maximum partition spacing goes to zero since

Z:(Ant(N))2 < 3-sup(A )T

n
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Returning to the remaining term

N k—1 N
DAY (At ™) = T AT A) 4 AN
n#k k=1 n=1 k+1
N
= > AptN(T — At ™)
k=1
=T At = Y (At V)2
=T*-0

Summarizing, we have shown that
E[Zy —T]* -0 as N -
O

COROLLARY 5.5. Under the conditions of Theorem 5.3, if T™Y) < TW) we have limy_, o Qn(T) =
T almost surely.

6. More Properties of Random Walks

We now return to the family of random walks constructed in Section 1. The collection of random
walks B(™(t) constructed in (3.1) have additional properties which are useful to identify and isolate
as the general structures will be important for our development of stochastic calculus.

Fixing an n > 0, define ¢; = k27" for k = 0,...,2". Then notice that for each such k, B™ (tx)
is a Gaussian random variable since it is the sum of the mutually independent random variables

fj(n). Furthermore for any collection of (tg,,tk,,- .., tk,, ) with k; € {1,...,2")} we have that

(B(n) (t1),---,B™ (tm))
is a multidimensional Gaussian vector.
Next notice that for 0 < ty < ¢, < 1 we have
E[B{|BM] = E[(BY - B{") + B{Y|B{Y] =E[B!") - BI"] + B! = B{"  (3.8)

tg

since Bt(:) - Bt(en) is independent of Bt(en) and E[B (m) _ Bt(:’)] = 0. We will choose to view this single

ty

fact as the result of two finer grain facts. The first being that the distribution of the walk at time
t; given the values {B§”> : 8 < tg} is the same as the conditional distribution of the walk at time ¢,

)

given only Bgl
functions f

. In light of Definition 4.1, we can state this more formally by saying that for all

E[ /(B F | = E| £ B

where F; = J(Bé”) : s < t). This property is called the Markov property which states that the
distribution of the future depends only on the past through the present value of the process.
There is a stronger version of this property called the strong Markov property which states that
one can in fact restart the process and restart it from the current (random) value and run it for the
remaining amount of time and obtain the same answer. To state this more precisely let us introduce
the process X (t) = x + B™(t) as the random walk starting from the point z and let P, be the
probability distribution induced on C([0, 1]R) by the trajectory of X (¢) for fixed initial z. Let E,
be the expected value associated to P,. Of course Py is simply the random walk starting from 0
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that we have been previously considering. Then the strong Markov property states that for any
function f

Eof(Xt,) = EoF (Xt,—t,,tk)  where  F(z,t) = Eo f(Xy).
Neither of these Markov properties is solely enough to produce (3.8). We also need some fact

about the mean of the process given the past. Again defining F; = J(Bgn) s < t), we can rewrite
(3.8) as

E| B

Fi| = B

by using the Markov property. This equality is the principle fact that makes a process what is called
a martingale.

We now revisit these ideas making more general definitions which abstract these properties so
we can talk about and use them in broader contexts.

7. More Properties of General Stochastic Processes

Gaussian processes. We begin by giving the general definition of a Gaussian process of which
Brownian motion is an example.

DEFINITION 7.1. {X;} is a Gaussian random process if all finite dimensional distributions of
X are Gaussian random variables. l.e., for all t; < ...ty € T and Ay,...,Ax € B (where here B
represents Borel sets on the real line) we have that there exists R a positive definite symmetric k x k
matriz and m € R¥ so that

1
P[X,, € A1 and ... and X, eAk:f S —
X € Al Apxeex Ay (2m)F2 \/det R

o3 (X=m)TR™N(X—m)

We have the associated definitions
Mt = E[Xt] y Rt78 = COV(XtXS) = E[(Xt - /Lt) . (Xs — /LS)] .

EXAMPLE 7.2. By definition, Brownian motion is a Gaussian process with mean vector py =0
for allt > 0 and covariance matriz
Cov(By, Bs) = Cov(Bs + (B — Bs), Bs) = E[Bs]* + E[(B; — Bs)Bs]
—E[B,)>+E[B; — B;]E[B,] = 5.
where we have assumed without loss of generality that s <t and in the third identity we have used
the independence of increments of Brownian motion. This shows that for general t,s = 0 we have

Cov(By, Bs) = min{t, s} . (3.9)

In fact, because the mean and covariance structure of a Gaussian process completely determine
the properties of its marginals, if a Gaussian process has the same covariance and mean as a
Brownian motion then it is a Brownian motion.

THEOREM 7.3. A Brownian motion is a Gaussian process with zero mean function, and covariance
function min(t, s). Conversely, a Gaussian process with zero mean function, and covariance function
min(¢, s) is a Brownian motion.

PRrOOF. Example 7.2 proves the forward direction. To prove the reverse direction, assume that
X, is a Gaussian process with zero mean and Cov(Xy, X) = min(¢, s). Then the increments of the
process, given by (X, X;1s — X¢) are Gaussian random variables with mean 0. The variance of the
increments X;;s — X; is given by
Var(XHs—Xt,XHS—Xt) = COV(XH_S,Xt+s)—2COV(Xt,Xt+S—Xt)+COV(Xt,Xt) = (t+8)—2t+t = S.
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The independence of X; and X3, s — X; follows immediately by
COV(Xt, Xt+3 — Xt) = COV(AXVt7 Xt+5) - COV(Xt, Xt) =t—t=0.
O

Martingales. In order to introduce the concept of a martingale, we first adapt the concept
of o-algebra to the framework of stochastic processes. In particular, in the case of a stochastic
process we would like to encode the idea of history of a process: by observing a process up to a
time ¢ > 0 we have all the information on the behavior of the process before that time but none
after it. Furthermore, as t increases we increase the amount of information we have on that process.
This idea is the one that underlies the concept of filtration:

DEFINITION 7.4. Given an indexing set T', a filtration of o-algebras is a set of sigma algebras
{Fi}teT such that for allty < --- < t,, €T we have

Fi,c--CF .
We now define in which sense a filtration contains the information associated to a certain process

DEFINITION 7.5. A stochastic process {X;} is adapted to a filtration {F;} if its marginals are
measurable with respect to the corresponding o-algebras, i.e., if 0(X;) S Fy for allt € T. In this
case we say that the process is to the filtration {F;} .

We also extend the concept of o-algebras generated by a random variable to the case of a
filtration. In this case, the filtration generated by a process {X;} is the smallest filtration containing
enough information about {X;}.

DEFINITION 7.6. Let {X;} be a stochastic process on (Q,F,P). Then the filtration {F;*}
generated by Xy is given by
F¥=o0(X,0<s<1),
which means the smallest o-algebra with respect to which the random variable X is measurable, for
all s € [0,t]. Thus, F< contains o(X) for all 0 < s < t.

The canonical example of this is the filtration generated by a discrete random process (i.e.
T =N):
EXAMPLE 7.7 (Example 1.1 continued). The filtration generated by the N-coin flip process for
m <N is
fm = O‘(X(),...,Xm).

Intuitively, we will think of {F;¥} as the history of {X;} up to time ¢, or the “information” about
{X;} up to time ¢. Roughly speaking, an event A is in {F;*} if its occurrence can be determined by
knowing { X} for all s € [0,¢]. For example, if B; is a Brownian motion consider the event

A= Q By < 2}
(e max [B.() <2)

It is clear that we have A € Fj, as the history of B; up to time ¢ = 1/2 determines whether A has
occurres or not. However, we have that A ¢ F/3 as the process may not yet have reached 2 at time
t = 1/3 but may do so before t = 1/2.

We now have all the tools to define the concept of a martingale:

DEFINITION 7.8. {X;} is a Martingale with respect to a filtration F; if for all t > s we have

i) Xy is Fi-measurable,

30



i) E[X¢|Fs] = X5,
i) E[|X:[]] <o0.
Condition iii) in Def. 7.8 involves a conditional expectation with respect to the o-algebra F;.
Recall that E[X;s|F;] is an Fy-measurable random variable which approximates X in a certain
optimal way (and it is uniquely defined). Then Def. 7.8 states that, given the history of X; up to

time ¢, our best estimate of X;, is simply X; , the value of {X;} at the present time ¢t. In other
words, a martingale is the equivalent in stochastic calculus of a straight line.

EXAMPLE 7.9. Brownian motion is a martingale wrr {FP}. Indeed, we have that
E[Bi+s|Fi] = E[Bi + (Bits — Be)|Fi] = E[Bi|Fi] + E[Brys — Bi|Fi] = Bi + 0,
by the independence of increments property.

The above strategy can be extended to general functions g(X), as the only property that was
used is independence of the increments: because g(X) € FX this property implies that

E [g(Bi+s — Bo)|FP] = E[9(Bess — Bi)] - (3.10)

EXAMPLE 7.10. The process Xy := B? —t is a martingale wrr {FP}. Indeed we have that

the process is obviously measurable wrr {FP} and that E[|B?|] = t < oo verifying i) and ii) from
Def. 7.8. For iii) we have

E[B} | F’] = E[(Bt + Bers — Bi)*| 7]
=E [B}|FP] — 2E[BE [Biss — B|FP| + E[(Byss — Bi)*|F¥| = B} + 5.
subtracting t — s on both sides of the above equation we obtain E[B?, , — (t + s)|FP| = B} —t.
EXAMPLE 7.11. The process Y; := exp[AB? — \?t/2] is a martingale wrr {FP}. Again, the
process is obviously measurable wrr {FP} and, computing the moment generating function of a

Gaussian random variable, we have that E [exp (ABy)] = exp (tA?/2) < oo, verifying i) and ii) from
Def. 7.8. For iii) we have

E [exp (ABi+s) |}'tB] =F [exp (AM(B¢ + Bi+s — By)) |.7-"tB] =exp (ABy) E [exp (M Byy+s — By)) |]:tB]
= exp (ABy) E [exp (ABs)] = exp (s)\2/2) .
multiplying by exp[(t — s)A2/2] on both sides of the above equation we obtain
E [exp (ABi4s — Nt + $)/2) \]:tB] = exp (AB; — )\275/3) .

Markov processes. We now turn to the general idea of a Markov Process. As we have seen
in the example above, this family of processes has the “memoryless” property, i.e., their future
depends on their past (their history, their filtration) only through their present (their state at the
present time, or the o-algebra generated by the random variable of the process at that time).

In the discrete time and countable sample space setting, this holds if given t; < -+ < t,,, < t,
we have that the distribution of X; given (Xi,,..., Xy,,) equals the distribution of X; given (Xy,,).
This is the case if for all A € B(X) and sy, ..., Sn € X we have that

P[Xt € A|Xt1 =81... 7Xtm = Sm] = P[Xt € A‘Xtm = Sm] .
This property can be stated in more general terms as follows:

DEFINITION 7.12. A random process {X;} is called Markov with respect to a filtration {F;} when
X; is adapted to the filtration and, for any s > t, X, is independent of F; given X;.
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The above definition can be restated in terms of Brownian motions as follows: For any set
A € (X) we have
P[B; € A|FB] =P[B; e A|B;]  as.. (3.11)
Remember that conditional probabilities with respect to a o-algebra are really random variables in
the way that a conditional expectation with respect to o-algebra is a random variable. That is,

P[Bi € A|FP] =E[1pea(w)|FP] and P[B; e A|Bs] =E[lp,ea(w)|o(Bs)] -

EXAMPLE 7.13. The fact that (3.11) holds can be shown directly by using characteristic functions.
Indeed,to show that the distributions of the right and left hand side of (3.11) coincide it is enough to
identify their characteristic functions. We compute

E [ethu—sB] _E [ew(Bs+Bf,—Bs)|]_-sB] _ B [eiﬁ(Bt—BS)|f£] _ J9Bs [ew(Bt—Bs)] 7
and similarly

E [eth\Bs] K [eiﬁ(Bs+Bths)‘Bs] _ JYBsR [ew(BﬁBS”BS] — (VB [6119(&733)] _

Stopping times and Strong Markov property. We now introduce the concept of stopping
time. As the name suggests, a stopping time is a time at which one can stop the process. The accent
in this sentence should be put on can, and is to be intended in the following sense: if someone
is observing the process as it evolves, and is given the instructions on when to stop, I can stop
the process given his/her/their observations. In other words, the observer does not need future
information to know if the event triggering the stop of the process has occurred or not. We now
define this concept formally:

DEFINITION 7.14. For a measurable space (Q, F) and a filtration {Fy} with Fy < F for allt € T,
a random variable {T} is a stopping time WrRT {Fi} if {weQ : 7 <t}eF forallteT.

Classical examples of stopping times are hitting times such as the one defined in the following
example

EXAMPLE 7.15. The random time 11 := inf{s > 0 : B; > 1} is a stopping time WRT the natural
filtration of Brownian motion {]:tB}. Indeed, at any time t i can know if the event 7 has passed
by looking at the past history of By. However, the random time 7o : +sup{s € (0,t*) : Bgs =0} is
NOT a stopping time WRT {FtB} fort <t*, as before t* we cannot know for sure if the process will
reach 0 again.

The strong Markov property introduced below is a generalization of the Markov property to
stopping times (as opposed to fixed times in Def. 7.12). More specifically, we say that a stochastic
process has the strong Markov property if its future after any stopping time depends on its past
only through the present (i.e., its state at the stopping time).

DEFINITION 7.16. The stochastic process {X;} has the strong Markov property if for all finite
stopping time T one has
P[X;ys € A|F] =P[X 45 € A| XS],
where Fr :={AeF; : {T<t}nAeF Vt>0}.

In the above definition, the o-algebra F, can be interpreted as “all the information we have on
the process up to time 7.

THEOREM 7.17. Brownian motion has the strong Markov property.

We now use the above result to investigate some of the properties of Brownian motion:
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EXAMPLE 7.18. For any t > 0 define the mazimum of Brownian motion in the interval [0, t]
as My := maxe () Bs. Similarly, for any m > 0 we define the hitting time of m as 7, := inf{s €
[0,¢t] : Bs=m}. Then, we write

P[Myzm] =Plrm <t] =P, <t,B: =m] +Plry, <t, B <m]
=P[rm <t,B;— By, 20]+P[r, <t,B;— B, <m] .

Using the strong Markov property of Brownian motion we have that By — By, is independent on
Fr.. and is a Brownian motion. So by symmetry of Brownian motion we have that

P[ngt,Bt—BTm 20] ZP[ngt,Bt—BTm <m] Z]P)[Bth] :

and we conclude that

]P’[Mt>m] =2]P’[Bt>m

e2t dx.

F

This argument is called the reflection principle for Brownian motion. From the above argument one
can also extract that

lim Pr, <T]=1,
T—0
e., that the hitting times of Brownian motion are almost surely finite.
From the above example we can also derive the following formula

ExamMpPLE 7.19. We will compute the probability density P, (8) of the hitting time of level m by
the Brownian motion, defined by P [1,, < So pr.. (s)ds. To do so we write

Pl < 0] = P[M; > ] = 2P (B >l =% [ ey = var [ e, G

where in the last equality we made a change of variables u = y/\/t. Now, differentiating (3.12) WRT
t we obtain, by Leibniz rule,

_ d |m| —3/2 _m?

We immediately see from (3.13) that
0 m2
E[rm] = ’;;'fo 57126735 ds = w0

EXAMPLE 7.20. From the above computations we derive the distribution of zeros of Brownian
motion in the interval |a,b] for 0 < a < b. We start by computing the desired quantity on the
interval [0,t] for an initial condition x which we assume WLOG to be x < 0:

P[Bs =0 for se[0,t]|By =z] =P [max Bs = 0|By = :):] =P [max Bs = —x|By = 0}
s€[0,t] s€[0,]

=Plr_, <t] = m 573275 ds (3.14)
2T 0

Since the above expression holds for all x we obtain the distribution of zeroes in the interval [a,b] by

integrating (3.14) over all possible z, weighted by the probability of reaching x at time a:

P[B, — 0 for s € [a,b]| By — 0] :JOO P[B, — 0 for s [a,b— a]|Ba — 2] P[Ba € da]

—0

0 b—a »2 2 .2 9
f @ 53/2628d8\/762adx = — arccos <\/E> .
—w 2T Jo ma T b
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By taking the complement of the above we also obtain the probability that Brownian motion has no
zeroes in the interval [a,b]:

2 . a
P[Bs #0Vs € [a,b]] =1—P[Bs =0 for s € [a,b]] = arcsm( b) .
T
The above result is referred to as the arcsine law for Brownian motion.
8. A glimpse of the connection with PDEs
The Gaussian
22
e 27t
t,z) =
Pt 2) = e
is the fundamental solution to the heat equation. By direct calculation one sees that if ¢ > 0 then ‘;—f = %gi—g. There is

a small problem at zero, namely p blows up. However, for any “nice” function ¢(z) (smooth with compact support),
lim [ p(t, )¢(x)dz = ¢(0).

This is the definition of the “delta function” é(x). (If this is uncomfortable to you, look at [18].) Hence we see that
p(t, z) is the (weak) solution to

o _12%
ot 20z
p(0,z) = é(x)

To see the connection to probability, we set p(¢,x,y) = p(t,z — y) and observe that for any function f we have
o0
E{f(B)|Bo = z} = f F)p(t,z,y)dy
—

We will write E, f(B) for E{f(B:)|Bo = x}. Now notice that if u(t, ) = E. f(B:) then u(t,z) solves

ou_ 1%
ot 202
u(0,z) = f(x)
This is Kolmogorov Backward equation. We can also write it in terms of the transition density p(¢,z,y)
w_12%
ot 20x2

p(O,x,y) = 6(3: - y)

From this we see why it is called the “backwards” equation. It is a differential equation in the = variable. This is the
“backwards” equation in p(t,x,y) in that it gives the initial point. This begs a question. Yes, there is also a forward
equation. It is written in terms of the forward variable y.

ap 1 o%p

o 20y%
In this case it is identical to the backwards equation. In general it will not be.
We make one last observation: the p(¢,s,z,y) = p(t — s,x,y) = p(t — s,z — y) satisfy the Chapman-Kolmogorov
equation (the semi-group property). Namely, for any s < r < t and any z,y we have

0

p(s,t2,y) = f pls,r, 2, 2)p(r t, 2, y)d2

—0o0
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This also suggests the following form for the Kolmogorov forward equation. If we write an equation for p(s,t, z, y)
evolving in s and y, then we get an equation with a finial condition instead of an initial condition. Namely, for s < ¢

wp_ 1P
s 2 0y?
p(t7 t7x>y) = 6($ - y)

Hence, we are solving backwards in time.
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CHAPTER 4

Ito Integrals

1. Properties of the noise Suggested by Modeling

If we want to model a process X; which was subject to random noise we might think of writing
down a differential equation for X; with a “noise” term regularly injecting randomness like the
following:

dX, .

o f(Xt) + 9(Xy) - (noise),
The way we have written it suggests the “noise” is generic and is shaped to the specific state of the
system by the coefficient g(Xj).

It is instructive to write this in integral form over the interval [0, ¢]

X = Xo+ J;) f(Xs)ds + Jo 9(Xs) - (noise)s ds (4.1)

it is reasonable to take the “noise” term to be a pure noise, independent of the structure of X; and
leave the “shaping” of the noise to a particular setting to the function g(X;). Since we want all
moments of time to be the same it is reasonable to assume that distribution of “noise” is stationary
in time. We would also like the noise at one moment to be independent of the noise at different
moment. Since in particular both of these properties should hold when the function g = 1 we
consider that simplified case to gain insight.

Defining

¢
Vi = J (noise)s ds
0

stationarity translates to the distribution of Vi, — V; being independent of ¢. Independence
translates to

%1_%7%2_‘/}17”"%7%%—1_%

being a collection of mutually independent random variables for any collection of times

n

O<ti<ta<---<t,.

Rewriting (4.1) with g = 1 produces

¢
Xt=Xo+f [(Xs)ds +V;
t

we see that if further decide that we would like to model processes X; which are continuous in time
we need to require that ¢ — V; is almost surely a continuous process.
Clearly from our informal definition, Vi = 0. Collecting all of the properties we desire of V;:
i) V=0
ii) Stationary increments
iii) Independent increments
iv) ¢t — V4 is almost surely continuous.

37



Comparing this list with Theorem 3.6 we see that V; must be a Brownian motion. We will chose it
to be standard Brownian motion to fix a normalization.
Hence we are left to make sense of the integral equation

t t dBS
Xi=Xo + J f(Xs)dS + f 9(Xs) 1
0 0 S

Of course this leads to its own problems since we saw in Section 5 that By is nowhere differentiable.
Formally canceling the “ds” maybe we can make sense of the integral

L ' y(X.)dB. .

There is a well established classical theory of integrals in this form called “Riemann—Stieltjes
integration. We will briefly sketch this theory in the next section. However, we will see that even
this theory is not applicable to the above integral. This will lead us to consider a new type of
integration theory designed explicitly for random functions like Brownian motion. This named
the Ito Integral after Kiyoshi It6 who developed the modern version though earlier version exist
(notably in the work of Paley, Wiener and Zygmund).

ds

b

2. Riemann-—Stieltjes Integral

Before we try to understand how to integrate against Brownian motion, we recall the classical
Riemann—-Stieltjes integration theory. Given two continuous functions f and g, we want to define

[ s0astey @2)
We begin by considering a piecewise function ¢ function defined by
TR e I 4
for some partition
O=to<ti < -<tp1<tp,=t

and constants ay € R. For such a function ¢ it is intuitively clear that

JQS )dg(t) nzlftkﬂ s)dg(s Zakftkﬂ Z g(tes1) — g(te)]. (4.4)

because St’““ dg(s) = g(tk+1) — g(tx) by the fundamental theorem of Calculus (since Sf:“ dg(s) =

I’;“ '(s) ds if g is differentiable).
The basic idea of defining (4.2) is to approximate f by a sequence of step functions {¢y,(t)} each
of the form given in (4.3) so that

sup |f(t) — pn(t)] >0 as n— . (4.5)
te[0,T]

A natural choice of partition for the nth level is t,(cn) =Tk27" for k =0,...,2" and then define the
nth approximating function by

F(T) ift="T
Pn(t) = )y . n) ,(n)
f(tk ) ifte [tk 7tk+1)
If f is continuous, it easy to see that (4.5) holds.
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We then are left to show that there exists a constant « so that

T
‘f o™ (t)dg(t) — al —0 as n—w

We would then define the integral SO t)dg(t) to be equal to . One of the keys to proving this

convergence is a uniform bound on the approximating integrals Sg ™ (t)dg(t). Observe that

T n—1
IL o™ (0)dg(t)] < [ £l D la(tk) = g(trsr)| < 1foVi[g](0, T)
k=0

where
1l =, IF@)-
te[0,T7]
This uniform bound implies that the So )(t)dg(t) say in a compact subset of R. Hence there must

be a limit point « of the sequence and a subsequence which converges to it. It is not then hard to
show that this limit point is unique. That is to say that if any other subsequent converges it must
also converge to a. We define the value of SO t)dg(t) to be a. Hence it seems sufficient for g to
have Vi[g](0,T) < oo if when ¢g and f are continuous. It can also be shown to be necessary for a
reasonable class of f.

It is further possible to show using essentially the same calculations that the limit « is independent
of the sequence of partitions as long as the maximal spacing goes to zero and independent of the
choice of point at which to evaluate the integrand f. In the above discussion we chose the left hand
endpoint ¢ of the interval [tx, tx11]. However we were free to choose any point in the interval.

While the compactness argument above is a standard path in mathematics is often more
satisfying to explicitly show that the {gzb(")} are a Cauchy sequence by showing that for any € > 0
there exists and N so that if n,m > N then

U:¢mawaw—ﬁf¢mw@wﬂ<e

Since ¢(™) — ¢(") is again a step function of the form (4.3), the integral Sg[¢(m) — oM (t)dg(t) is
well deﬁned given by a sum of the form (4.4). Hence we have

[ smage) - [ o @so] =| [ 16 - 6 argo)] < 16 - 60 1ovilo)0.1

Since f is continuous and the partition spacing is going to zero it is not hard so see that the {d)(”)}
from a Cauchy sequence under the || - |o, norm which completes the proof that integrals of the step
functions form a Cauchy sequence.

3. A motivating example

We begin by considering the example

T
f B dB; (4.6)
0

where B is a standard Brownian motion. Since Vi[B](0,T) = oo almost surely we can not entirely
follow the prescription of the Riemann-Stieltjes integral given in Section 2. However, it still seems
reasonable to approximate the integrand Bs by a sequence of step functions of the form(4.3).
However, since B is random, the aj from (4.3) will have to be random variables.
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Fixing a partition 0 = tg <t < --- <ty =T, we define two different sequences of step function
approximations of B. For t € [0,T], we define

¢V (t) = B(ty) if t € [th, tes+1)
N (t) = Bltrs1) if t € (tk, th+1]
Just as in the Riemann-Stieltjes setting (see (4.4)), for such step functions it is clear that one should
define the respective integrals in the following manner:
N-1

T
fo OV (0 dBy = 3 Bn)[B(ter) — B(ty)]
1=0
N-1

T
|, #0aB. = 3 BBt - B)

i=0
In the Riemann-Stieltjes setting, the two are the same. But in this case, the two have very different

properties as the following calculation shows. Since B(t;) and B(tx+1) — B(tx) are independent we
have EB(ty)[B(tg+1) — B(ty)] = E[B(ty) |E[B(tp+1) — B(tr)] = 0. So

T N-1
g jo oNdB,| = kzo EB(t0)[B(trs1) — B(ty)]

N-1
= 3} B[B)|BB(t:1) - B(t)] = 0
k=0

While since E[B(tg41) — B(ty)]? = tps1 — tr, we have

T N-— N—
E[L d)Nst ; (tr)[B(tr+1) — Z:: (th1) — (%)]2

N—
Z tha1 —tg| =T

Hence, how we construct our step functions will be important in our analysis. The choice of the
endpoint used in ¢ (¢) leads to what is called the Ité integral. The choice used in ¢/ (t) is called
the Klimontovich Integral. While if the midpoint is chosen, this leads to the Stratonovich integral.
The question on which to use is a modeling question and is dependent on the problem being studied.
We will see that it is possible to translate between all three in most cases. We will concentrate on
the It6 integral since it has some nice additional properties which make the analysis attractive.

4. It6 integrals for a simple class of step functions

Let (Q, F,P) be a probability space and B; be a standard Brownian motion. Let F; be a filtration
on the probability space to which B, is adapted. For example, one could have F; = 0(Bs : s < t) be
the filtration generated by the Brownian motion B;.

DEFINITION 4.1. ¢(t,w) is an elementary stochastic process if there exists a collection of bounded,

disjoint intervals {I} = {[to,t1),[t1,t2),...,[tN—1,tN)} associated to a partition 0 < tg < t; <
- <ty and a collection of random variables {ay : k = 0,..., N} so that
N
P(t,w) = Z ak(w)llk (),
k=0

40



the random variable ay(w) is measurable with respect to Fy, , and E[|ag(w)|?] < 0. We denote the
space of all elementary functions as Ss.

To be precise, stochastic integrals are defined on the class of progressively measurable processes, defined
below:

DEFINITION 4.2. A stochastic process {Xi}i=0 on (Q, F,P,{F}}) is called progressively measurable, if for
any t = 0, Xy(w), viewed as a function of two variables (t,w) is Bjg 4 x Fi-measurable, where Bo ) is the
Borel o-algebra on [0,1].

FacT 1. Every adapted right continuous with left limits (“cadlag”) or left continuous with right limits
process is progressively measurable. The reason to assume progressive measurability is to ensure that the
expectation and the integral can be interchanged (by Fubini’s theorem).

FAcT 2. Any progressively measurable process X = {Xi}iepo,r) can be approzimated by a sequence of
simple processes X" = { X} }ie[o,1] € S2 in the La-sense, that is

T T
EU |X,?—Xt|2dt]—f E[IX - X’ ] dt >0 asn— 0.
0 0

The proof of this approxzimation can be found in [14].
Because of the above result, we will be able to extend the notion of integral to adapted processes, and we
restrict our attention to such processes for the rest of the chapter.

Next, we define a functional I which will be our integral operator. That is to say I(¢) = Sgc ¢dB.
Just as for Riemann-Stieltjes integral, if ¢ is an elementary stochastic process, it is relatively clear
what we should mean by I(¢), namely

DEFINITION 4.3. The stochastic integral operator of an elementary stochastic process is given by

1(8) i= Y ay[Bltss1) — B(ta)].
k

We first observe that I satisfies one of the standard properties of an integral in that it is a linear
functional. In other words, if A € R, and ¢ and v are elementary stochastic processes then

I(A¢) = Al(¢)  and  I(¢+¢) =1(¢) + I(¢) (4.7)
Thanks to our requirement that «j are measurable with respect to the filtration associated to the

left endpoint of the interval [tx,tx11) we have the following properties which will play a central role
in what follows and should be compared to the calculations in Section 3.

LEMMA 4.4. If ¢ is an elementary stochastic processes then
ElI(¢) =0 (mean zero)

E[I(qb)ﬂ = LOOE|¢(75)|2 ds (1to Isometry)

REMARK 4.5. An isometry is a map between two spaces which preserves distance (i.e. the norm).
If we consider

1(82) = {I(¢) : p € Sa}

then according to Lemma 4.4 the map I(¢p) — ¢ is an isometry between the space of random variables

L*(1(8:),P) = {X € I(Sy) : | X|| = VE(X?) < 0}

and the space of elementary stochastic processes L*(Ss, P[dw) x dt] equipped with the norm

o1 = ([ Eot.war)’
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ProoOF OoF LEMMA 4.4. We begin by showing I(¢) is mean zero.
ZE o (B(tg+1) — B(tk))]

—ZE B(tia1) - B(t)]|F,]
:ZE B[ B(tr1) — B(tg)|F1,]] = 0
k

Turning to the It6 isometry

[ Zak (ths1) — ] [ Zoz] tit1) B(tj)))]

= ZE[akaj [B(tr1) — B(tkmB(tm) - B(t))]]

=2 ) E[aga[B(tr+1) — Bt)][B(tj+1) — B(t))]]
i<k

+ZEO% (tr+1) — B(t)]?]

Next, we examine each component separately: Recall for t;11 < ¢;

Elaga;[B(tr1) — B(ti)][B(tj+1) — B(t;)]]

= E[E[ara;[B(tiy1) — B(te)]|[B(tj11) — B(t;)]F,]]
= Elaga;[B(trr1) — B(te)JE[[B(tj+1) — B(t)]1F]]

—0
since E[[B(t;+1) — B(t;)]|Fi;] = 0. Similarly

D E[ag[B(tri1) — B(tx)]*]

k

ZE ak (ths1 —tr)]
k

Hence, we have:

E[(6)?] = 0+ Y E[02](tee — tx) = f E[¢?(s)] ds

k

ZE B(tg+1) — (tk)]nytk]]

So far we have just defined the Itd Integral on the whole positive half line [0, o).

0 < s <t < oo, we make the following definition

t
J ¢rdB, = I(qb]-[s,t))

We can now talk about the stochastic process

t
M = I(¢1[0,t)) = J;) ¢sdBs

associated to a given elementary stochastic process ¢;, where the last two expressions are just

different notation for the same object.
We now state a few simple consequences of our definitions.
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LEMMA 4.6. Let p € Sz and 0 < s <t then

t S ¢
J ¢rdBr = f ¢rdBr +j d)rdBr
0 0 s
and
t
M, = f ¢s dBs
0

is measurable with respect to Fy.

PROOF OF LEMMA 4.6. Clearly M; is measurable with respect to F; since {¢s : s < t} are by
assumption and the construction of the integral only uses the information from {B;s : s < t}. The
first property follows from @19 = @19 ) + ¢1[s) and hence

I(¢1jo,) = L(PL[o,s)) + 1(P1[s )
by (4.7). O

LEMMA 4.7. Let M, be as in (4.8) for an elementary process ¢ and a Brownian motion By both
adapted to a filtration {F; : t = 0}. Then M, is a martingale with respect to the filtration F;.

PRrROOF OF LEMMA 4.7. Looking at Definition 7.8, there are three conditions we need to verify.
The measurability is contained in Lemma 4.6. The fact that E[M?] < co follows from the It
isometry since

¢ ©
B7) - [ Blofds < | Blods
0 0
because the last integral is assumed to be finite in the definition of an elementary stochastic process.
All that remains is to verify that for s < t.
E[Mt(¢) - Ms(d))’]:s] =0.

There are a few cases. Taking one case, say s and ¢ are in the disjoint intervals [k, tx41) and
[tj,tj+1), respectively. We have that

j—1
Mi(8) — My(6) = ax[Bltirn) ~ B+ (D) anlBltnsr) ~ B(ta)]) + (B — B(ty)]
n=k+1
Next, take repeated expectations with respect to the filtrations {F,}, where a € {t;,t;_1,..., k41, 5}

This would then imply that for each a
Elaa[B(tat1) — B(ta)l|Fa] = aaE[B(ta+1) — B(ta)|Fa]
= agE[B(tat1) — B(ta)]
=0

Hence, E[M(¢) — Ms(¢)|Fs] = 0. The other cases can be done similarly. And the conclusion
immediately follows. O

LEMMA 4.8. In the same setting as Lemma 4.7, My is a continuous stochastic process. (That is
to say, with probability one the map t — My is continuous for all t € [0,00)).

PrROOF OF LEMMA 4.8. We begin by noticing that if ¢(¢,w) is a simple process with
N-1
¢(t7 (.U) = ak‘(w>1[tk,tk+1)(t)
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then if ¢t € (tk*,tk*+1) then
k*—1

Mi(p,w) = Z ag(w)[B(tgs+1,w) — B(tg,w)] + aps (w)[B(t, w) — B(tgs,w)]

k=1
Hence it is clear that M;(¢,w) is continuous if ¢ is a simple function since the Brownian motion B
is continuous. g

5. Extension to the Closure of Elementary Processes

We will denote by Sy the closure in L?(P x dt) of the square integrable elementary processes So.
Namely,

Sy = {all stochastic process f(t,w) : there exist a sequence ¢, (t,w) € Sz

so that jw E(f(t) — ¢pn(t))?dt — 0 as n — oo}

0
Also recall that we define

LHQP):={f:Q>R: “Pld
@B = {1 | rwrplas) < )
= {Random Variables X with E(X?) < o0}

and

L2(Q % [0,00),P x dt) := {f . Q) x [0, 0) : LOO Lf(t,w)zp[dw] dt < oo}

o0

= {Stochastic Processes X; with J
0

In general, in the interest of brevity we will write L?(Q2) for the first and L?(Q x [0,0)) for
the second space above. We will occasionally write | X|2(q) for /E(X?) and [ X||2(qx[0,x0)) for

(§g E(X?) dt) 2 though we will simply write | - |72 when the context is clear.

Recalhng that our definition of Sy and hence Sy had a filtration F; in the background, we
define L2,(€ x [0,0)) to be the subset of L?(2 x [0,00)) in which all of the stochastic processes are
adapted to the filtration F;. We have the following simple observation

E(X2) dt < oo}

LEMMA 5.1. The closure of the space of elementary processes is contained in the space of square
integrable, adapted processes, i.e., Sy = L24(Q x [0,0)) .

PRrROOF. The adaptedness follows from the adaptedness of Sy. The fact that elements in Sy are
square integrable follows from the following calculation. Fixing an X € S, and a sequence ¢,, € Sy
so that [|¢, — X| — 0 as n — o0 we fix an n so that ||¢,, — X| < 1. Then since for any real numbers
a and b and p > 1 one has |a + b|? < 2P71|a|? + 2P~1|b|P we see that

|£1Z2 = 1Fn + (F = )2 < 2l6nlZ2 + 21f = énliz < 2(I6nl72 +1) < o
where the term on the far right is finite since for every n, ¢, € Sy (observe that ||gbn|\%2 =
LE(a})- O
In fact, Sy is ezactly L2;(2 x [0,00)),
THEOREM 5.2. Sy = L2,(Q x [0, o0))

PROOF. Sy < L2;(€2 x [0,00)) was just proven in Lemma 5.1. For the other direction, see the
proof of [14, Theorem 3.1.5] or [11] O
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We are now ready to state the main theorem of this section. This result shows that given
a Cauchy sequence of elementary stochastic processes {¢,} € Sy converging in L%(Q, [0,0)) to a
process f € Sy, there exists a random variable X € L?(Q) to which the stochastic integrals I(¢,)
converge in L%(2). We will then define this variable X to be the stochastic integral I(f) = SSO fsdBs.
The concept of the construction is summarized in the following scheme:

{¢n(t)}te7' € 82 0

I(S*) > (¢,dB;

§o E[(¢n = f)?*]dt >0 n— o n— | E[(I(¢n) — X)?] =0

{fOher € 8% - I2(Q) 3 X =: [ fdB,

THEOREM 5.3. For every f € So, there exists a random variable X € L?(2) so that if {¢n : n =
1,...,00} is a sequence of elementary stochastic processes (i.e. elements of Sy) converging to the
stochastic process f in L?(2 x [0,00) then I(¢,) converges to X in L?(f2).

DEFINITION 5.4. For any f € Sz, we define the Ité integral

Q0
= J frdBy
0

to be the random variable X € L?(w) given by Theorem 5.3.

PROOF OF THEOREM 5.3. We start by showing that I(¢,) is a Cauchy sequence in L?(f2). By
the linearity of the map I (see (4.7)), I(¢n) — I(¢m) = I(¢n — ¢m). Hence by the Itd isometry for
the elementary stochastic processes (see lemma 4.4), we have that

E[(1(¢n) = 1(ém))*] = E[1(¢n — ¢m)?] = LOOE [(6n(t) — dm(1))?] dt (4.9)

Since the sequence ¢,, converges to f in L*(Q x [0,0)), we know that it is a Cauchy sequence in
L?(2 x [0,00)). By the above calculations we hence have that {I(¢,)} is a Cauchy sequence in
L?(Q). It is a classical fact from real analysis that this space is complete which implies that every
Cauchy sequence converges to a point in the same space. Let X € L?(2) denote the limit.

To see that X does not depend on the sequence {¢,}, let {an} be another sequence converging

to f. The same reasoning as above ensures the existence of a X € L%(Q) so that I(¢,) — X in
L?(€2). On the other hand

E [0 ~ 166,)] = E[(1600 — 5] = [ "B [(60(0) — (0] at
< 2LOOIE [(6n(t) — £)?] dt + 2LOOE [/ — Gun(0))?] s

where in the inequality we have again used the fact that (¢n — ¢m)? = [(dn — ) + (f — dm)]? <

2pn — f)? + 2(f — ¢n)?. Since both ¢, and ¢, converge to f in L2(Q x [0,0)) we have that the
last two terms on the right-hand side go to 0. This in turn implies that E(X — X )2 = 0 and that
the two random variables are the same. ([l
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REMARK 5.5. While the above construction might seem like magic since it is so soft, it is an
application of a general principle in mathematics. If one can define a linear map on a dense subset
of elements in a space in such a way that the map is an isometry then the map can be uniquely
extend to the whole space. This approach is beautifully presented in our current context in [10] using
the following lemma

LEMMA 5.6. (Extension Theorem) Let By and By be two Banach spaces. Let By < By be a linear
space. If L : By — Ba is defined for all b e By and |Lb|p, = |Lb|g,, Yb € By. Then there exists a
unique representation of L to By (closure of By) called L with Lb = Lb, Yb € By.

EXAMPLE 5.7. We use the above theorem to show that

T
I7(Bs) = f BsdB, = %(B% -T).
0
() _ ()
4

N
To do so, we show that the sequence ¢, = Z 11 4 t(") N t" with Atn =)

[t;
in L?(,[0,T)) to {B}. Indeed we have that

T
fo E [|¢, — Bs|*] dt

— 0 converges

()

ZJHI t(n_ ds_zfﬁl J,jrl 5)ds
N

1 (n)
=5 D EY =) 0.
7j=1

Then, by Theorem 5.3 we have that

T
By dB, = lim I(¢,) = lim ZBtm)AB

0 n—0o0

[\)

Now, writing AB} := B,(n) — B,(n) we have

t tjs1

A(B}) = B

2 2
= Btﬁ)l = (Btg_m — B ) + 2B, (Btg_ n — B, ) = (AB})" + 2Bt§_n>AB§L

Jj+1 j+1

and therefore
1 1
ZBt§n)AB§L =3 (Z A(B2) - > (AB}) ) =3 (B% — Z(AB;LF) .
J J J J
The term on the RHS converges to (B% —T)/2 in L?(Q), which therefore corresponds to SOT B, dB;.
6. Properties of It6 integrals
PROPOSITION 6.1. Let f,g€ L2,(Q,[0,0), A € R, then
i) Linearity:
o0 o0 Q0
J (Ms+gs)dBs=\| fsdBs+ f gs dBs, (4.10)
0 0 0
ii) Separability: for all S > 0,

0 S 0
f fsst:f fsst"i'J fsdBS7
0 0 S

E UO £s st] -0, (4.11)
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iii) Mean 0:



iv) Ito isometry:

E[(Loofsst>2 =fE[f§] dt . (4.12)

PROOF. For the proof of points i) and ii) we refer to [9].
To prove iv), for f € L2,(£2,[0,0), let {¢,} € Sz be a sequence of elementary stochastic processes
converging to f in L2,(€2, [0, 90). By Theorem 5.3, there exists X € La(Q) with E [(X — I(¢,))?] — 0
as n — 00. Since E [X 2] JE [I (gbn)Q] < o using Cauchy-Schwartz (or Holder) inequality we write

E[1(¢n)*] —E[X?]| = [E[(X = I(¢n))(X + I(¢n))]|

< |E[(X = 1(¢n))I(¢n)] + E[(X — I(dn))X] |
< VE[X?] + E[1(60)IWE (X — 1(64))%]
with the term on the right hand side /E [(X — I(¢,,))%] = H —1(¢n)] 12(w) — 0 as n — 0. This
implies that in the limit n — o0 we have
E[I(¢n)?] - E[X?] .
At the same time,
0 0
BIG, = [ E@u0)?dt— | B
0 0
Combining these facts produces
o0
BIX?) = | B((P) de
0
as desired. The exact same logic produces EX = 0. ([

7. A continuous in time version of the the It6 integral
In this section, we consider the

DEFINITION 7.1. For any f € Laq(Q x [0,0)) and any t = 0, we define the It6 integral process

{I:(f)} as ¢
- [ fan) = 110,

Note that the process introduced above is well defined and adapted to F;. In fact since

t 0
EL(f)? = L Effdt < L Ef?dt < oo

we see that I;(f) is an adapted stochastic process whose second moment is uniformly bounded in
time. It is not immediately clear that we can fix the realization w (Which in turn fixes the realization
of f and W) and then change the time ¢ in I;(f = So fs(w)dBs(w). We built the integral as
some limit at each time ¢t. Changing the time ¢ requlres us to repeat the limiting process. This
would be fine except that we built the It6 integral through an L?-limit. Hence at each time it is
only defined up to sets of probability zero. If we only want to define I; for some countable sequence
of time then this still would not be a problem because the countable union of measure zero sets is
still measure zero. However, we would like to define I;(f) for all ¢ € [0, T']. This is a problem and
more work is required.

THEOREM 7.2. Let f € L2,(Q,[00)), then there exists a continuous version of I;(f), i.e., there
exists a t-continuous stochastic process {Ji} on (2, F,P) such that for allt €T

P[J; = Li(f)] =1.
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To prove this result, we state a very useful theorem which we will prove later.

THEOREM 7.3 (Doob’s Martingale Inequality). Let M; be a continuous-time martingale with
respect to the filtration F;. Then

E[|Mp|P
P( sup |My| = )\) < E[[Mr"]
0<t<T AP
where A€ RY, and p > 1.

PROOF OF THEOREM 7.2. By Lemma 4.8 we know that I;(¢,w) is continuous if ¢ is a simple
function. If we had a sequence of simple functions ¢,, converging to f in L?, we would like to “transfer”
the continuity of ¢ to f. To do so we use the following fact: “ The uniform limit of continuous
functions is continuous”. In other words, if f, is continuous and supepo | fn(t) — f()] — 0 as
n — oo then f is continuous.

To do so, let It(¢,) = Sé ¢(s)dBs and consider a Cauchy sequence {¢,,}, for which we have

| s 11062) = 160 > | < ZE[ITr(0n) ~ Ir(on)P)

0<t<T

< [ 0ue) - ol as]

The last term goes to zero as n,m — . Hence we can find a subsequence {ny} so that

1 1
P [OzltlgT ’It(¢nk+1) - It(¢nk)| > kg] < ﬁ

If we set

Ay = { sup |It(¢nk+1) ~ (o)l > 16'12}

0<t<T

then >, P[Ax] < 3, 27% < o0. Hence the Borel-Cantelli lemma tells us that there is an random
N(w) so that

1
n> N(w) = sup [[i(¢n,,,) — Lt(dn,)] < 2
0<t<T

If we set Jt(k) = I;(¢n,) then the {Jt(k)} form a Cauchy sequence in the sup norm (|flsuyp =

supyeo,r] | f(t)]). Since the convergence is uniform in ¢ and each Jt(k) is continuous, we know that for

(k)

almost every w the limit point limg_, o, th = J; is also continuous in ¢. Finally, since by assumption
we also have Jt(k) — I(f) = Sé fs(w)dBs(w) in L2, we have that

t
f fs(w)dBs(w) = Ji(w) a.s.,
0
as required. I

8. An Extension of the It6 Integral

Up until now we have only considered the It6 integral for integrands f such that E Sg f?ds < 0.

However it is possible to make sense of SoT fs(w)dBs(w) if we only know that

P [LT|fs(w)|2ds < oo] =1.
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Most of the previous properties hold. In particular Sg fs(w)dBs(w) is a perfectly fine random
variable which is almost surely finite. However, it is not necessarily true that E[Sg Js(w)dBs(w)] = 0.

Which in turn means that S;‘]F fs(w)dBs(w) need not be a martingale. (In fact it is what is called a
local martingale.) By obvious reasons, the Ité isometry property (4.12) may not hold in this case.

ExaMPLE 8.1.

9. Ito6 Processes

Let (Q, F,P) be the canonical probability space and let F; be the o-algebra generated by the
Brownian motion By(w).

DEFINITION 9.1. X;(w) is an Ité process if there exist stochastic processes f(t,w) and o(t,w)
such that

i) f(t,w) and o(t,w) are Fy-measurable,

ii) SO |flds < o0 and So lo|?ds < o0 almost surely,
iii) Xo(w) is Fo-measurable,
)

iv) With probability one the following holds

Xy (w) = Xo(w fs ) ds + f 04(w)dBy(w) (4.13)

The processes f(t,w) and o(t,w) are referred to as drift and diffusion coefficients of X;.

For brevity, one often writes (4.13) as
dX¢(w) = fi(w)dt + o¢(w)d B (w)

But this is just notation for the integral equation above!
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CHAPTER 5

Stochastic Calculus

This section introduces the fundamental tools for the computation of stochastic integrals. Indeed,
similarly to what is done in classical calculus, stochastic integrals are rarely computed by applying
the definition of It6 integral from the previous chapter. In the case of classical calculus, instead
of applying the definition of Riemann integral one usually computes { f(z)dz by applying the
fundamental theorem of calculus and choosing -3 14 F'(z) = f(x) such that

f fz)dz f = F(a)de = F(x). (5.1)

Even though, as we have seen in the previous section differentiation in this framework is not possible,
it is possible to obtain a similar result for It6 integrals. In the following chapter we will introduce
such a formula (called the It6 formula) allowing for rapid computation of stochastic integrals.

1. Ité’s Formula for Brownian motion
We first introduce the It6 formula for the Brownian motion process.

THEOREM 1.1. Let f € C?(R) (the set of twice continuously differentiable functions on R) and
B: a standard Brownian motion. Then for any t > 0,

F(B) = 1)+ | rBoas.+ 5 | 5 as

To prove this theorem, we first state the following partial result, proven at the end of the section.

LEMMA 1.2. Let g be a continuous function and I'™ := {t} : k= 1,...,N(n)} be a sequence of
partitions of [0,t] such that to =0 and ty =1t

T := Sup [t — | — 0 as n— . (5.2)
Then

N— 9 t
Z <Bt” - Bt;;“) - J 9(Bs)ds,
k=0

for any choice of {} € (Btn, By ).

k+1

PROOF OF THEOREM 1.1. Without loss of generality we can assume that f and its first two
derivatives are bounded. After establishing the result for such functions we can approximate any
function by such a sequence and pass to the limit to obtain the general result.

Let {t} : k=1,...,N(n)} be a sequence of partitions of [0,¢] such that to =0 and ty = ¢

| —sup\tlﬂ ti'| — 0 as n— .
Now for any level n,
N(n)
1B, -3 (£(Bu) = F(By.)). (5.3)
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Taylor’s Theorem implies

F(Bu) ~ 1By ) = /(B ) (B — Bu ) + 51(&) (Bo, — B, )"

for some &, € [By, ,, By, |. Returning to (5.3), we have
N(n)

f(By) = f(0) = Z f/(Btk—l)(Btk — By, 1

k=1

l\D\H

N(n)
Z )(Bi, — Bi,_,)" (5.4)

By the construction of the It6 integral, for the first term on the right hand side of (5.4) we have

N(n) ¢
Z f/(Btk—l)(Btk - Btk—l) - f f/(B
k=1 0
in L? as n — co. Combining this with the result of Lemma 1.2 (proven below) with g = f” for the
second term on the right hand side of (5.4) we conclude the proof. O
PRrROOF OF LEMMA 1.2. We now want to show that
N(n) t
&:me@fﬁmﬁﬁﬁmwm
k=1
in probability as n — c0. We begin by showing that
N(n) t
Coi= > g(Bi,_,)(Bi, — By_,)” — L g(B,)ds, (5.5)
k=1

in probability as n — oo. First since g(Bs) is continuous, we have that
N(n)

Dui= 3 0B )t —tir) — | g(B)ds.

k=1

as n — o0. Therefore, we obtain (5.5), by showing that the term |C,, — D,,| converges to 0 in L?(f2)
as this directly implies convergence in probability. To that end observe that

N
E[(Dn—Co)?] =E | 3 g(Bi,_,)*(Aut — AZB)
k=1

+2E | Y 9(By_,)9(Bi, ) (Akt — AL B)(Ajt — AZB) | (5.6)

i<k
where Ay :=t;, — t_1 and A%B = (B, — Btk,l)Q- Now since
E[(Axt — AZB)?| = (Agt)? — 2(Akt)? + 3(Agt)? = 2(At)?

Considering the first term in (5.6) we have

N(n) (n)
E Z g(Btk—1> (Akt*A Z Btk 1 Akt 2|FN| Z Btk 1 Akt)]
k=1 k=1

Since the sum converges to



as n — o and |[T'N| — 0, the product goes to zero. All that remains is the second sum in (5.6).
Since

E [9(B,_,)9(Bt,_,)(Axt — AFB)(Ajt — A3B)]
=E[9(Bi,_,)9(Bt,_,)(Ajt — ASB)E [Ayt — AL B|Fy,_, ]

and E [Apt — AZB|Fy, | = 0, we see that the second sum is in fact zero.
All that remains is to show that A, converges to C,. Now

|Crn — Anl < Z l9(&x) = 9(Bu )| (By, — By, )"

N(n)
2
< (Sgp |9(&k) — Q(Btk)|> > (By, = Bi))”
k=1
Since the first term goes to zero in probability as n — o0 by the continuity and boundedness of
g(Bs) and the second term converges to the quadratic variation of B, (which equals t), we conclude
that the product converges to zero in probability. O

1.1. A second look at Itd’s Formula. Looking back at (5.4), one sees that the It6 integral
term in It6’s Formula comes from the sum against the increments of Brownian motion. This term
results directly from the first order Taylor expansion of f, and can be identified with the first order
derivative term that we are used to see in the fundamental theorem of calculus (5.1). The second
sum

N(n)
Z Btk Btk_1)2 9

which contains the squares of the increments of Brownian motion, results from the second order
term in the Taylor expansion and is absent in the classical calculus formulation. However, since the
sum

converges in probability to the quadratic variation of the Brownian motion By, which according
to Lemma 5.3 is simply ¢, this term gives a nonzero contribution in the limit n — o0 and should
be considered in this framework. We refer to this term as the Itd correction term. In light of
this remark, if we let [B]; denote the quadratic variation of By, then one can reinterpret the Ito6

correction term
1t I
f 1"(Bs)ds as J 1"(Bs)d[B]s - (5.7)
2 Jo 2 Jo

We wish to derive a more general version of [t6’s formula for a general [t6 process X; defined by

t t
Xy =Xo+ fsds+JngBs.
0 0

Beginning in the same way as before, we write the expression analogous to (5.4), namely

n)
f(Xe) = f(Xo) = Z (X, 1)(th Xty 1

k=1

N(n)
Z gk th th—1)2 (5.8)

l\)\l—‘
ES
-
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for some twice continuously differentiable function f and some partition {¢;} of [0, ¢]. It is reasonable
to expect the first and second sums to converge respectively to the integrals

f F(X,)dX,  and % f F1(X) d[X]s. (5.9)
0 0

The first is the It6 stochastic integral with respect to an It6 process X; while the second is an
integral with respect to the differential of the quadratic variation [X]; of the process X;. So far this
discussion has proceeded mainly by analogy to the simple Brownian motion. To make sense of the
two terms in (5.9) we need to better understand the quadratic variation of an Itd process X; and
to define the concept of stochastic integral against X;. While the former point is covered in the
following section, the latter is quickly clarified by this intuitive definition:

DEFINITION 1.3. Given an Ité process { X} with differential dX; = fi dt + or dBy and an adapted
stochastic process {h} such that

0 Q0
J |hsfs|ds < o0 and f (hsos)?ds < o0 a.s.
0 0

then we define the integral of hy against X; as
¢ ¢ ¢
J hsdXg := f hsfsds + f hsos dBs . (5.10)
0 0 0

2. Quadratic Variation and Covariation
We generalize the definition (3.7) of quadratic variation to the one of quadratic covariation

DEFINITION 2.1. Let X;,Y; be two adapted, stochastic processes. Their quadratic covariation is
defined as
-N
.p ]
X Y] Jim ), (i, = Xay) (i, —7p)
j=

j+1
where im? denotes a limit in probability and {tjv} is a set partitioning the interval [0,t] defined by
V= ({7} : 0=ty <) <-- <tly =t} (5.11)

with |TN] := sup, \t;VH - t;v\ — 0 as N — oo0. Furthermore, we define the quadratic variation of X
as
[X]e =X, X]¢. (5.12)

We can also speak about the quadratic variation on an interval different than [0,¢]. For 0 < s <t
we will write respectively [X]s; and [X, Y]s; for the quadratic variation and cross-quadratic variation
on the interval [s,t].

Just from the algebraic form of the pre-limiting object the quadratic variation satisfies a number of
properties.

LEMMA 2.2. Assuming all of the objects are defined, then for any adapted, continuous stochastic
processes Xy, Yy,

i) for any constant c € R we have
[e X]: = [X]e
ii) for 0 < s <t we have
[XTo,s + [X]st = [X]ox (5.13)
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iii) we have that
0 < [X]os < [X]og (5.14)

fort > s> 0. In other words, the map t — [X]; is nondecreasing a.s. .
iv) we can write

(X £Y] = [X]+ [Y] £2[X, Y] (5.15)
Consequently, quadratic covariations can be written in terms of quadratic variations as
1 1
(X, V] = 5 (X + Y] = (XD = [V]e) = 7(IX + Y] = [X = YD) (5.16)

PROOF. Partsi) and ii) are a direct consequence of Def. 2.1, while part iii) results from ii) the fact
that [X,Y]; is defined as a sum of squares and is therefore nonnegative: [X]o+ = [X]os + [X]ss =
[Xos. Part iv) is obtained by noticing that

p I 2
(X £Y] = ]\}l—l?oo Z;) ((Xtévﬂ N tfv) + (Ytﬁvﬂ N K‘/ﬁl))
j=
jN

p 2 2
= Jim, ,_O<(Xt;&1— o) 2 (X, = xg) (Y, - ) + (v, - 7))

= [X]: +2[X, Y] + [Y],

while (5.16) is obtained by rearranging the terms of the above result (for the first inequality) and
by using it to compute [X + Y], + [X — Y], (for the second). O

In the following sections we will see that the quadratic variation of It integrals acquires a
particularly simple form. We will show this by first considering quadratic variations of It6 integrals
and then extend this result to It6 processes.

2.1. Quadratic Variation of an It6 Integral.

LEMMA 2.3. Let oy be a process adapted to the filtration {FP} and such that SSO 02ds < 0 a.s..
Then defining My := I(c) = Sé o0, dB, we have that

[M]; — fo "o2ds (5.17)

or in differential notation d[M]; = o? dt.

PRrROOF OF LEMMA 2.3. It is enough to prove (5.17) when o is an elementary stochastic process
in Ss. The general case can then be handled by approximation as in the proof of the It6 isometry.
Hence, we assume that

K
or = Y o aly, () (5.18)
j=1

where the oy, satisfy the properties required by Sy and K is some integer. Without loss of generality
we can assume that ¢ is the right endpoint of our interval so that the partition takes the form

O=to<ti<---<tg=t
Now observe that if [s,r] < [t;—1,t;] then
T
f Or dBT = Q51 (BS — BT)
S
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Hence {sén)} is a sequence of partitions of the interval [¢;_1,%;] so that

tj71 = 5(()”) < sgn) < e < 55\?()71) = t]-

and [TV = sup, |séﬁ)1 - sgn)| — 0 as n — 0. Then the quadratic variation of M; on the interval
[tj_l,tj] is the limit n — oo of

N(n) N(n)
Z (M, — My,)” = Z Sg—1 )2-
=1 =1

Since the summation on the right hand side limits to the quadratic variation of the Brownian motion
B on the interval [t;_1,t;] which we know to be t; —t;_1 we conclude that

2
[M]tjflytj = O‘j—l(t]' - tj—l) .
Since the quadratic variation on disjoint intervals adds, we have that

K t
:Z[ ti—1,t; ZO‘ —tj-1) = Lagds

where the last equality follows from the fact that o, takes the form (5.18). As mentioned at the
start, the general form follows from this calculation by approximation by functions in Sa. g

REMARK 2.4. The proof of the above result in Klebaner (Theorem 4.14 on pp. 106) has a subtle issue .
When bounding

n—1 n—1
2) ) ¢*(Bip) (741 — 17)° < 26, lZ 9°(Bip) (1701 — t?)} :
i=0 1=0

Klebaner asserts that as n — o0, 8, = |T,| = 0, Y1, ! E[g (B2)](t71 — t7') would stay finite, and thus their
lg (Bt2 [(t — t7) is unjustified. In fact, if it were

finite, it must converge to So g%(Bs)]ds (Riemann sum). However, this integral might be infinity for certain

product would go to 0. However, the finiteness of >, 'E

choice of g, for example, g(x) = @’ (see Example 4.5 on pp. 99 of [Klebaner]). The proof here uses the
same computation of second moment but only for “nice” functions (i.e., those with compact support). The
convergence in probability (note: this is weaker than convergence in L?) for general continuous functions is
established using approximation. The stopping rules for Ité integral are needed here, but we defer it to the
later part of the course.

We now consider the quadratic covariation of two It6 integrals with respect to independent
Brownian motions.

LEMMA 2.5. Let By, Wy two independent Brownian motions, and fs,gs two stochastic processes,
all adapted to the underlying filtration Fy and such that SSO f2ds, 0 gS ds < oo almost surely. We
define

¢ ¢
M; = J fsdBs and N; = f gs dWs.
0 0
Then, for allt = 0 one has
[N,M]; =0. (5.19)

PROOF OF (5.19). Again without lost of generality it is enough to prove the result for o; and
gs in Sa. We can further assume that both functions are defined with respect to the same partition

O=tg<ti<---<tg =t
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Since as observed in (5.13), the quadratic variation on disjoint intervals adds, we need only show
that [N, M];, ¢+, = 0 on any of the partition intervals [t;_1,1;].

Fixing such an interval [t;_1,%;], we see that [N, M]s, ,+; = 04, 19t,_,[W, Bt;_, t;- The easiest
way to see this is to use the “polarization” equality (5.16)

2[W B]tj—lytj = [W\}%Bv W\}%B]tjflytj - [%7 %]tjflatj = (tj - tjfl) - (tj - tjfl) =0

since W8 and W\/_EB are standard Brownian motions and hence have quadratic variation the length
of the time interval. 0

REMARK 2.6. One can also prove the above result more directly by following the same argument as
in Theorem 5.8 of Chapter 3. The key calculation is to show that the expected value of the approrimating
quadratic variation is 0 and not the length of the time interval as in the proof of Theorem (5.3) of Chapter 3.
For any partitions {se} of [tj—1,t;] one has to zero we have

]EZ(BS( = Bs,—1)(Bs, = Bs,—1) = E]E(Bsz — Bs,—1)E(Bs, = Bs,—1) =0
J4 L

2.2. Quadratic Variation of an Ité Process. In this section, using the results presented
above, we finally obtain a simple expression for the quadratic variation of an It6 process.

LEMMA 2.7. If X, is an Ité process with differential dX; = py dt + oy d By, then

t

[X]e = [1(o?)]; = fo o2 ds, (5.20)

or equivalently d[X]; = o2 dt.

By comparing this result with (5.17) we notice that the only contribution to the quadratic variation
process comes from the It6 integral. The following result will be useful in the proof of (5.20).

LEMMA 2.8. Let X; and Y: be adapted stochastic processes, such that X; is continuous a.s. and
Y: has trajectories with finite first variation (V1[Y](t) < o) then [X,Y]s =0 a.s..

Before we give the proof of Lemma 2.8 we observe that it immediately yields (5.20).

PROOF OF LEMMA 2.7. Defining F; = Sé s ds and M; = S(t) osdBg, observe that X; = Fy + M,
and that F} is continuous and of finite first variation almost surely. Hence [F']; = 0. Since M, is
continuous a.s., we have that [M, F]; = 0 almost surely. Hence

t

[XT]i = [F], + 2[F, M], + [M], = [M], = L o2ds.

O

PROOF OF LEMMA 2.8 . Let I'V := {tV : i = 0,...,in} be a sequence of partitions of [0, ]

such that [TV| = sup; [t} —tN| - 0 as N — c0. Now

i i
‘ Z(th - Xti—1)(Y;fi - Y;fi—l) < (Sup ‘Xti - Xti—l‘) Z ‘Y;fz - Y;fi—ly
i=1 ' i=1

The summation on the right hand side is bounded from above by the first variation of Y; which by
assumption is finite a.s. On the other hand, as n — oo the supremum goes to zero since |[TV| — 0
and X; is a.s. continuous. O
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REMARK 2.9. Similarly to the formal considerations in Section 1.1, we may think of the
differential of the quadratic variation process d[ Xy as the limit of the difference term (X | —Xm)?,

which in turn is the square of the differential of Brownian motion (dX;)2. Therefore, formally
speaking, we can obtain the result of the previous lemma by writing

d[X]¢ = (dXy)? = (g dt + oy dBy)?
= p3(dt)? + 2p04(dAt) (ABy) + 0 (ABy)?
=o2dt.

where we have applied (dt)? = (dt)(dB;) = 0 (cfr. Lemma 2.8) and (dB;)? = dt (cfr. Lemma 2.3).
These formal multiplication rules are summarized in the following table: By the same formal

X ‘ dt dBt
de | 0 0
dB; | 0 dt

arguments, such rules apply to the computation of the quadratic covariation of two Ité processes
= pjdt + opdBy:

d[X, Y] = (dX;)(dYy) = (pe dt + 0y dBy) (g dt + oy dBy)
= pupty(dt)? + proy (dt)(ABe) + o (dt)(dBy) + o040y (dBy)? (5.21)
= ooy dt.
This result can be verified by going through the steps of the proof of the above lemmas.
3. Itd’s Formula for an Ité6 Process

Using the lessons learned in the previous sections, we now proceed to compute the infinitesimal

of (5.8) as
1 2
df(X:) = f(Xe)d X, + Qf”(Xt)(dXt) : (5.22)
Of course this is just notation for the integral equation
f(Xy) — f(Xo) J f(Xs)dXs + = J (X)) (dX,)2.

The first integral is simply the integral against an It6 process as we have already discussed. In light
of Remark 2.9, we should interpret d[X;] = (dX;)? = (u¢ dt + 04 dB;)? = o?dt. Hence

1 ! " 1 ! "
3 | eax)r =5 | rocoetas

This formal calculation (which is correct) leads us to suggest the following general 1t6 formula.

THEOREM 3.1. Let X; be the Ité process given by
dXt = Ut dt + o¢ dBt
If f is a C? function then

F(X0) = £(Xo) ff DX, + 2 Jf” (X7

f(Xo) ff usd8+J f(Xs)osdBs + = Jf” o2 ds
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PrOOF OF THEOREM 3.1. Without loss of generality, we can assume that both p; and o, are
adapted elementary stochastic processes satisfying the assumptions required by an Itd process.
Furthermore, by inserting partition points if needed, we can assume that they are both defined on
the same partition

O=to<ti<---<ty=t.

Since
N
f(Xe) — f(Xo) :Z (X)) = f(Xe,y)
=

we need only prove It6’s formula for f(Xy,) — f(X¢, ,). Now since X; is constant for ¢ € [ty_;, ty)
we can take £ = X;, | and for [r, s] < [t,—1,t,] we have

S S
Xs— X, = | prdr+ f o,dB; =y, (s —r) + o1, ,(Bs — By).
T

r

Let {sz(»n) :i=0,...,K(n)} be a sequence of partitions of [t,_1,%,] such that |[TV| = sup, |s§n) -

31@1] — 0 as n — 00. Now using Taylor’s theorem we have

f(XSj) - f(XSj—l) = f/<X5j—1)(X5j - XSj—1) + %f”(gj)(XSj - XSj—1)2 :

for some &; € (Xs,_,, Xs;). Hence we have

K(n)
f(th) - f(thfl) = f(XS]) - f(Xijl)
j=1
K(n) 1 K(n) 1
= f,<X5j—1)(X5j - S] 1 Py 2 XSj—1)2 = (I) + 7(II>
Jj=1 2 j=1 2

Since

(ij - X3j71)2 lu“tg 1( - Sj— 1) + 2:“’752710-15571 (Sj - ijl)(BSj - st71) + U?g,l (st - BS]'71)2

we have
:U’te12f 531 S_T +Ut212f 5;1(BS_BT):(IG)+(H))
7j=1
and
K(n) K(n)
(II Mt[ 1 2 f” §] i Sj— 1) +2Mte 10ty Z f” 5] ( — 85— 1)(st _BSj—l)
Jj=1 7j=1
K(n)

+or,_, > f"(&)(Bs, — Bs,_,)? = (I1a) + (ITb) + (I1c)
=1

As n — o0, it is clear that

o) — [ pxXobeds,  and (D) — [ F(X)oudB,.

to—1 to—1
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Using the same arguments as in Theorem 1.1 we see that
to to
(IIc) — o} f(Xs)ds = f o2 f"(X,)ds.

te—1
to—1 te—1

All that remains is to show that (//a) and (I1b) converge to zero as n — 0. Observe that

K(n) K(n)
(TTa)| < g, (TN Y £7()(s5 —s5-1) and  [(ITD)] < 2py,_,00, TN Y] £7(&)(Bs; — Bs;_,).-
j=1 J=1

Since the two sums converge to { f”(X,)ds and § f”(Xs)dB; respectively the fact that [TV — 0
implies that (I7a) and (IIb) converge to zero as n — oo. Putting all of these results together
produces the quoted result. O

REMARK 3.2. Notice that the “multiplication table” given in Remark 2.9 is reflected in the
details of the proof of Theorem 3.1. Each of the terms in (dX;)? correspond to one of the terms
labeled (II) which came from (X(s;) — X (sj—1))? in the Taylor’s theorem expansion. The term
(IIa) which corresponds to (dt)? limits to zero as the multiplication table indicates. The term (IIb)
which corresponds to (dt)(dBy) also tends to zero again as the table indicates. Lastly, (I1c) which
corresponds to (dBy)? limits to an integral against (dt) as indicated in the table.

ExaMPLE 3.3. Consider the stochastic process with differential
1
dX; = iXt dB; + X dB;.

The above process is an example of a geometric Brownian motion, a process widely used in finance
to model the price of a stock. We apply Ito formula to the function f(x) := logx. Using that
Opf(x) =271 and 02, f(x) = —2~2 we obtain
1 11 1 /1 11
dlog X; = <~ dX; — d[X] = — (Xt dB; + X dBt> -5
t

—_ — 2 —
By % \3 (X7 dt) = dB;.

t

In the integral form the above can be written as log X; = log Xo + By and therefore X; = XgePt.

4. Full Multidimensional Version of It6 Formula

We now give the full multidimensional version of It6’s formula. We will include the possibility
that the function depends on time and that there is more than one Brownian motion. We begin
with the definition of a multidimensional It6 process.

DEFINITION 4.1. A stochastic process X; = (X1(t),..., X4(t)) € R is an Ité process if each of
the coordinate process X;(t) is a one-dimensional Ité process.

Let pi(t) and 0;;(t) be adapted stochastic processes and {B;(¢)}72; be m mutually independent,
standard Brownian motions such that for ¢ = 1,...,d we can write each component of the d-
dimensional It6 process as

m
dX,(t) = pi(t) dt + > oy5(t) dB;(t) . (5.23)
j=1
If we collect the Brownian motions into one m-dimensional Brownian motion B; = (B (t),. .., By (t))
and define the R%valued process p; = (p1(t), ..., ua(t)) and the matrix valued process o; whose
matrix elements are the o;;(t) then we can write
dXt = Ut dt + ot dBt . (524)
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While this is nice and compact, it is perhaps more suggestive to define the R%valued processes
o) = (01,s---,0ny) for j =1,...,m and write

d
dX; = pedt + Y o) dB;(t). (5.25)
j=1
This emphasizes that the process X; at each moment of time is pushed in the direction which p;
points and given m random kicks, in the directions the JEJ ) point, whose magnitude and sign are
dictated by the Brownian motions B;(t).

We now want to derive the process which describes evolution of F(X;) where ' : R? — R. In
other words, the multidimensional It6 formula.

We begin by developing some intuition. Recall Lemma 2.5 stating that the cross-quadratic
variation of independent Brownian motions is zero. Hence if B; and W; are independent standard
Brownian motions then the multiplication table for (dX;)? and (dY;)(dX;) if X; and Y; are two Ito
processes is given in the following table.

X ‘ dt dBt th

dt |0 O 0
dB, | 0 dt 0
dW; | 0 0 dt

TABLE 1. Formal multiplication rules for differentials of two independent Brownian motions

THEOREM 4.2. Let F : R — R be a function such that F(x) e C? in x € RL. If X; is as above
then

n (3 1 n n
dF(Xy) :; -(X1)dX(t 2; g 6xk (Xy) d[ X, Xp]e (5.26)
Furthermore one has
d n n n
oF OF
21 &0 g KX = 2, 2, 2 (Xl 6:27)

where

The matriz a(t) can be written compactly as o(t)o(t)T. The matriz a is often called the diffusion
matrix.

We will only sketch the proof of this version of It6 formula since it follows the same logic of the
others already proven. Proofs can be found in many places including [14, 7, 3].

SKETCH OF PROOF. Similarly to the proof of Theorem 3.1 we introduce the family of partitions
'y of the interval [0,¢] as in (8.8) with lim,,_4 |I'x| = 0 and expand in Taylor the function f in
each of these intervals:
N d

F(X,) — F(Xo) = 2{

/=1 z=1

X, )(Xi(s0) — Xi (55-1))
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for & € X?zl[Xi(Sg),Xi(Sg+1)]. For the first order term, it is straightforward to generalize the
proof of Theorem 3.1 to obtain that

l = .
Nl—r>noo£ s I)e = JZ P Xi(s)

We formally recover the expression of the second order term by combining (5.21) with the rules
of Table 1:

i S - J, 2 o X X)X, ()

N—0
I

t d 52 m
- J 3 X.) Y] (n(t)dBi(s)) (0(t)dBy(s))

0,5=1 amiaxﬂ k=1

’

t d 82 m
- fo Z,],Z_ll (%Ui&afj g Bojk(t) dt,

)

where in the second equality we have used that (dt)(dB;(t)) = 0 and in the third that (dB;(t))(dB;(t)) =
0 for ¢ # j. Note that one should check that when taking the limit in the first equality F'(§;) can be
replaced by F'(Xj,). This can be done by reproducing the proof of Lemma 1.2. O

REMARK 4.3. The fact that (5.27) holds requires that B; and B; are independent if i # j.
However, (5.26) holds even when they are not independent.

Theorem 4.2 is for a scalar valued function F. However by applying the result to each coordinate function
F; : R? > R of the function F : R? — RP with F = (Fy,..., F,) we obtain the full multidimensional version.
Instead of writing it again in coordinates, we take the opportunity to write a version aligned with the
perspective and notation of (5.26). Recalling that the directional derivative of F' in the direction v € R? at
the point = € R? is

DF(x)[v] = lim Fla+ey) - F(m) (VF -v) zp: zd: Vlek

where ey, is the k-th unit vector of RP. Similarly, the second directional derivative at the point x € R? in the
directions v, € R? is given by

D F(@)frn] - iy 2EE N = DE@IR] _ $ i Z

e—0 3

2

Vzn]ek
Tl 5

e
—
<.
Il
—
<.
Il
—
<

Then in the notation of (5.26), Theorem 4.2 can be rewritten as

d
dF(X(t)) = DE(XO)[f(®)]dt + Y DF(X(1)[o (1)] dB,(t)

i=1
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If B; and B; are assumed to be independent if ¢ # j, then

d
dF(X (1)) = DF(X()[f(t)]dt + Y, DF(X(1)[o"(¢ Z D*F [0?(1), 0 ()] dt.

i=1

We now consider special cases of Theorem 3.1 that will be helpful in practice. The first describes
evolution of a function F'(x,t) that depends explicitly on time:

COROLLARY 4.4. Let F : R% x [0,00) — R such that F(x,t) is C? in x € R? and O in t € [0, 0).
Furthermore, let X; be a d-dimensional Ité process as in (5.23). Then

n n

OF oF L OF
AF(Xy, 1) =—— (X, £) dt + > - (X, )dX(t 2 Z - (Xp, t)d[ Xy, Xl (5.28)
i=1 """ i=1k=1

[\D\H

where a is defined as in (5.27).

PROOF. In this proof we will make use of the “multiplication table” at the beginning of
this section. Consider the d + 1-dimensional process X; := (X1(t),..., X4(t),Y;) for ¥; given by
dY; = dt + 0dB;. Then by applying It6’s Formula Theorem 5.26 and the fact that Y; is of finite
variation (so d[Z,Y]; = 0 for continuous Z;) we obtain

d
AF(Xy) = ), 0:F (Xy, t)dX;(t) + 0, F (X4, t)(dt + 0dBy)
=1

M\F—‘

d
( 2 O5F (X, )d[X, Xy +2 2 0;0¢F (X, 1)d[ X5, Y] + 6?F<Xt,t>d[Yt,Yt]>

OiF (X, 1)dX;(t) + 0 F (Xy, )dt+f 2 0% F (X, t)d[ Xy, X -
1 i,j=1

I
.M&

(2

Note that the existence of the second derivative in t is not needed in the above formula and can
therefore be dropped. O

COROLLARY 4.5. Let X;,Y; be two Ité processes. Then
d(XY:) = Vid Xy + XpdY: + d[ X, Y s (5.29)
This result is known as stochastic integration by parts formula.
PROOF. Let F : R? - R with F(z,y) = x - y, then since
LF(r,y) =y, OF(vy)=x, 0 F(zy)=70;F(r.y) =0, d,=1,
by It6’s Formula Theorem 5.26 we have
d(XY;) = dF(X, V) = Yid Xy + X dY: + 1d[ X, Y], (5.30)

EXAMPLE 4.6. We compute the stochastic integral

¢
f sdBg.
0

Applying the integration by parts formula (5.30) for dX; = dBy, dY; = dt we obtain
d(tBy) = tdB, + Bydt + d[B, 1],
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Since Yy is of finite variation we have d[B,Y ]y = 0, and by integrating and rearranging the terms

we obtain
t ¢ ¢ t
j sdBg = J d(sBs) —J B.ds = tB; —j B.ds.
0 0 0 0
EXAMPLE 4.7. Assume that f(x,t) € C*Y(R,R) satisfies the PDE

0 02
% ({L',t) + Wf(xat) :Ov

and B [ f(By,t)*] < o0, then have that
df(By,t) = 0y f (By, t) dt + 0, f(By, t) dt + %aﬁxf(Bt,t) d[B],
= <at + ;a§x> f(By,t)dt + 0, f (B, t) dBy = 0, f(By, t)dB; .
Therefore f(Bt,t) = f(0,0) + §; 0.f(Bs, s) dBy is a martingale.

5. Collection of the Formal Rules for It6’s Formula and Quadratic Variation

We now recall some of the formal calculations, bringing them all together in one place. We consider
a probability space (2, F,P) with a filtration F;. We assume that B; and B; are independent standard
Brownian motions adapted to the filtration F;.

For any p € [0,1], Z; = pBt + 4/1 — p?>B; is again a standard Brownian motion. Furthermore

(2] =2, 2] = pQ[B,B]t +2pV/1—p*=[B, B +(1 _pQ)[B’B]t
=p’t+0+(1—pHt=t

Or in the formal differential notation, d[Z]; = dt. This result can be understood by using the formal
multiplication table for differentials which formally states:

d[Z); = (dZ)? = (pdB; + /1 — p2dBy)? = p(dBy)? + 2p\/1 — p2 dB,dB; + (1 — p*)(dB,)?
=p2dt+ 0+ (1—p*)dt = dt
Similarly, one has
d[Z, B]; = (dZ)(dB;) = p(dB:)? + /1 — p2(dB;)(dB;) = p dt + 0 = p dt
d[Z, B); = (dZ;)(dBy) = p(dB;)(dB;) + /1 — p?(dBy)? = 04+ /1 — p2 dt = /1 — p2 dt
Now let o and ¢; be adapted stochastic processes (adapted to F;) with

¢ t
Jazds<oo and Jg?ds<oo
0 0

almost surely. Now define
th = 0¢ dBt dNt =gt dBt
dUt = O'tdBt d‘/; = O'tdZt

Of course these are just formal expression. For example, dM; = oy dB; means M; = My + S(t) 0sdBs. Using
the multiplication table from before we have

d[M]; = (dM,)? = 02(dB,)* = o2 dt d[U]; = (dU,)? = 62(dB,)* = o2 dt
d[N]; = (dNy)* = g7 (dBy)* = g7 dt d[V]y = (dV})? = 07(dZ,)* = o7 dt
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and the cross-quadratic variations
d[M, N, = (dMy)(dN;) = 019:(dB1)* = ovgs dt
d[M, U], = (dM;)(dU,) = o7 (dBy)(dBy) = 0
d[M, Z]; = (dM,)(dZ;) = po7(dB:)(dBy) + /1 — p207(dBy)* = /1 — p?07 dt
Next we define
dH; = py dt and dK; = fidt
and observe that since H; and K; have finite first variation we have that
d[H]; = (dH,)? = pi(dt)* =0 and d[K], = (dK,)* = f(dt)* =0
Furthermore if X; = H; + M; and Y; = K; + N; then using the previous calculations
d[X]s =d[X,X]; = d[H + M,H + M]; = d[H]; + d[M]; + 2d[H, M]; = o} dt
d[X,Y]y=d[H+ M,K + N]y =d[H,K + N|; + d[M,K + N]; = d[M,N]; = o.g: dt
or using the formal algebra
d[X]e = (dX:)? = pi (dt)® + 2o (dt)(dBe) + 07 (dBy)? =0+ 0+ o7 dt = o7 dt
d[X,Y]; = (dX)(dY;) = pe fe(dt)? + oo fo(dt)(dBy) + gofo(dt)(dBy) + ovg:(dB;)?
=0+0+0+ 0p9:dt = 049 dt
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CHAPTER 6

Stochastic Differential Equations

1. Definitions

Let (€2, F,P) be a probability space equipped with a filtration {F:}7. Let By = (Bi(t),...,Bmn(t)) €
R™ be a m-dimensional Brownian motion with {B;(?)}]L; a collection of mutually independent
Brownian motions such that B;(t) € F; and for any 0 < s < t, Bj(t) — Bj(s) is independent of F.

Obviously, these conditions are satisfied by the natural filtration {F7}7.

DEFINITION 1.1. Let p: R — R? and oj: R? — R? fori = 1,...,m be fized functions. An
equation of the form
m
dXy = p(Xy) dt + Y oi(X,) dB;(t) (6.1)
i=1

representing the integral equation
t mo ot
Xy =z+ f w(Xs)ds + Z f 0j(Xs)dBj(s). (6.2)
0 —1J0
j=1

where X is an unknown process is a Stochastic Differential Equation (SbE) driven by the Brownian
motion {B}. The functions u(x), o(x) asre called the drift and diffusion coefficients, respectively.

It is more compact to introduce the matrix

ox)=|oi(x) - op(z)|eR™

and write

There are different concepts of solution for a spe. The most natural is the one of strong solution:

DEFINITION 1.2. A stochastic process {X;} is a strong solution to the spE (6.1) driven by the
Brownian motion By with (possibly random) initial condition Xo € R if the following holds
i) {X:} is adapted to {F:},
ii) {X:} is continuous,
i) Xy = Xo + Sé p(Xe) dt + 337 Sé 0j(X¢)dBj(t) almost surely.

REMARK 1.3. Often, the choice of Brownian motion in the above definition is implicit. However,
it is important that the strong solution of an SDE depends on the chosen Brownian motion driving it.
A conceptually useful way to restate strong existence, say for all t = 0, is that there exists a measure
map ®: (t, B) — Xy(B) from [0,0) x C([0,0),RY) — R such that X; = ®(t, B) solves (6.2) and
X is measurable with respect to the filtration generated by By.
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DEFINITION 1.4. We say that a strong solution to (6.1) (driven by a Brownian motion By) is
strongly unique if for any two solutions X;, Y; with the same initial condition Xo of (6.1) we have
that

P[X:=Y; forallte[0,T]] =1.

REMARK 1.5. By definition, the strong solution of a SDE is continuous. For this reason, to prove strong
uniqueness it is sufficient to prove that two solutions Xy, Y; satisfy

PX,=Y]=1 for allt €[0,T].

Indeed, assuming that X; is a version of Yz, by countable additivity, the set A = {w: X¢(w) = Yi(w) for all t €
Q4} has probability one. By right-continuity (resp. left-continuity) of the sample paths, it follows that X and
Y have the same paths for all w € A.

2. Examples of SDEs

We now consider a few useful examples of spes that have a strong solution.

2.1. Geometric Brownian motion. The geometric Brownian motion, or Black Scholes model
in finance, is a stochastic process X; that solves the SDE

dXt = /.,LXt dt + O'Xt dBt, s (64)

where p, 0 € R are constants. This model can be used to describe the evolution of the price X; of a
stock, which is assumed to have a mean increase and fluctuations with variance that depend both
linearly on the stock price X;. The coefficients u, o are called the percentage drift and percentage
volatility, respectively. We see immediately that (6.4) has a solution by Itd’s formula: letting
f(x) =logx we have that

1
dlog X; = e

11 1
— (puX¢dt + 0 X dBy) — o?X2dt = (u— 502) dt + odB;,
t

3X7
Therefore, by integrating and exponentiating, that the solution of the equation reads
1
X; = Xogexp {<,u — 202> t+ O'Bt] )
The uniqueness of this solution will be proven shortly.

2.2. Stochastic Exponential. Let X; be an It6 process with differential dX; = u; dt + oy dB.
We consider the following spe:

AU, = U, dX, (6.5)

with initial condition Uy = ug € R. Note that often one chooses ug = 1. Since the above SDE is
analogous to the opE df = f dt whose solution is given by the exponential function f(t) = exp(t),
the process U, solving (6.5) is often called the stochastic exponential and one writes X; = £(X);.
The following result ensures that this process exists and is unique:

PROPOSITION 2.1. The SDE (6.5) has a unique strong solution, given by

1 t 1 t
U =E(X):=Upexp [Xt - X0 — 2[X]t] = Uy exp [J (,us — 20?) ds +f O dBS] . (6.6)

0 0
PRrROOF. If uy = 0, then it is immediate by (6.5) that U; = 0 for all ¢ > 0 and it is the
only solution. Now suppose ug # 0. We start by proving existence. The proposed solution is
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clearly adapted, so defining V; = X; — X — %[X]t only have to verify that e"* satisfies (6.5), i.e.,
d(e"*) = e"* dX;. First, using Itd’s formula, we get

1
AV, = dX; — 5 d[X], = dX; - of dt (6.7)

1
d(e"?) = % <dv,; +5 d[V]t> . (6.8)

Note that (6.7) implies [V]; = [X]:, because the {o?dt part is of finite variation. Therefore
dV; = dX; — %d[V]t. Plugging it back to (6.8), we have the desired equality.

We next check that the solution is unique. Suppose we have another solution U that satisfies (6.5).
Notice that U is nonzero when ug # 0, we can compute d(Uy/U;)

- - 1 - -
d(U,/U,) = U, d(1/Uy) + 7 AU + d[U, U],
t

- [ dU,  d[U);] U dX, S
= U | —— d[U, U
t|: Ut2 Utg + Ut + [ ) ]t
Uyo? dt -
= O [0, U,
Ut

We need the stochastic differential of UL,
@ d[U]; o dX N 0,52 dt

Tz T o U; U,
d[U, Uy = —a?UU; bt

dU) =

Plugging this back gives d((]}/ U;) = 0. So the ratio of the two solution stays a constant for all ¢ > 0.
Since both solutions start at ug, we conclude P[U; = U, Vt > 0] = 1. O

Similarly to the above definition. we introduce the stochastic logarithm Xy = L(U); of a process
U; with a stochastic differential dUy = py dt + o} dB; and U; # 0 as the solution to the following spE:
dU;

dXt = —andXt =0. (69)
U

Again we have that the solution to the above sDE exists and is unique.

PROPOSITION 2.2. Under the conditions listed above, the SDE (6.9) has a unique solution given

L(U)¢ = log <[[j;> + Jot d[U[;]t ‘

Furthermore, as suggested by the framework of stochastic calculus, the above operators are
inverse WRT each other:

PROPOSITION 2.3. If ug = 1 we have L(E(X)); = Xy and if Uy # 0 then E(L(U)); = Us.
PROOF. It is enough to check that dX; = d(£(X))/E(X): and AU, = L(U)dL(U); . O

by

2.3. Linear SDEs. Let {ay}, {8}, {1}, {d:} be given (i.e., independent on X;) continuous
stochastic processes adapted to the filtration {F;}. We consider the family of spes given by

dX; = (ou + B Xy) dt + (e + 6:.Xy) By . (6.10)

We proceed to solve such family of spEs, which includes as special cases some of the examples treated
previously in this course. We do so in two steps:

69



i) First we consider the case where oy = 7 = 0. In this case we should solve the spE
dU; = BtUt dt + 6,U; d B, s
which by Proposition 2.1, choosing Uy = 1 and defining dY = f; dt + d; d B; has the unique

solution . .
1
Up = E(Y); = exp U (58 — 253) ds + f 5Sst] .
0 0

ii) We now proceed to consider the full spE (6.10), and make the ansatz of a separable solution,
i.e., assume that X; = U;V; where dV; = a; dt + by dB; for unknown processes {a;}, {b;}.
Then we compute

dX; = Uy dV, + Vi AU, + d[U, V](2)
= Uiay dt + Upby d By + Vi iU dt + ViU d By + b6, Uy dt
= (U + b0 Uy + B Xy) dt + (b Uy + 6;.X) d By .
We notice that the above expression coincides with the rus of (6.10) if

ap — Oyt T
== 2t d b= —.
Qg Ut an t Ut
This uniquely defines the process V; (whose initial condition is fixed by the fact that Uy = 1
to be Vp = Xp) as

t t

as_ésvs Vs
Vi — X, Qs = 0ss 4 D5 4B,
t 0+J0 U. S + (]Us

which in turn defines the solution to (6.10) as X; = U; - V;.

EXAMPLE 2.4. Letting a,b € R, consider the following spE on t € (0,T):

b— X,
X, = tt dt + dB;,  with Xo = a. (6.11)
It is clear that this is a linear SDE with
b 1
= — = — =1, 0;,=0.
(073 T _ ¢ ) Bt T _¢ ) Yt ) t

Therefore, the solution to (6.11) is given by
t

t t 1

Since SS(T —5)"lds < o for all t < T the Ité integral in (6.12) is a martingale. Furthermore, as
we have proven in Homework 2 it is a gaussian process. Hence, X; is also a Gaussian process, with
E[X:] = a+ (a —b)t/T and covariance structure

C (X ¥ ) (T )(T ) c J\min(s,t) 1 4B J«min(s,t) 1 4B J*max(s,t) 1 4B
ov(Xs, ={'—t —5)Cov —_— ; e + e
t o T—q ")y T—q " Jumen T—aq "

ds. (6.12)

( min(s,t) | st
= (T — max(t, s))(T — min(t, s)) Var f —_— qu> = min(s,t) — =
0 T—q T

where in the second equality we have used that the covariance of independent random variables is 0.
The above expression suggests that the variance of the process Xz is 0 att =0 andt = T, and
mazimized at t = T /2, while the expected value of the process X, is on the line interpolating between
a and b. Hence the name Brownian Bridge: the process above can be seen as a Brownian motion
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with initial condition By = a and conditioned on its final value By = b. Indeed, one can prove (cfr
Klebaner, Example 5.11) that

t
. 1
}LH%(T_t)L T—sst_O a.s..

3. Existence and Uniqueness for SDEs

In this section we prove a theorem giving sufficient conditions on the coefficients u(-),o(-) for
the existence and uniqueness of the solution to the associated spE. We will consider solutions to the
equation

dX; = ,u(t, Xt) dt + O'(t, Xt) dB; (613)

Note that we have assumed explicit dependence on time ¢ of the drift and diffusion coefficients as
this will allow us to weaken the conditions of the following theorem:

THEOREM 3.1. Fiz a terminal time T > 0. Assume that o(t,z) and u(t,z) are globally Lipschitz
continuous, i.e., that there is a positive constant K so that for any t € [0,T] and any x and y we
have |u(t,x) — p(t,y)| + |lo(t,x) — o(t,y)| < K|z —y|. Then the sDE (6.13) with initial condition

Xo = x has a solution
¢

t
X, :x+J u(s,Xs)ds+J o(s,Xs)dBs,
0 0

and this solution is strongly unique. Furthermore the solution satisfies is in L?(2 x [0,T1]), i.e.,

t
E {f des] <.
0

It is clear that in order for the solution X; to be well defined we need that

t t
f lp(s, Xs)|ds < o0 and j o(s,X,)%ds < 0 aus.
0 0

However, the assumptions of Theorem 3.1, while being easier to check, are more strict than the ones
above. It is useful to recall that these assumptions are needed even for obpEs to have existence and
uniqueness: we remind in the following examples how the non-Lipschitz character of the drift can

EXAMPLE 3.2 (Existence). The ODE
d
d—f = z? with z(0) =1
has a drift coefficient u(x) = x? that is not uniformly Lipschitz continuous (although it is locally

1

Lipschitz continuous) because it grows faster than linearly. This oDE has a solution x(t) = 1=.

However, it is clear that this solution is only well defined for all t € (0,1) and diverges fort — 1. In
other words, the solution to this ODE does not exist beyond t = 1.

EXAMPLE 3.3 (Uniqueness). The oDE

dzx
a = 2\/ |.'L'|

is not locally Lipschitz continuous at x = 0. The solution of this oDE with initial condition xo = 0 is
not unique. Indeed, it is immediate to check that

16 =0 and Tt = t2,
are both solution to this equation with the given initial condition.
3.1. Proof of Theorem 3.1.
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Preparatory results. We start by proving two very useful lemmas:

LEMMA 3.4. (Gronwall’s inequality) Let y(t) be a nonnegative function such that
t
1) <A+ DJ y(s)ds (6.14)
0

for nonnegative A, D € R. Then y(t) satisfies
f(t) < Aexp (Dt)

PROOF OF LEMMA 3.4. By repeatedly iterating the (6.14) we obtain

y(t) < A+ L Dy(s)ds

t s
<A+f D(A—Fj Dy(q)dq> ds
0 0

t t s
<A+AJ Dds+J DJ Dy(q)dqds

A+ADt+D2fJ (A+Df >dqu

A+ADt+AD2fJ dqu+D3JJJ r)drdgds <

D2t2 D3t3
<A+ ADt+ A +D4JJ J f 7)drdrdgds.

We notice that repeating the above procedure k times we will obtain the first k& terms of the Taylor
expansion of A exp Dt plus a remainder term resulting from an integral iterated k + 1 times. For
finite T" we can bound such integral by defining the constants

C:= J s)ds < oo and G:=A+DC,

so that y(t) < G. Consequently, we can bound the remainder term by Gt**!1 D**+1 /k! which vanishes
exponentially fast in the limit £ — oo, uniformly in ¢ € [0, T].

Alternative proofs assuming the existence and uniqueness of solutions to oDpEs can be found in
any good oDE or dynamics book. For instance [6] or [5]. O

LEMMA 3.5. Let {yn(t)} be a sequence of functions satisfying
® yO(t) < A7
t
.« gnia(t) < Df yn(s)ds <0 ¥n>0,te0,T],
0
for positive constants A, D € R, then y,(t) < CD"t"/n!.

PROOF. the proof of this result goes by induction: the first step is trivial, while for the induction

step we have
t t DT Dn+1tn+1
t)<D ds<D | C lds =C——.
meat) <D [ (s < D | 02 Etas - e
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Uniqueness for spe. If X;(¢) and X,(¢) are two solutions then taking there difference produces

X, (t) — Xat) = j

0
We now use the fact that

max{(a — b)?, (a + b)*} < (a —b)? + (a + b)* = 2a? + 20

t t

[14(s, X1(5)) — (s, X2(s))] ds + L [o(s, X1(s)) — o(s, X2(s))] dBs

gives
2
+2

2

t
X1 (t) — Xa(1)|* <2 f [o(s, X1(s)) — o(s, X2(s))] dBs

0

t
f (15, X1 (5)) — (s, Xa(s))] ds

0
<(I)+ (IT)

Next recall that Holders (or Cauchy-Schwartz) inequality implies that (Sé fds)? <t Sé f?ds (apply
Holder to the product 1- f with p = ¢ = 2.) Hence
t

E(I) < QtEJ 145, X1(5)) — (s, Xo(s))]? ds < 26K f[@ X1 (s) — Xa(s)[? ds

0 0
Applying It6’s isometry to the second term gives
t t
E(I1) :2f E|o(s, X1(s)) — o(s, Xa(s))|* ds < 2K2J E|X1(s) — Xa(s)]* ds
0 0

Putting this all together and recalling that ¢ € [0, 7] gives

E|X1(t) — Xo(t)]* < 2K%(T + 1) KE | X1(s) — Xo(s)|* ds

Hence by Gronwall’s inequality Lemma 3.4 we conclude that E | X (t) — X (t)|* = 0 for all ¢ € [0, T7.
Hence X (t) and X(t) are identical almost surely.

Existence for spe. The existence of solutions is proved by a variant of Picard’s iterations. Fix
an initial value z, we define a sequence processes X, (t) follows. By induction, the processes have
continuous paths and are adapted.

Xo(t) =T

X1(t) =IL‘+J

0

t t

wu(s,z)ds + J o(s,z)dBs
0

t t

(s, Xn(s))ds + L o(s, Xn(s))dBs

Xpt1(t) =z + J

0

Fix t > 0, we will show that X,,(t) converges in L?. Hence there is a random variable X (t) €

L*(Q,F,P) and X, -z, X(t). Let y,(t) = E[(Xp11(t) — Xn(t))?], we will verify the two conditions
in Lemma 3.5. First, for n = 0 and any t € [0, T],

o(t) = B [(X () — Xo(1))?] < 28 [(f tMS’x)dS)Q] en [(f t"“’“)st)Z]

0 0

<oE [(Ltmuxlds)?] +2E[(ﬂm1+m|d35)2
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where the second inequality uses the fact that the coefficients are growing no faster than linearly.
Second, similar computation as for the uniqueness yields

t

Yns1(t) < 2K2(1 + T)J yn(s)ds Vte[0,T], n=0,1,2...
0

which is finite by induction. Lemma 3.5 implies
4K? + AK2T)"
n!

nlt) = E[(Xoa (1) — Xa(1))?] < O

)

which goes to zero uniformly for all ¢ € [0,77]. We thus conclude X,,(¢) converges in L? uniformly
and their L2-limit, X (t) € L?(Q, F, P).

It remains to show that the limit process X (
Elp(t, Xn(t)) — p(t, X (2)
< KPE[(Xa(t) - X(1))?

— 0, uniformly in ¢

t) solves (6.13). Since X, L, X, we have

I* + Elo(t, Xa(t)) — o(t, X(1))]?

)
]+ K*E[(Xn(t) — X (t))°]

By Ito’s isometry and Fubini:

E [(K o (5, Xon(3))d B — Lta(s,X(s))st>2] _E [(Lta(s,Xn(s)) _o(s, X(s))st>2

:LE[(U(S,Xn(s))—a(s,X(s))) 1ds =% 0.

Similarly, by Cauchy-Schwarz inequality we have that :

i [(Lt 1(5, Xn(s))dB, — fotu(s,X(s))ds> 2] =K [(Ltu(s,Xn(S)) - M(S,X(S))ds> 2]

— ¢ B [(u(s, X (9) — s, X(5)))*] ds " 0.

0

We thus have

t t

(s, X (s))ds + J o(s,X(s))dBs,

0

X(t)=x+f

0
i.e., X(t) solves (6.13).

REMARK 3.6. Looking through the proof of Theorem 3.1 we see that the assumption of global
Lipschitz continuity can be weakened to the following assumption

i) |u(t,x)| + |o(t,z)] < C(1 + |z|) (necessary for existence),
i) |p(t,x) — p(t,y)| + |o(t,z) —o(t,y)| < Cle —y| (necessary for uniqueness) .

4. Weak solutions to SDEs

Until now we have studied strong solutions to SDEs, i.e., solutions for which a Brownian motion
(and a probability space) is given in advance, and that are constructed based on such Brownian
motion. If we are only given some functions u(x) and o without fixing a Brownian motion, we may
be able to construct a weak solution to an spE of the form (6.1). Such solutions allow to choose a
convenient Brownian motion (and consequently a probability space!) for the solution X; to satisfy
the desired sSDE.
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DEFINITION 4.1. A weak solution of the stochastic differential equation (6.1) with initial condition
Xo ~ po for a given probability distribution pg is a continuous stochastic process X; defined on some
probability space (0, F,P) such that for some Brownian motion By and some filtration {F;} such
that Bj(t) € F; and for any 0 < s < t, Bj(t) — Bj(s) is independent of Fs, the process X; is adapted
and satisfies the stochastic integral equation (6.2).

In other words, in the case of a weak solution we are free to chose some convenient Brownian
motion that allows X; to be a solution. In this sense, these solutions are also distributional solutions,
i.€., solutions that have the “right” marginals.

Because two solutions X, Y; may live on different probability spaces, we cannot compare their
paths as in the case of strong solutions. Instead, we weaken the concept of strong uniqueness to the
one of weak uniqueness, i.e., uniqueness in law of the solution process:

DEFINITION 4.2. The weak solution of a SDE is said to be weakly unique if any two solutions
X, Vi have the same law, i.e., for all {t; € [0,T]}, {4; € B} we have

=P [ﬂm € Ai}] .

EXAMPLE 4.3. Consider the spE dY; = dB; with initial condition Yy = 0. This sDE has clearly
a strong solution, which is Y; = By. If we let W, be another Brownian motion (possibly defined on
another probability space) then Wy will not be, in general, a strong solution to the above SDE (in the
case that the two probability spaces are different, the two solutions cannot even be compared). It
will, however, be a weak solution to the SDE, as being a Brownian motion completely determines the
marginals of the process.

P

ﬂ{th‘ € AZ}

We will now consider an example for which there exists a weak solution, but not a strong
solution:

EXAMPLE 4.4 (Tanaka’s sDE). For certain p and o, solutions to (6.1) may exist for some
Brownian motion and some admissible filtrations but not for others. Consider the sDE

dX; = sign(Xy)dB;, Xo = 0; (6.15)
where o(t,x) = sign(z) is the sign function
. +1, ifz=0
sign() = { -1 iJJ:w <0.

The function o(x) is not continuous and thus not Lipschitz. A strong solution does not exist for
this sDE, with the filtration F = (F;) chosen to be F; := 0(Bs,0 < s < t). Suppose Xy is a strong
solution to Tanaka’s SDE, then we must have

Fii=0(Xs,0<s<t) S Fp. (6.16)

Notice that for any T = 0, SgE [sign(Xt)z] ds < oo, the Ito integral SS sign(Xy)dBs is well defined
and Xy is a martingale. Moreover, the quadratic variation of Xy is

(X7, = jt[sz’gn(Xt)Fds _ J st

0 0

thus X; must be a Brownian motion (by Lévy’s characterization, to be proved later). We may
denote X; = By to emphasize that it is a Brownian motion. Now multiplying both sides of (6.15) by
sign(Xy), we obtain

dB; = sign(B;)dB;. (6.17)
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and thus By = Sé sign(B,)dBs. By Tanaka’s formula (to be shown later), we then have
By = |By| — Ly
where Ly is the local time of By at zero. It follows that By is o(|Bs|,0 < s < t)-measurable. This
leads to a contradiction to (6.16), because it would imply that
FiCo(|Bs,0<s<t) S o(Bs,0< s <t)=F.
Still, as we have seen above, choosing X; = Bt there exists a Brownian motion B such that Tanaka’s

SDE holds. Such pair of Brownian motions forms a weak solution to Tanaka’s equation.

5. Markov property of It6 diffusions

The solutions (weak or strong) to stochastic differential equations are referred to as diffusion
processes (or I1t6 diffusions).

DEFINITION 5.1. An It6 process dXy = pp dt + o4 dBy is an Ito diffusion if py, op are measurable
WRT the filtration {F;X} generated by X; for all t € [0,T], i.e.,

X
Mt,O'tEJ—"t .

REMARK 5.2. It is clear that solution {X;} to the spbE dX; = u(t,Xy)dt + o(t, X;) dB; for
continuous functions u, o is an Ité diffusion. For this reason, such sbEs are called of diffusion-type.

Recall Def. 7.12 that a Markov process is a process whose future depends on its past only
through its present value, while if this property holds also for stopping times, the process is said to
have the strong Markov property (crr Def. 7.16).

THEOREM 5.3. The solution {X:} to the SDE
dX; = p(t, Xy)dt + o(t, X;) dBy, (6.18)
has the strong Markov property.
While we do not present the proof of this result, which can be found in [14], it should be
intuitively clear why solutions to (6.18) have the Markov property. Indeed, we see that the drift
and diffusion coefficients of the above SDE only depend on the time and on the value of X; at that

time (and not on its past value). This fact, combined with the independence of the increments of
Brownian motion results in the Markov (and the strong Markov) property of such solutions.
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CHAPTER 7

PDEs and SDEs: The connection

Throughout this chapter, except when specified otherwise, we let {X;} be a solution to the spE
dXt = ,U,(t, Xt) dt + O'(t, Xt) dBt . (71)

As we have seen in the last chapter, solutions to the above equation are referred to as diffusion
processes. This name comes from the fact that Brownian motion, the archetypal diffusion process,
was invented to model the diffusion of a dust particle in water. Similarly, in the world of partial
differential equations, diffusion equations model precisely the same type of phenomenon. In this
chapter we will see that the correspondence between these two domains goes well beyond this point.

1. Infinitesimal generators

Having seen in the previous chapter that solutions to spEs possess the strong markov property,
we introduce the following operator to study the evolution of their finite-dimensional distributions:

DEFINITION 1.1. The infinitesimal generator for a continuous time Markov process Xy is an
operator A such that for any function f,

(7.2)

Af(z) = lim E[f(XHdt)PZ =] — f(x)’

provided the limit exists. The set of function for which the above limit exists is called the domain
D(Ay) of the generator.

This operator encodes the infinitesimal change in the probability distribution of the process X;.
One way of seeing this is by choosing f(z) = 14(x) for a set A € R%.

We now look at some examples where we find the explicit form of the generator for It6 diffusions:

EXAMPLE 1.2. The infinitesimal generator for a standard one-dimensional Brownian motion By
18
1 d?
2 da?
for all f that are C? with compact support. To derive this, we first apply Ité’s formula to any f € C?
and write

A=

1B = 580 + [ Bga.+ [ 1 s

~ F(Bo) + ff dB+f1dd22f<>

Apply this formula to two time points t and t + r, we have
t+r t+r 1 d2

F(Be) = 1(B) + | (BB + | 5B

t
7



When f has compact support, f'(x) is bounded and suppose |f'(x)| < K and thus for each t,

t t
f E (f(By)) ds < f K?ds = K%t < .
0 0

Hence the first integral has expectation zero, due to Ité’s isometry. It follows that

Bt—x}

~swee{ [ rwoam+ [ L rma|

t+r 2
~f@) B[ 5B

where the second equality is due to the independence of the post-t process Birs — By and By.
Subtracting f(x), dividing by v and letting r — 0 on both sides, we obtain

E [ e %%f(Bs)ds]

t+r t+r 1 d2

f'(Bs)dBs +L 3 Tn —— [ (Bs)ds

ELF(Buo)| By = 2] = f(x) + E{ t

E[f(Biyr)| B = x] — f(x)

Af(z) = lim = lim
rl0 r )0 r
(B[S 3L r(Bas) |, dg””ﬂ«:[dx? (B,) | ds
B dr dr
1 d? 1 d? 1 d?
= gar! B = ggp B = 5l

In the above calculation, we inverted the order of the integrals using Fubini-Tonelli’s theorem.

REMARK 1.3. Here we omit the subscript t in the generator A because Brownian motion is
time-homogeneous, i.e.,

E[f(Bitar)| By = 2] = f(x) _ E[f(Bsyar)|Bs = ] - f(2)

dt dt
and thus A¢f(x) = Asf(x). The generator A = %% does not change with time.

The procedure to obtain the infinitesimal generator of Brownian motion can be straightforwardly
generalized to the case of It6 diffusions:

EXAMPLE 1.4. Assume that X; satisfies the sDE (7.1), then its generator A; is

2
A = it ) pay ¢ TED L g &

for all f € C? with compact support. The computation is similar to the Brownian motion case. First

apply Ité’s formula to f(X;) and get

t+r 0_2 s B 2 t+r
FC6er) = )+ [ s rx + TR poe fase [ ot 0 40X a,

Then wusing the fact that f € C? with compact support, the last integral has expectation zero.
Conditioning on X; = x, computing [f(Xt“”Xt 2] f(x), exchanging integrals by Fubini-Tonelli and
taking r — 0, we conclude that the generator has the form (7.3).

The above example can be further generalized to the case when the function f also depends on time:
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EXAMPLE 1.5. Consider the two dimensional process (t,X;), where the first coordinate is
deterministic and the second coordinate X; satisfies (7.1). We treat it as a process Y; = (t, X;) € R2.
In this case, the generator of Yy, according to the definition in (7.2) is given by

Asf(t,x) = llitﬂ% ELf(Yita)|Ys Zdt(t, z)] — f(t, x)
o? 2
= M(t,iv)%f(t,l') + %x)aang(t,l') i %f(t,x) (74)

for any f € CY2 that has compact support.

Formally speaking, if A; is the generator of X;, what A; does to f is to map it to the “drift
coefficient” in the stochastic differential of f(X,), i.e.,

df (X¢) = A f(X¢) - dt + (something) - dBy
REMARK 1.6. The notation here is slightly different from [Klebaner], where Klebaner always

uses Ly to denote the operator on functions f € CY? so that

0'2 T 2
Lif(t,2) = e, )7 t,2) + T T2 gt (1.5)

and call such Ly the “generator of X;”. Comparing this form with (7.3) and (7.4), and since L;
acts on CY? functions, we can relate Ly to the generator Ay of (t,Xy), i.e.,

Lif(t,) + 5 (6,) = Acf(t,2)

When we look at martingales constructed from the generators, A; will give a more compact (and
maybe more intuitive) notation.

Exercise. Find the generator A; of (X¢,Y;), where X; and Y; satisfies

dXt = /,L(t, Xt)dt + O'(t, Xt)dBt

What if X; and Y; are driven by two independent Brownian motions?

2. Martingales associated with diffusion processes

Suppose X; solves (7.1) and A; is its generator (see (7.3)). For f € C2, we know from Ito’s
formula that
¢ ¢
f(Xy) = f(Xo) + f Asf(Xs)dt + f o(s, Xs)f'(Xs)dBs
0 0
Under proper conditions, the third term on the right is a well-defined It6 integral and also a
martingale. We can construct martingales by isolating this integral, i.e., let

M= 550 - £%0) - [ Aoxas (= [ otsxorxoan.) (76)

and we will see that for certain u, o and f functions, M; will be a martingale. First of all, if X; is a
solution to (7.1) (either weak or strong), then, by definition, M; is always G; := 0(X;,0 < s < ?)
measurable. So from now on, for the purpose of constructing martingales, we will only say “X,
solves the spE (7.1)” without specifying whether X; is a strong or a weak solution. Recall that if

JtE[02(s, X)) f%(X,)]ds < oo, (7.7)
0
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then the It6 integral Sé o(s, Xs)f'(Xs)dBs is a martingale. Therefore, the usual technical step is to
prove (7.7) in order to conclude that M, is a martingale.
Theorems 6.2 in [Klebaner| gives a set of conditions for M; to be a martingale:

CONDITION 1. Let the following assumptions hold:

i) p(t,x) and o(t,x) are locally Lipschitz in x with a Lipschitz constant independent of t and
are growing at most linearly in x; and

ii) fe C? and f' is bounded,

Condition (i) implies that (7.1) has a strong solution, but more importantly, it controls the
speed of growth of the solution X; (see Theorem 5.4 and also the proof in Theorem 6.2 of [Klebaner]
for more details); (ii) controls the magnitude of f, which together with (i) ensure the finiteness of
the integral in (7.7). [9, Theorem 6.3] gives a n alternative set of conditions to Condition 1, however,
the proof follows the same idea. The above result can be summarized in the following theorem

THEOREM 2.1. Let {X:} be a solution to (7.1), f a function such that Condition 1 holds, then
M, defined in (7.6) is a martingale.

We now generalize the above result to the case when f is time-dependent. Let X; solve (7.1). If
A, is the generator of the two dimensional process (¢, X;) (see the expression in (7.4)), then for any
function f(t,z) e C12

t

M, = (L, X)) — £(0, Xo) — L A f(s, X.)ds (7.8)

can be a martingale if u, o and f satisfy certain conditions. Again, using It6’s formula, we see that
t 0
M; = J J(S,Xs)a—f(s,Xs)st
0 X
The approach to show that M; is a martingale is the same as above. For example, if Condition 1 (ii)
above is modified to
CONDITION 2. Let the following assumptions hold:

i) p(t,z) and o(t,x) are locally Lipschitz in x with a Lipschitz constant independent of t and
are growing at most linearly in x; and
i) fe CY? and a%f(t, x) is bounded for all t and x.

then, we can conclude that M; defined in (7.8) is a martingale:

THEOREM 2.2. Let {X;} be a solution to (7.1), f a function such that Condition 2 holds, then
My defined in (7.8) is a martingale.

One advantage of using A; instead of L; is that we can express M; in the same form, that is,
M = f(Xy) — f(Xo) — Sé Asf(Xs)ds, provided Ay is chosen to be the generator of X; (which might
be high-dimensional). The following are a few immediate consequences, stated under Condition 2.
However, one should keep in mind that there are other conditions, under which these claims are
also true.

COROLLARY 2.3 (Dynkin’s formula). Suppose that X; solves (7.1) and that Condition 2 holds.
Let Ay be the generator of (t,Xy) (see (7.4)). Then for any t € [0,T],

ELf(t, X0)] = £(0,Xo) + E [ | t Asf<s,Xs>ds] ,

The result is also true if t is replaced by a bounded stopping time T € [0,T].
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COROLLARY 2.4. Assume that X; solves (7.1) and that Condition 2 holds. If f solves the
following PDE

o(t,x) 0?

(Af(t,2) =) wltsa) 5 f(t) + T g

0
or (t,x)“raf(t,l') EO;

then f(t, Xy) is a martingale.

EXAMPLE 2.5. Consider Xy = By, then o0 =1 and p = 0, which satisfies Condition 2 (i). Then,
for any f(t,x) that satisfies Condition 2 (ii’) (or conditions in Theorem 6.3 of Klebaner) and solves

1 02 0
iwf(t,l‘) + Ef(ta r) =0,

2

. . _ _ 3 _ t/2 x—t/2
Y * ) Y 9y 9y ? 7 *
f(t, By) is a martingale. For example, f(t,x) = x,x* —t,x° — 3tx, e“sin(x), or e

3. Connection with PDEs

In the previous section we have seen that under proper conditions the solution f of some PDE

can be used to construct a martingale. In this section, we will see that the solutions of certain PDES
may be represented by the expectation of the solution of the SDE.
Throughout this section we will assume that X; solves the spe (7.1) whose coefficients satisfy
Condition 2 (i), and A; is the generator of (¢, X;) as given in (7.4). Furthermore, we assume that
f satisfies Condition 2 (ii’). Note that other conditions, under which M; defined in (7.8) is a
martingale, would also work.

3.1. Kolmogorov Backwards Equation.

THEOREM 3.1. Under the standing assumptions, if f(t,x) solves the PDE

Aif =0 forallt e (0,7T)
{f(T,m ~ o() | (79)
for some function g such that E[|g(X7)|] < 0. Then,

f(t,x) =E(g(X7)| X = x), forallte[0,T].

PROOF. Under the standing assumptions and the fact that A;f = 0, we know that f(¢, X;) is a
martingale, due to Corollary 2.4. Then for any t € [0, 7],
E[f(Ta XT)|]:t] = f(taXt)
Using the boundary condition, we have f(T, X7) = g(Xr). The result then follows from the Markov
property of the solution to the diffusion-type spg, i.e.,
f(t, Xy) = E[g(X7)[F] = E[g(X7)|X:].
O
REMARK 3.2. Note that the above theorem, assuming that f(t,x) solves the given PDE, represents
expectation values of the process X in terms of such solutions. Under suitable reqularity conditions
on the coefficients of the sDE (7.1) and on the boundary condition g(x) one can show that such

expected value is the unique solution to the PDE (7.9). These results, however, go beyond the scope
of this course and will not be presented here. We refer the interested reader to, e.g., [14].

DEFINITION 3.3. For a Ité diffusion {X;} solving (7.1) the PDE (7.9) is called the Kolmogorov
Backwards equation.
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The name of the above PDE is due to the fact that it has to be solved backwards in time, i.e., the
boundary condition in (7.9) is fixed at the end of the time interval of interest. This may seem at
first counterintuitive. One possible way to interpret this fact is that bringing the time derivative on
the other side of the equality we obtain —d;f = L, f, where L; is the generator defined in (7.5). In
this form, the “arrow of time” is given by the fact that ¢? has nonnegative values and corresponds
to the second derivative “widening the support” of f, and the negative sign in front of the time
derivative corresponds to an evolution in the “reverse” direction. Another way of understanding
the fact that the direction of time is reversed in (7.9) is the following: in order to establish an
expectation WRT a certain function in the future (e.g., the value of an option at expiration), an
operator that evolves such function should project it backwards to the information we have at the
moment, 4.e., the value of X;

EXAMPLE 3.4. Letting g(x) = 14(x), we have that being able to solve (7.9) is equivalent to
knowing

E[1a(X7r)|X; = 2] = P[Xr € A|X, = 2] .

ExXAMPLE 3.5. Letting X; be the solution to the Black Scholes model dX; = uX;dt + 0 X; d By
and g(x) = V(x) some value function of an option at time T, then being able to solve (7.9) is
equivalent to knowing the expected value of that option at expiration: E [V (Xp)| X = z].

We now state an extension of Theorem 3.1 which deals with the case where the right side of the
PDE is nonzero.

THEOREM 3.6. Under the standing assumptions, if f(t,x) solves the PDE

Arf(t,x) = —¢(x) forallte (0,T)
f(T,z) = g(x)

for some bounded function ¢ : R — R and g such that E[|g(X71)|] < 0. Then,

st =5 (g0 + [ oxs

X = x) ,  forallte|0,T].
PRrROOF. By Theorem 2.2 we have that

t
My = f(t, X)) — £(0,Xp) - L Auf (s, X)ds

is a martingale. Plugging in A;f(t,x) = —¢(x) and taking conditional expectation of Mr|F;, since
M, = E(Mrp|F;) we get
]—‘t>

t T
F(6.X0) — F(0. X0) — fo Auf (s, X)ds = E(F(T, X)|Fy) — £(0,Xp) —E (L Af(s, X, )ds

g

thm']

which can be rewritten as

T
(LX) —E [g(XT> + [ ol

Finally, by the Markov property of It6 diffusions, we obtain

flt,x) =K [Q(XT) + LT P(Xs)ds

82



3.2. Feynman-Kac formula. Theorem 3.1 can be generalized even further:
THEOREM 3.7 (Feynman-Kac Formula). Under the standing assumptions, if f(t,z) solves
Arf(t,x) = r(t,x) f(t, x) for allt € [0,T]
{f(iﬂx) — g() |
where (t,x) and g(x) are some bounded functions, then

flt,z) =E (67 I T(S’Xs)dsg(XT)‘ X = x) .

(7.10)

Furthermore, f(t,x) above is the unique solution to (7.10).

PROOF. The proof of uniqueness of the solution goes beyond the scope of this lecture and we
do not prove it here. As in the previous cases, we want to show that the content of the expectation
value is a martingale. Therefore, consider

M, :=e" §i T(S’Xs)dsf(T, X;).
Defining U, = e~ it r(s:Xs)ds 'y — f(r, X;) we apply Itd6’s formula to obtain
AM, = d(U,Y;) = U;d(Y;) + Yed(Uy) + d[U, Y], .

Recall from the chapter on the stochastic exponential that U, = £(r(7, X;)) and that therefore
dU; = r(1,X;)U;d7r. Furthermore, we recognize that U, has finite variation, so d[U,Y] = 0.
Combining these observations we obtain by It6’s formula for f, that

an, - v, ( |01 X0) 4 il X201 (1 X0) 4 o X P2t (. 0) | ar

+ o(1.X:) 0 f (1, X;)dBr — (7, X;) f(T, XT)dT)

=U; (Ar — (7, X7)) f(1, X7) + o(7.X7) 0 f (7, X7) dB;) .

We immediately realize that the drift term in the above formula vanishes by assumption, and that
the It6 integral term is a martingale by the standing assumptions on f, ¢ and u. Consequently, the
expected vylue of the martingale is constant and we have that

T
F(t,2)e® = My = E[Mr|F] = E [e—&s T(S’Xs)dsg(XT)‘ X, = x]
O

ExAMPLE 3.8 (Example 3.5 continued). Let us consider the Black Scholes model i.e., dX; =
uXydt + o Xy dBy for o, € R. We consider the case where one can cash his/her option and obtain
a risk-free interest that satisfies the ODE

dXt = T‘Xt dt s

for a positive constant r € R. Then, one needs to factor such possible, risk-free earning in the
value V (t, Xy) of the asset X; (the underlying), i.e., compare the expected value at future time T,
V(Xr) = V*(Xr) with the projected risk-free value today:

TV (L, Xy) = E[V*(X7)| X; = 2]
or, in other words,
V(t,X,) =E [e—“T—f)V(XT)\Xt - x] .
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The above is an example of the expected value in Theorem 3.7, and therefore obeys the PDE
OV (t, ) + pad,V(t, ) + 3022202,V (t,z) —rV(t,z) =0 for all t € [0,T]
V(T,x) =V*(x) ’
which is called the Black Scholes equation.

4. Time-homogeneous Diffusions

In this section we now consider a class of diffusion processes whose drift and diffusion coefficients
do not depend explicitly on time:

DEFINITION 4.1. If X; solves
then X, is a time-homogeneous [to diffusion process.

Intuitively, the evolution of such processes does not depend on the time at which the process is
started, i.e., P[X; € A|Xo = z9] = P[ X35 € A|Xs = x¢] for all Ae B(R), seT st. t+seT.In
other words, their evolution is invariant wRrT translations in time, whence the name time-homogeneous.

DEFINITION 4.2. Given a SDE with a unique solution we define the associated Markov semigroup
Py by

(Pro)(7) = Expp(Xy)

To see that this definition satisfies the semigroup property observe that the Markov property
states that

(Prts9)(7) = Exd(Xivs) = EEx,¢(Xy) = Eo(P19)(Xs) = (PsPio) () -
Note that for the class of processes introduced above the infinitesimal generator is time-independent,
i.e., we have Ayf = Af. As a further consequence of the translation invariance (in time) of the spE
(7.11), the fact that the final condition of the backward Kolmogorov equation is at a specific time T'
is not relevant in this framework. This enables us to “store” the time-reversal in the function itself

and look at the backward Kolmogorov equation as a forward equation as we explain below.
Let f_(x,t) be a bounded, C*! function satisfying

of_
o~ k- (7.12)
f-(2,0) = g(x)

where L is the generator defined in (7.5). For simplicity we also assume that ¢ is bounded and
continuous. Then we have the analogous result to Theorem 3.1

THEOREM 4.3. under M; = f_ (X, T —t) is a martingale for t € [0,T).

PRrOOF. The proof is identical to the Brownian case. We start by applying It6’s formula

f-(Xo, T = 5) = f-(Xo,T) —f:[— ‘if;( T =)+ (L12) (X5, T =) |dy
+ fo ‘Zj (X,,T—~)dB, .

As before the integrand of the first integral is identically zero because % = Lf_. Hence only the
stochastic integral is left on the right-hand side. (|

And as before we have
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COROLLARY 4.4. In the above setting
f-(z,t) = E[g(X;)| X0 = 2]
The restriction to bounded and continuous ¢ is not needed.
PROOF OF COR. 4.4. Since s — f_ (X, T —s) — f-(Xo,T) is a martingale,
E[f-(X1,0)[Xo = z] = E[u(Xo, T)|Xo = 7]

because at s = 0 we see that f_ (X, T —s) —u(X(0),T) = 0. Since E[u(Xo,T)|Xo = z] = u(z,T)
and E[f_(X7,0)|Xo = 2] = E[g(X7)| X0 = ], the proof is complete. O

For a more detailed discussion of Poisson and Dirichlet problems we refer to [14].

5. Stochastic Characteristics

To better understand Theorem 4.3 and Corollary 4.4, we begin by considering the deterministic case

of
= = (0 V)f- (7.13)
f-(2,0) = f(z)

We want to make an analogy between the method of characteristics used to solve (7.13) and the results in
Theorem 4.3 and Corollary 4.4. The method of characteristics is a method of solving (7.13) which in this
simple setting amounts to finding a collection of curves (“characteristic curves”) along which the solution
is constant. Let us call these curves z(t) were t is the parametrizing variable. Mathematically, we want
f=(&(t),T—t) to be a constant independent of ¢ € [0, T] for some fixed 7. Hence the constant depends only on
the choice of £(t). We will look of £(t) = (£1(¢), -+ ,&4(t)) which solve an ODE and thus we can parametrize
the curves &(t) by there initial condition £(0) = z. It may seem odd (and unneeded) to introduce the finial
time 7". This done so that f_(T,x) = f_(T,£(0)) and to keep the analogy close to what is traditionally done
in spEs. Differentiating f_(£(t),T — t) with respect to ¢, we see that maintaining constant amounts

dof- d¢; of- d yot=
> 5o 0T =5 = =€) Z N €0 T = 1)

where the last equality follows from (7.13). We conclude that for this equality to hold in general we need

dg
o~ bE) and £(0) =
Since f_(&(t),T —t) is a constant we have
f-(£(0),T) = f-(&(T),0) = f-(z,T) = f(&(T)) (7.14)

which provides a solution to (7.13) to all points which can be reached by curves (7). Under mild assumptions
this is all of R

Looking back at Theorem 4.3, we notice that differently from the ode case we did not find a SDE X,
which keeps f_(X;,T —t) constant in the fully fledged sense. However, we have obtained something very
close to it: We chose t — f_(X;, T —t) to be a martingale, i.e., a process that is constant on average! This
is the content of Theorem 4.3 and Corollary 4.4 (putting the accent on the expectation part of the result),
which mimicks the result of (7.14), only with the addition of expected values. Hence we might be provoked
to make the following fanciful statement.

Stochastic differential equation are the method of characteristics for diffusions. Rather than
follow a single characteristic back to the initial value to find the current value, we trace a
infinite collection of stochastic curves each back to its own initial value which we then average
weighting with the probability of the curve.
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6. A fundamental example: Brownian motion and the Heat Equation

We now consider the simple but fundamental case of standard Brownian motion.

Let us consider a compact subset D = R? with a smooth boundary ¢D and a f(x) defined on
oD.

The Dirichlet problem: We are looking for a function u(x) such that

02 02
Ay = 02—;1 + 62—;2 =0 for y = (y1,y2) inside D.
lim u(y) = f(z) for all z € dD.

y—
Let B(t,w) = (B1(t,w), Ba(t,w)) be a two dimensional Brownian motion. Define the stopping time
7 =inf{t > 0: B(t) ¢ D}

Let E, be the expectation with respect to the Wiener measure for a Brownian motion starting
from y at time ¢t = 0. Let us define ¢(z) = E, f(B(7)). We are going to show that ¢(z) solves the
Dirichlet problem.

LEMMA 6.1. With probability 1, 7 < co. In fact, ET" < o0 for all r > 0.
PROOF.

P{r > n} < P{|B(1) — B(0)| < diamD, |B(2) — B(1)| < diamD,...,|B(n) — B(n — 1)| < diamD}

< [ [P{lIB(k) — B(k — 1)| < diamD} = o™ where a € (0,1)
k=1

Hence > 7, P{7 > n} < w0 and the Borel-Cantelli lemma says that 7 is almost surely finite. Now
lets look at the moments.

a0 e¢] 0¢]
Er" = JIETP{T edx} < Z n'P{r e (n—-1,n]} < 2 nP{r=n-1} < Z n"a" < oo
n=1 n=1 n=1

O

Lets fix a point y in the interior of D. Lets put a small circle of radius p around y so that the
circle in contained completely in D. Let 7,, be the first moment of time B(t) hits the circle of
radius p centered at y.

Because the law of Brownian motion is invariant under rotations, we see that B(7, ) is distributed
uniformly on the circle centered at y. (Lets call this circle S,(y).)

THEOREM 6.2. ¢(x) solves the Laplace equation.

PROOF. i) We start by proving the mean value property. To do so we invoke the Strong
Markov property of B(t). Let 7g = inf{t: B(t) € S,(y)} and zy = (pcos?, psind) be the
point on S,(y) at angle ©. We notice that any path from y to the boundary of D must pass
through S,(y). Thus we can think of ¢(y) as the weighted average of E{ f(B(7))|B(7s) = 2y
where 1 moves use around the circle S,(y). Each entry in this average is weighted by the
chance of hitting that point on the sphere starting from y. Since this chance is uniform
(all points are equally likely), we simply get the factor of % to normalize things to be a
probability measure.

1 21

21
o) = 3= | WELSBEN|BS) = 20} = 5= | dvatz) (715)
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ii) ¢(x) is infinitely differentiable. This can be easily shown but let us just assume it since we
are doing this exercise in explicit calculation to improve our understanding, not to prove
every detail of the theorems.

iii) Now we see that ¢ satisfies A¢p = (;27? + 29 0. We expand about a point y in the interior

6y§ -
of D.

5 8
62) =0l + 51— ) + 5o )
1[% , P , P ;
3 [ay%(’zl —y1)" + @(22 —y2)” + e (21— y1)(22 — y2)] +O0(lz — y[*)

Now we integrate this over a circle S,(y) centered at y of radius p. We take p to by
sufficiently small so that the entire disk in the domain D. By direct calculation we have

f (21 —y1)dz = U,J (22 —y2)dz = O,J (21 = y1)(22 — y2)dz = 0
Sp(y) Sp(y) Sp(y)

and

J (z1 — 11)%dz = (const)p?, f (22 — y2)2dz = (const)p? .
Sp(y) Sp(y)
Since by the mean value property,

o) = (const) | a(a)iz

Sp(y)

we see that
%y 0%

0 = (const)p? (—I—) +0(p) .
(const) oy  0y3 )
And thus,
%y ¢
Ap=——+—=—5=0

i
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CHAPTER 8

Martingales and Localization

This chapter is dedicated to a more in-depth study of martingales and their properties. Some
of the results exposed here are fairly general, and their proof in full generality required tools that
are more advanced than the ones we have at our disposal. For this reason, some of the proofs will
be given in a simplified setting/under stronger assumptions together with a reference for the more
general result.

1. Martingales & Co.
We recall the definition of a martingale given at the beginning of the course, extending it slightly.
DEFINITION 1.1. {X;} is a Martingale with respect to a filtration F; (Fi-martingale for short)
if for all t > s we have
i) Xy is Fi-measurable,
i) E[|Xy]] < o0,
ill) E[X¢|Fs] = X5 a.s. .
Similarly, X is a Fi-supermartingale [Fy-submartingale] is it satisfies conditions i) and ii) above,
and
E[X:|Fs] < X5, [E[X:|Fs] = Xs]  a.s..
When the filtration is clear from the context we simply say that a process is a [super/sub-Jmartingale.
Super- and Submartingales extend the idea of a process that is constant in expectation to
processes that are, respectively, nonincreasing and nondecreasing in expectation. It is clear that a

martingale is both a supermartingale and a submartingale, while a supermartingale that is also a
submartingale is a martingale.

PROPOSITION 1.2. A supermartingale [submartingale] My is a martingale on [0,T] if and only
if E[Mr] = E [Mo].

PROOF. The “only if” direction follows by definition: if M, is a martingale then E [Mr] = E [Mo]
and it is both a super- and a submartingale. For the “if” assume that M; is a supermartingale
and E [Mr] = E[Mp]. Assume by contradiction that it is not a martingale, i.e., that there is a set
W < Q of positive probability such that E [M;|Fs] < M; for all w € W. Then by the supermartingale
property of M; we have that

E[Mr] <E[M] =E[E[M|F]] < E[M] <E[Mo] ,
which contradicts the assumption. O

REMARK 1.3. By Jensen’s inequality on conditional expectations we have for any convez function
g : R— R, a martingale M; satisfies

E[g(M)|Fi] = g(E [M|F]) = g(Ms) ,
so application of a convex [concave] map to a martingale makes it a submartingale [supermartingale].
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Recall that a random variable X is [square-]integrable if E[|X|] < o [E[X?| < «]. The
condition of simple integrability of a random variable X can be equivalently stated as the condition

nh_r)roloE[‘X|1\X|>n] =0. (8.1)

Indeed, on one hand as limy, e | X |1 x|>n = 0 a.s. and E[|X]1x>,] < E[|X]|] < c© we have by
the dominated convergence theorem' that limy, . E [|X|1)x|>,] = E[0] = 0. On the other hand,
we have that

E[IX]] = E[|X[1jx<n] + E[IX[Lx)2n] <0+ E[JX]Lx20] (8.2)

and by using that both summands on the right hand side are bounded (the first by definition and
the second by assumption) we obtain that E [| X|] < co.
We now generalize the definitions above to stochastic processes.

DEFINITION 1.4. A stochastic process Xy on T = [0,T] (where possibly T = ) is
i) integrable if sup;er E[|X¢|] < o0
ii) square integrable if sup,r E[X?] < 0 (i.e., the second moments are uniformly bounded) ,
iii) uniformly integrable if limy, o sup;er E [|X¢|1x,j=n] = 0

The introduction of (8.1) allows to separate the concepts of simple and uniform integrability for
stochastic processes as in the latter definition the limit is taken after the supremum. As one would
expect, uniform integrability is stronger than simple integrability: similarly to (8.2) one has

sup E [|Xy[] = sup E [|X¢|1|x,)<n] + Sup E [|X¢|1x, 0] < 1+ supE [|X[1)x,5n] < ©.
teT teT teT teT
For the converse result we need stronger assumptions. We give below examples of such results:

PROPOSITION 1.5. A stochastic process {X;} is uniformly integrable if, either

i) It is dominated by a random variable Y defined on the same probability space, i.e., Xi(w) <
Y (w) such that E[|Y]] < oo,
ii) There exists some positive function G(z) on (0,00) with lim,_,o G(z)/z = 0 such that

supE[G(|X¢|)] < .
teT

PRrROOF. We only prove the first result, for which we have that
lim sup B [| Xe|1jx,>n] < lim E[[Y[Ly)sn] < o0

n=90 teT

For the proof of the second result we refer e.g., to [16]. O

In ii) of the above theorem we see that we need something sligthly better than simple integrability
to have uniform integrability. In particular we see that G(x) = 27 for any £ > 0 satisfies condition
ii) of the above theorem. In particular, all square integrable martingales are uniformly integrable.

THEOREM 1.6. LetY be an integrable random variable on a filtered probability space (Q, F,P, Fy),
then
M, :=E[Y|F] (8.3)

18 a uniformly integrable martingale.

PrOOF. We refer to Klebaner [9, Proof of Thm. 7.9]. O

1See Theorem 0.2 in the appendix for a reminder of this theorem
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We define a martingale such as the one in (8.3) as closed by the random variable Y. In particular,
for any finite time interval [0,7] by definition every martingale is closed by its value at T since
E [M7|F:] = M; and we have the following corollary.

COROLLARY 1.7. Any martingale My on a finite time interval is uniformly integrable.
The above results can be extended to infinite time intervals.

THEOREM 1.8 (Martingale convergence theorem). Let M; on T = [0,00) be an integrable
[sub/super[-martingale. Then there exists an almost sure (i.e., pointwise) limit limy_,oo My =Y,
and Y is an integrable random variable.

The above theorem does not establish a correspondence between the random variables in terms
of expected values. In particular, we may have cases where the theorem above applies but we have
limt_,oo E [Mt] #* E [Y]

EXAMPLE 1.9. Consider the martingale My = exp|B; — t/2]. Because it is positive, we have that

supE [|My]] = supE [M;] = E[My] =1 < 0,
teT teT

so it converges almost surely to a random variable Y by Theorem 1.8. However, we see that by the
law of large numbers for Brownian motion By/t — 0 a.s. and therefore

E[Y] = E|Jim M;| = E | lim /=12 0,

t—00

which differs from limy_,o, E[M;] = 1.

The above observation neans in particular that the conditions of Theorem 1.8 do not guarantee
convergence in the L' norm. Under the stronger condition of uniform integrability of the process
X, one obtains the same result with convergence in L' norm and consequently the closedness of the
martingale:

THEOREM 1.10. Let M, be a uniformly integrable martingale on T = [0,00), then it converges
ast — o0 in L' and a.s. to a random variable Y. Conversely, if M; converges in L' to an integrable
random variable Y then it is square integrable and converges almost surely. In both cases My is
closed by Y.

2. Optional stopping

After studying martingales per se, we consider their relation with stopping times. In particular,
we will see that martingales behave nicely with respect to stopping times. To be more explicit, given
a stochastic process X; and recalling the definition Def. 7.14 of a stopping time 7, we denote by
T A t = min(7,t) and define the stopped process

X, ift<r
X =X =
t Tt {XT else

The following theorem gives an example of the nice relationship between martingales and stopping
times: it says that the martingale property is maintained by a process when such process is stopped.

THEOREM 2.1. For a Fi-martingale My and any stopping time 7, the process M, ¢ is a Fi-
martingale (and therefore a Fr A t-martingale), so

E[M,n¢] = E[Mo] forallt>0. (8.4)
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Martingales are often thought of as fair games because of their property of conserving their
expected value: It is impossible, on average, to make positive gains by playing such game. Under
this interpretation, Theorem 2.1 states that even if a player is given the possibility of quitting the
game use any betting strategy, he/she will not be able to make net gains at time ¢ provided that
his/her strategy only depends on past information (cfr. Def. 7.14 of stopping time). However, the
above property is lost if the player is patient enough, as the following example shows:

EXAMPLE 2.2. Let B, be a Standard Brownian motion (a martingale, hence an example of a
“fair game”: you can think of it as a continuous version of betting one dollar on every coin flip) and
define Ty :=1inf{t : B; > 1} (the strategy of stopping as soon as you have a net gain of 1$). Then
by definition we have that B =1 # 0 = E[By].

A similar situation to the one described above holds when considering the “martingale” betting
strategy of doubling your bet every time you loose a coin flip. This strategy leads to an almost
sure net win of 1§ if one is patient enough (and has enough money to bet). As the examples above
shows, stopped martingales may lose the property of conserving the expected value in the limit
t — o0. The following theorem gives sufficient conditions for the martingale property to hold in this
limit, 4.e., for the expected value of a game to be conserved at a stopping time 7:

THEOREM 2.3 (Optional stopping theorem). Let M; be a martingale, T a stopping time, then
we have E[M;] = E[My] if either of the following conditions holds:

e The stopping time 7 is bounded a.s, i.e., IK < w0: 7 < K,

e The martingale M; is uniformly integrable,

o The stopping time is finite a.s. (i.e., P[T = o] =0), M, is integrable and
lim E[M;1,5,] =0.

t—00

PROOF. OJ

Under the gaming interpretation of above, we see that a game is “fair”, i.e., it is impossible
to make net gains, on average, using only past information, if any of the conditions i)-iii) hold. In
particular, in the case of coin-flip games (or casino games) we see that a winning strategy does not
exist as condition ii) holds: there is only a finite amount of money in the world, so the martingale is
uniformly bounded, and in particular uniformly integrable. A simplified example of such a situation
is given next:

ExXAMPLE 2.4. Let B; be a Standard Brownian motion on on the interval a < 0 < b and
define the stopping time T = 14, = inf{t € [0,00) : By ¢ (a,b)}. The stopped process B, At is
uniformly bounded and in particular uniformly integrable. Hence, by Theorem 2.3 we have that
E[B;] = E[Bo] = 0. However, we also have that B; = b with probability p and B; = a with
probability 1 — p, therefore

—a

b—a’

which we have concluded based on considerations based on the martingale properties of B and
therefore extends to any martingale for which T4 is finite a.s..

O:E[BT]:CL'(l_p)"_b'p = ]P[BT:b]:p:

We conclude the chapter by presenting the converse of Theorem 2.3:

ProPOSITION 2.5. Let X; be a stochastic process such that for any stopping time 7, X, is
integrable and E [Xo] = E[X,]. Then X; is a martingale.

PrOOF. We refer to Klebaner [9, Proof of Thm. 7.17]. O
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3. Localization

This section is devoted to the use of stopping times for the study of the properties of stochastic
processes. As we have seen, the stopped process may have some properties that the original process
did not have (e.g., uniform integrability on [0, c0) in Example 2.4). One can generalize such situation
to a sequence of stopping times, such as the following example:

ExaMPLE 3.1. Consider, similarly to Example 2.4, a Standard Brownian motion By on the
interval (—n,n) for n € N. Then we can define the stopping times 1, := inf{t : B; ¢ (—n,n)}. For
each n > 0, the process is uniformly integrable.

In the above example, by taking the limit n — 00 one would approach the original setting of
unbounded Brownian motion by approximating it with uniformly bounded stopped processes. This
prices can be extremely useful to obtain stronger results as the ones obtained previously in the
course, as we will see later in this section, and justifies the following definition:

DEFINITION 3.2. A property of a stochastic process X; is said to hold locally if there exists
a sequence {T,} of stopping times with the property lim, o 7,(w) = 00 a.s. such that the stopped
process Xy, a¢ has such property. In this case, the sequence {T,} is called the localizing sequence.

A particularly useful example is the one of the martingale property:

DEFINITION 3.3. An adapted process My is a local martingale if there exists a sequence of
stopping times {1} such that lim,,_,o 7, (w) = 0 a.s. and the stopped process M, i is a martingale
for all n.

It is clear that if a property holds in the original sense, then it also holds locally: one just has
to take 7, = n > t. On the contrary a local martingale is in general not a martingale:

ExXAMPLE 3.4. Consider the Ité integral Sé exp[B2?]dB;, fort < 1/4 and define 7, := inf{t >
0 : exp[B?] =n}. The process M, ¢ is a martingale, since we can write it as

t
My e = U = f eXp[BSQ]leXP[Bg]<" dBs

0
1s square integrable by Ito isometry. However, we have that
1 0
E [exp[QBf]] = — 27" e=7*/(20) 4y
2mt J_ o

which diverges for t > 1/4, implying that My is not integrable.

We now list some results that, besides allowing to practice the use of localization methods, give
sufficient conditions for a local martingale to be a martingale.

PROPOSITION 3.5. Let My be a local martingale such that |My| <<'Y for an integrable random
variable Y, then My is a uniformly integrable martingale.

PROOF. Let 7, be a localizing sequence, then for any n and s <t we have
E [Mt/\Tn|‘FS] = MS/\Tn .

Because 7, 1 o0 a.s. we have the pointwise convergence lim,_, Xsn7, = Xs. Furthermore by our
assumptions M is integrable, and we can apply Dominated Convergence Theorem? to obtain that

E[M|F] = E | lim Xinr, || = lim E[Xinr, 7] = lim Xonr, = M,
n—0o0 n—o0 n—0
showing that M; is a martingale. By Proposition 1.5 we establish uniform integrability of M;. O
2

a version of this theorem is presented in the appendix
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PROPOSITION 3.6. A non-negative local martingale My, for t € [0,T] is a supermartingale.

PROOF. Let {r,,} be the localizing sequence of M;. Then for any ¢ we have that lim,, o 7, At = ¢
a.s and therefore that lim, . M, .+ = M;. Consequently, by Fatou’s lemma on conditional
expectations we have

E[M|F,] =E [hm inf Mmtm] < lminfE[M;, .| F] = liminf My, s = My as.,
n—0o0 n—0o0 n—00

where in the second equality we have used that the limit exists. In particular, we have that
E [M;] < E[My] < o0. O

COROLLARY 3.7. A non-negative local martingale My on T = [0,T] for T < o is a martingale
if and only if E[Mr] = M

PRroOOF. This is a direct result of Proposition 1.2 and Proposition 3.6. (|

REMARK 3.8. As explained in [9] there exists a necessary and sufficient condition for a local
martingale to be a martingale: for the local martingale to be of “Dirichlet Class”, i.e., such that
such that the collection of random variables

X ={X, : 7 is a finite stopping time}
is uniformly integrable, i.e., Sup yex limy, o E [|X|1‘X|>n] = 0.

We now give some slightly more advanced examples of the use of localization procedure. We
begin by revisiting the problem of proving moment bounds for It6 integrals.

Moment Bounds for It6 Integrals. We let [; = Sé osdBs. We want to prove the moment
bounds

B[ < (2p—1)(2p—3)---3-1- M?PP

under the assumption that |os| < M a.s.

The case p = 1 follows from the It6 isometry. Therefore, we now proceed to prove the induction
step. Let us assume the inequality for p — 1 and use it to prove the inequality for p. For any N > 0,
we define

t
T~ =inf{t > 0: f |I,|*P~202ds = N}
0

Applying It6 formula to = +— |2|?? and evaluating at the time ¢ A 7 produces

tATN
1I,|?P~ Vo2 ds + 2pf |I,|**"'o,dBs = (I) + (II)
0

tATN

enmy | = p(2p — UJ
0
now by the induction hypothesis

t t
E(I) < p(2p — 1)J E|L[*PVo?ds < (2p—1)(2p—3)---3-1 -pszJ sP~lds
0 0

< (2p—1)(2p—3)~-3-1'MQP(tATN)p< (2p—1)(2p—3)---3-1-M2ptp
If we define

¢
Uy = f 115|031 5< sy dBs
0
then U; is a martingale since

t tATN
j |IS|4p_2|O-S|218STN dS = j |Is|4p_2|05|2d5 < N
0 0
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Since t A Ty is a bounded stopping time, the optional stopping lemma says that EU;.., = 0.
However as noted above

]E(II) = EUt/\TN
so one obtains
E‘It/\TN‘Qp < (2p — 1)(2p — 3) ...3.1- sztp .

Since |I5| is almost surely finite, we know that 7y is finite with probability one. Hence |l | —
|I;|?P almost sure. Then by Fatou’s lemma we have

| < Jim E|laey [P < (2p = 1)(2p = 3) -3+ 1- M1 (8.5)

SDEs with Superlinear Coefficients. Let b: R — R% and ¢ : R — R? be such that for
any R > 0 there exists a C such that

b(z) = b(y)| + 3 oW (2) = e (y)| < Cla —y|
i=1

[b(z)| + |o(z)| < C
for any z,y € Bo(R), where By(r) := {x e R? : |z]2 < R}.

Consider the Spe

dXe = b(Xy) dt + Y. o (X,) dB” (8.6)
=1

For any R let brp and ag) be are globally bounded and globally Lipchitz functions in R? such

that br(z) = b(x) and or(z) = o(x) in By(R).
Since br and og satisfy the existence and uniqueness assumptions of Chapter 6.3, there exists a

solution Xt(R) to the equation

dx{ = op(x{ydt + Y oW (xY) B (8.7)
i=1

For any N > 0 and R > 0 we define the stopping time
TR :=inf{t > 0: |Xt(R)| > R}
THEOREM 3.9. If

IP’[hm TR:OO]II

R—0

there there exists a unique strong solution to (8.6).

Proor. FixaT > 0. For Re N let Qp = {TR <T< TR_H}. By the assumption

Q0
P [ U QR] =1.
R=1
Also notice that the Qr are disjoint for R = 1,2,... and we can define the process
Xi(w) = Xt(R)(w) forte[0,T] if we Qp.
Since sup | X (w)| < R, we know that b(X ™ (w)) = 6B (X (w)) and o (X (w)) = e® (X (w))

for all ¢ € [0, T]. Hence X; as defined solves the original equation. Uniqueness comes from the fact
that solutions to (8.7) are unique. O
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4. Quadratic variation for martingales
Recall the definition of quadratic variation of a stochastic process:

DEFINITION 4.1. The quadratic variation of an adapted stochastic process Xz is defined as

jN

P
(Xl = z&i_rgo Z (Xtévﬂ

¥ 2
Y, (Yo, — Xy)
where im? denotes a limit in probability and {t;v} is a set partitioning the interval [0,t] defined by
TVi= ({7} : 0=ty <) <-- <l =t} (8.8)

with |[TN| := sup; |t§\;1 - t§V| — 0 as N - .

The process defined above is a sum of positive contributions and is therefore nondecreasing in ¢
a.s..

Now let M; be a [local] martingale. In light of Remark 1.3 we know that M7 is a [locall
submartingale. Hence, we would like to know if we can transform M7 back to a martingale, for
example by subtracting a “compensation process” removing the nondecreasing part of the squared

process. It turns out that such process exists and is precisely the quadratic variation process. The
intuition behind this result comes from the following computation: assume that s < ¢, then we have

E [M,M,] = E[M,E [M|F.]] = E [M?]

where in the second equality we have used the martingale property. As a consequence of this we can
write

E[(M: - M. — E[M?] ~2E (MM, + E[M?] ~E[M]~E[M2] . (89)
In particular this implies that the summands in the definition of quadratic variation can be expressed,
on expectation, as differences of expectation values that cancel telescopically, leading to (part of)
the following theorem.

THEOREM 4.2. This theorem can be stated in the martingale and local martingale version:

i) Let M, be a square-integrable martingale, then the quadratic variation process [M ] exists
and M? — [M]; is a martingale.

ii) Let My be a local martingale, then the quadratic variation process [M; exists and M?—[M];
s a local martingale.

PROOF. We only prove point i) of the theorem above. Point ii) follows for locally square
integrable martingales by localization, i.e., by substituting ¢ — 7, A t where 7, is the localizing
sequence. Repeating the calculation leading to (8.9) with conditional expectations we obtain

jN

E[M? — MZ|F,] =E ZI(M%V — My PVFoy
]:
Now, taking the limit in probability of the right hand side (we do not prove that such limit exists
here, but we refer to [16]) and rearranging we obtain that E[M? — [M];|F,] = M? — [M]; as
desired . (]

We conclude this section by proving a surprising result about martingales with finite first
variation.

LEMMA 4.3. Let My be a continuous local martingale with finite first variation. Then M is
almost surely constant.
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The intuition behind the above result is quite simple: considering a continuum time interval,
constraining a continuous martingale on behaving “nicely” in order to have finite first variation
(for example monotonically or in a differentiable way) the martingale would somehow have to be
“consistent with its trend at t_” (except of course in a set of measure 0) and could therefore not
respect the constant conditional expectation property. In other words, martingales with finite first
variation are too “stiff” to be different from the identity function.

REMARK 4.4. Note that continuity is a key requirement in the above result: jump processes
(constant between jumps, discontinuous when jumps occur) give an example of martingales that are
not constant but that have finite first variation.

PrROOF OF LEMMA 4.3. We assume for this proof that M; is a [locally] bounded martingale.
We will eventually show that the variance of M; is zero and hence M; is constant. Picking some
partition of time 0 =ty < t; < --- <t} = t, recalling (8.9) we consider the variance at time ¢

EM?=EY] (an — anfl) ~EY(M,, - M,,_,)’
g Estup ’Mtn - Mtn—l ’ Z |Mtn - Mtn—1|

Since the first variation V(t) = ima7r—0 >, | My, — My, ,| was assumed to be finite we obtain

EM? < (const)E lim sp | My, — M, |

this limit is zero because M was assumed to be continuous.

Hence the variance of M; is zero and thus M; is constant almost surely. Thus M; is constant for
any countable collection of times. Use the rational numbers and then continuity to conclude that it
is constant and the same constant for all times. ]

5. Lévy-Doob characterization of Brownian motion

In the beginning of this course we have given several equivalent conditions on the continuity
and the marginals of a process to guarantee that such process is a Brownian motion. Using the
intuition on martingales that we have developed in the previous sections we are now ready to give a
different set of conditions that allow to draw the same conclusion:

THEOREM 5.1 (Lévy-Doob). If X (t) is a continuous martingale such that
i) X(0) =0,
ii) X (t) is a square integrable-martingale with respect to the filtration it generates,

iii) X ()% —t is a square integrable-martingale with respect to the filtration it generates
then X (t) is a standard Brownian motion.

It is important the X (¢) be continuous. For example if N; is a jump process N; — ¢t and
(N; — t)? — t are both martingales but N; — ¢ is quite different from Brownian motion.

PROOF. Our proof essentially follows that of Doob found in [2], which approaches the problem
as a central limit theorem, proved through a clever trick using a telescopic sum. Fix a positive
integer N and an € > 0. Define

T(e, N)=inf{s >0: sup |X(s1)—X(s2)| =¢}.

§1<82<8
‘81—82|<1/N

If there is no such time s, set 7 = 0. Fix a time t. We what to show that the random variable X (¢)
iaX(t) efa2t/2

has the same Gaussian distribution as B;. To do this it is enough to show that Ee
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that is show that they both have the same characteristic functions (Fourier transform). It is a
standard result in basic probability that if a sequence of random variables have characteristic
functions which converge for each « to e~*t/2 then the sequence of random variables has a limit and
it is Gaussian. See [1] for a nice discussion of characteristic functions and convergence of probability
measures. Hence, we will show that

24

E{emxam} e "2 +0(e) as N — oo for any € > 0.

Since € will be arbitrary and the left hand side is independent of €, this will imply the result.
Partition the interval [0,¢] with point ¢; = & Set

N N
E{H ta(X;—X;-1) H—%j }‘

i=1 j=1

I=

where X := X(t; A 7). In general, observe that the following identity holds

A1A2A3--- AN — B1By--- By =A1Ay - An_1(An — Bn)
+A1Ay - An_2(AN—1 — Bn-1)Bn
+A1Ay - Ay_3(An—2 — By_2)Bn_1Bn

+(A1 - Bl)Bng -+ By .

Hence
N N—k—1 N )
1=[E{S [ éetoXm (emxwxMH)_ez(tN —— km) [] &%t
k=1 j=1 j=N—k+1

All of the terms in the first product have modulus one and all of the terms in the second product

are less than one. Hence
ftN,k /\T} ’}
2 2

2
{Z ‘E{ A(XN-k=XN-k+1) _ o= 5 (EN-k—tN—k+1)
— At @ 2 @ 3 2
—e 27k =jalp X — ?(AkX) + ?Akt + O(AkX) + O(Akt)

Now observe that by Taylor’s theorem

ewcAkX

where Ay X = Xp — Xp_1 and Ayt = t;, — tp_;. The constants implied by O(A,X)? and O(At)?
can be taken to be uniformly bounded for ¢ € (0,20] and N € [Ny, ) for some g > 0 and Ny < o0.
Observe that by using the martingale assumptions on X and the optional stopping lemma, we have
that

E{AN_,X|Fiy_oar} =0
E{(AN—kX)QU:tN,kAT} =AN_k(tAT) <tN_gp —tN_k—1 -
Here Ag(t A T) =t AT —tx, A 7. By our definition of 7, |[Ay_;X| < e. So we have

E{|AN_]€X| |‘FtN—k/\T} < (Skup |AN_]€X|)E{(AN_1€X) |‘FtN7k/\T} < 5E{(AN—kX)2|-FtN,kAT} .
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And thus,

IéE{i

k=1

t\ o2 t\ a2 t\?2 !

Observe that 7 — o0 as N — oo for any fixed €. Hence we have that

3 a2 a2
E{iaArX|Fiy .} — E{?(Akxﬁfm,k} + EAkt + C(Apt)? + CE{(ALX)3| Fin_pnr

}

= C’% +eCt

2

E {eiaX(t)} e

Notice that the left hand side is independent of €. Since C and t are fixed and € was any arbitrary
number in (0, &), we conclude that

< lim I <eCt
N—o0

o~

E {eiax(t)} —e T
O

We now give a slightly different formulation of the Levy-Doob theorem. Let M; be a continuous
martingale. Then by Theorem 4.2 if [M]; = ¢ condition ii) of Theorem 5.1 is satisfied and we obtain
the following result.

THEOREM 5.2 (Levy-Doob theorem). If My is a continuous martingale with [M]; = t and
My = 0 then M; is standard Brownian motion.

6. Random time changes

Let M; be a contiguous martingale with respect to the filtration F;. Since the quadratic variation
map t — [M]; is non-decreasing, we can define its left-inverse by

7 = inf{s > 0: [M]s >t} (8.10)
and the limiting value
[M]o = lim [M],

t—00
THEOREM 6.1 (Dambis-Dubins-Schwartz). Let My, 7 be as above. If [M]y > T then By = M.,
is a Brownian motion on the interval [0, T] with respect to the filtration Gy = Fr,. Conversely, there
exists a standard Brownian motion By such that My = By, for t = 0. This result also holds when
My is a continuous local martingale.

REMARK 6.2. Theorem 6.1 shows that any continuous martingale is just the time change of
Brownian motion with [M]; giving the rate at which fluctuations are injected into the system. This
intuition is particularly useful in finance, where [M]; can be thought of a measure of the volatility
of the process.

PROOF OF THEOREM 6.1. By the definition of 7; as the left-inverse of the map t — [M]; we
have that [B]; = [M],, = t. Hence M2 — ¢ is a martingale. By localizing the stopping time 7; to
7t A s for a finite s if necessary (i.e., to allow for the application of the optional stopping theorem)
we have that

E(Bi|Gs) = E(M,|Fr,) = M, = B,

S

and consequently we see that B, is also a martingale. Hence the by the Levy-Doob Theorem
(Theorem 5.2), By is a standard Brownian motion. The converse result follows from the first: for B,
defined above we see by the definition of 7y that B[, = M

Ty, = My since Ty, = L. g
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For martingales that can be written as
dM; = HydBy,
we know that [M]; = Sé H?2ds. Therefore, by the above theorem if SSO H2ds = o we can write M,
as

M,(w) = B <w,£ H%(w) ds> , (8.11)

for a Brownian motion B (w, s) that can be constructed from M;. We note that we can explicitly
invert the time-change: letting f(t,w) = Sé H,(w)?ds we have

Hy(w) = /0 f(t,w)

This implies that My, i.e., the time-changed Brownian motion B(w, f(t,w)) satisfies the spE

dM; = dB(f(t)) = v/ f(t) dBy, (8.12)

where, in general, B # B! We also note that, if Hs(w) = Hy i.e., Hy is a deterministic process, the
time-change is deterministic and the interpretation of the above calculation simplifies (cfr the next
example). Furthermore, in this case, changing time for another Brownian motion B still satisfies
(8.11) in distribution.

EXAMPLE 6.3. We consider the time-change Hy = 0e*® i.e.,

t 2at_1
£ — 2 2as _ 26 _
(@) Lae ot

Then we have that the process B(f(t)) is the (weak) solution to the spe dX; = ce®* dB,. Now,

consider the process
R e2at -1
Ut = €_atXt = e_atB <0’2> .
2a

By 1t6’s product rule we see that this process satisfies
dU; = —aU;dt + 0 dB;,
which is the well know sk for the Ornstein-Uhlenbeck process (cfr. Langevin equation).

Time Change for an SDE. We now extend the above reasoning and use it to construct a
new way of solving SDES.
Consider the simple one dimensional SDE

dXt = O'(Xt) dBt
with o(x) > 0. We can rewrite the above equation as
1

dB; = ———dX;.
FTo(xy)

Now, by Theorem 6.1 we write X; as a time-changed Brownian motion X;(w) = B(w, [X];), and in
the new timescale 7 defined by [X]; we have that the spE reads

1 .
dMT = ~ dB-,— .
o(B;

In the following, by abuse of notation we will denote the new timescale as the old one, i.e.,
7 =t. We assume that Sgo 07 2(By)ds = oo almost surely (A simple condition which ensures this is
lo(x)] < ¢ < oo for all z.) Now we would like to invert the change of time we just performed i.e., go
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back to the timescale where M. is a Brownian motion. Similarly to the previous paragraph, we do
this by defining the inverse transformation:

t
[ML:Jﬂf%Bﬂm:xxo and 7 — G l(t) —inf{s: [M], > ). (8.13)
0
In other words, we are now in the same setting as in the previous section, where f(t) = G~1(t). At
the same time, by the inverse function theorem we obtain
-1

F(t) = aG1 () = (GG 1) " = ! — o(B(n))?

Inserting this into (8.12) we finally obtain
dX; = dB,, = 0(B,,)dB; = o(X;) dB; (8.14)

REMARK 6.4. We note that the above calculation can be performed for a general choice of
time-change

t

H®_fhagm,am = H (1),
0

resulting in the SDE for Y; = X;, given by

o ()
h(Y?)

t

t

which for the choice of H = 02 gives the standard Brownian motion as a solution. Inverting this
time transformation as done above will give the solution to the original SDE. Note again that the
time-changed Brownian motion is a weak solution to the original SDE, since we first choose a
Brownian motion according to which we solve in the SDE in the new timescale, and then we transform
it back to the original timescale, mapping the solution to another Brownian motion.

Now consider the full-fledged spe

where 1 : R? - R4, o : RY x R™¢ and B; is a m-dimensional Brownian motion. As we have done is
Remark 6.4, we define the time change

¢
H(t) := J h(Xs)ds and = H '(t) = inf{s: H(s) > t}. (8.16)
Then we can show the following result:
THEOREM 6.5. Let Xy be the solution to (8.15), then the process Yy = X, is a weak solution to

the SDE ) )
148 S o\ Xt
nv) T

ProOOF. With the same definitions as above define dM; = /h(X;)dB; and By = M,,. Since

[M], = Sé h(X;)dt we see that B; is a standard Brownian motion. Observe that dry = h(X,,) ! dt
and

dY; =

dB; .

1

Vh(X7,)

dB; = dB,,



Defining Y; = X,, we have that

1 1
dY, = ———dX,, =
R, T

O

Note that, similarly to all the cases above, it is only a weak solution since the Brownian motion
B; was constructed at the same time as the solution Y;. A strong solution required that the Brownian
motion be specified in advance.

EXAMPLE 6.6. We consider the equation for the squared Bessel process (cfr problem sets)

dX; = ddt + 2/ Xd By

= wis (e (555)

Then by the above theorem we obtain

dX; = 67'(t)dt + 2\/Xft«/7'/(t)dB(t) .

and define the time change

Now defining

Y; = exp(vt) X, %,

we have that

dY, = vYdt + exp(vt)(1 — g)X;“/2dXt + exp(vt) (2(—2)(1 - 2)7’@))2;5/2) dt .

and combining with the definition of T and dX; we obtain that Y; = X, solves

dY; = vYidt + UYt%th
REMARK 6.7. The same argument shows that if
dXy = hyp(Xy) dt + v/hyo(X,) dB;
for some positive, adapted stochastic process hy, then if 7 = Sé hitds and Y; = X,, we have
dY; = p(Yy) dt + o (Y;)dB,

for the standard Brownian motion Bt = M., where My = SS hsdBs.

7. Martingale inequalities

We now present some very useful inequalities that allow to control the fluctuations of martingales.
The first result is due to Doob and controls the probability distribution of the maximum of a
martingale on a certain time interval. For this reason these inequalities are sometimes called Doob’s
maximal inequalities. The first one bounds from above the probability that the supremum of a
martingale in an interval exceeds a certain a certain value A, while the second bounds the first
moment of such distribution, i.e., the expected value of the supremum on the given interval.
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THEOREM 7.1 (Doob’s Martingale Inequality). Let M; be a martingale (or a positive submartin-
gale) with respect to the filtration Fy. Then for T > 0 and for all A > 0

E[|M7|P
P[sup |Mt]>)\]<UTH forallp>1,
0<t<T AP

and

p
E [ sup ]Mtq < <p> E[|M7[?] for allp > 1.
0<t<T p—1

Before turning to the proof, we remark the similarity of the first inequality with Markov’s
inequality, i.e., given a random variable X, for every p > 1 we have
E[1X17]
< — -
P X| > A] < v
The difference of the two inequalities is the supremum, under the condition of the process M; being
a martingale, in Doob’s inequality.

ProOOF. First of all we note that by convexity of |z| and zP on Ry the process |M|P is a
submartingale. Consequently defining the stopping time

Ty = 1inf{t : |Mi| > A},
we have by Doob’s optional stopping theorem
E[|MrynefP] < E[|M:7] - (8.17)
At the same time, we have that
E [[Mrat|P] = E[|Mry atPLry <t] + E[[ My, ae[P17, 4]
= AP [\ < t]+E[|M:PLl 5] - (8.18)
Combining (8.17) and (8.18) we finally obtain

E [|M;|P1, E [|M,|P
P [ sup M| = A] =P[r <t] < I t)'\p r<t] < H/\pt ]

s€[0,t]
where in the last passage we have used the nonnegativity of |M;|. ([l

The above result is key to derive numerous results in stochastic calculus. We have seen one
example in the proof of Theorem 7.2. We can also use it to bound the supremum of [t6 integrals:
ExXAMPLE 7.2. Under the assumption that o, < M < o0 we have shown in Section 8 that
E [| Sé O dBS|p] < 0. Consequently, by Doob’s inequality (recall that for a martingale My, |M|P is

a positive submartingale for p = 1) we have

t
E| sup || osdBg|?
te(0,7) JO

t
< O5E {|f o dBSIQP] <.
0

We now introduce the very useful Burkholder-Davis-Gundy inequalities.

THEOREM 7.3 (Burkholders-Davis-Gundy Inequality). Let X; be a local martingale, then for
anyp =1

GE[[X)P] < B[ sup [X,%] < CE[[X,)]
0<s<t

where cp, Cp are constants independent of the process, depending only on p.

103



PROOF. We only prove the upper bound of this result, under the simplifying assumption that
X = Sé fs(w)dBs for a bounded process fs < M for M < oo. For the complete versions of the proof
see [4, 8, 15].
Doob’s LP maximal inequality combined with 1t6’s formula implies that

P
E [ sup |Xsl2p} < (p) E[|Xt|2p] (8.19)
0<s<t p—1
p _ t t
_ <p ) E [W” | P (syas + 2 | IXSQ”‘lf(S)st] -
p— 1 2 0 0

Next we introduce the stopping time
t
T~ =inf{t > 0: J | X [*P72| fo|?ds = N}
0

Let In(t) =2p Sé | Xsnry [P~ fsarydBs. Since the integrand is bounded by the construction of 7y
we have that EIy(t) = 0. Notice that

E [2p fo o |Xs|2p1f<s>st] — E[In(t A )] = 0

where the last equality follows from the Optional Stopping Theorem. Next observe that

E U \Xs|2<p-1>f<s>2ds] <E [ sup X, tf(s)st] _E [ sup rXsP(p-”[Xt]]

0<s<t 0<s<t
and by Holder’s inequality with powers p = p and ¢ = p/(p — 1) we have that

1

1-1 1
E [ sup |Xs|2<p—1>[xt]] <E [ sup mﬂ "E[xp]”
0<s<t 0<s<t
Putting everything together produces

1-1 1
B[ sw x| <ce| s o] e[’
0<s<tATn 0<s<tAaTn
By the definition of the stopping time everything is finite, hence we can divide thought by the first
term on the right to obtain

1 1

E[ sup ]Xs\Qp]p < CE[[X]?MN]’J :
O0<s<tATN

We realize that both right- and left hand side are uniformly bounded, under our assumption, by

(8.5) and by Sé f2ds < tM? respectively. The proof is concluded by raising both sides to the power

p and, by means of dominated convergence theorem, removing the stopping time by taking the limit
as N — oo. g

8. Martingale representation theorem

We conclude this chapter by introducing a last fundamental result about martingales, strengthen-
ing the connection between martingales and Ito integrals. Recall that It6 integrals of square-integrable
processes are martingales. The Martingale Representation theorem, a quite remarkable result, es-
sentially establishes that the converse result is also true: every martingale can be expressed as the
1t6 integral of a square-integrable process. Furthermore, such process is unique among the family of
predictable processes. As suggested by the name, predictable processes are those whose value at
time ¢ can be predicted given the information before time ¢. Examples of such processes are given
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by processes that are continuous from the left, i.e., for which limg Xs = X;.
A precise definition of this class of processes is given below:

DEFINITION 8.1. Given a filtered probability space (0, F,P,{Fi}t=0), then a continuous-time stochastic
process {Xi}i=o0 is predictable if X, considered as a mapping from Q x R, is measurable with respect to
the o-algebra generated by all left-continuous adapted processes. This o-algebra is also called the predictable
o-algebra.

One can think about predictable processes as processes that an external observer can control, as
exemplified below:

REMARK 8.2. This example lives in discrete time, where predictability implies that X,+1 € Fy.
Suppose we have a certain amount of money V, at a certain time t,. We decide to invest a certain
percentage X, of this money in a title with value Sy, at time t, and put the remaining part 1 — X,
in our bank account. S, can be modeled as a random variable, but so can X,,: our fund’s allocation
varies based on how the title’s value fluctuates. Seeing the o algebra JF,, as information from the
values of Sy, up to time t,. What makes S, and X,, different is that we have control of the amount
of money X, 11 that we want to invest at the time t,, in the title S, because this decision must be
made before t,1. In other words, the value of X,,+1 must depend exclusively the information up to
time ty, i.e., Xp11 € Fp.

THEOREM 8.3 (Martingale representation theorem). Let M; be a square-integrable [or local]
FB-martingale on (0,T) (where possibly T = o) then there exists a square-integrable process Cy [or

a process Cs s.t. P [Sg C2ds < oo] = 0/ such that

t
M = MOJ CsdBs.
0
We do not prove the above result here, but refer to [16] for a proof. We note that the result is

restricted to F2. This result is especially useful in finance, as we will see in the final chapters of
this course.
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CHAPTER 9

Girsanov’s Theorem

1. An illustrative example

We begin with a simple example. We will frame it in a rather formal way as this will make the
analogies with later examples clearer.

One-dimensional Gaussian case. Let us consider the probability space (w, P, F) where = R
and P is the standard Gaussian with mean zero on variance one. (For completeness let F be the
Borel o-algebra on R.). We define two random variables Z and Z on this probability space. As
always, a real valued random variable is a function from €2 into R. Let us define

Z(w) =w and Z(Ww) =w+p

for some fixed constant p. Since w is drawn under P’ with respect the N(0,1) measure on R we have
that Z is also distributed N'(0,1) and Z is distributed N (s, 1).
Now let us introduce the density function associated to P as

1 w?
p(w) = \/727 exp(—7)

Now we introduce the function

Ay(w) = W = exp (wu - ,u;)

Since A, is a function from 2 to R is can be viewed as a random variable and we have

Boy = | AP = |

—00

0

Aol = [ o= paw =1

since ¢(w — p) is the density of a N'(p1, 1) random variable. Hence A, is a L'($,P) random variable.
Hence we can define a new measure Q on {2 by

Q(dw) = Ay (w)P(dev).

This means that for any random variable X on €2 we have that the expected value with respect to
the Q, denoted by Eq is define by

Eq[X] = Ep[XA,]
Furthermore observe that for any bounded f : R — R,

Eof(Z) = B[ f(Z)A,] = jww F(Z(@)) A (w)(w)de = f " ) - p)d

_ f’ Flw + p)d(w)dw = Ep£(2)

Which implies that the distribution of Z under the measure Q is the same as the distribution of Z
under distribution P.
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EXAMPLE 1.1 (Importance sampling). Let f : R — R, and let X be distributed N'(u,1). We
have that

_(z—w)* u)

Ef(X)= dz

1
— T
\ 2 J—oo f(
for some 1 € R.
For n large and {X;}} iid N'(0,1), we estimate the above expected value by sampling, i.e.,

Ly

The problem of the above method is that for not-so-large values of p (e.g., u > 6), taking for example
f = 1x-o we would need a very large amount of samples before sampling the tail of N'(u, 1), i.e.,
elements that are relevant for our estimation.

However, let Y be distributed N'(0,1). Then by the procedure outlined above we have:

3\'*

_(a—w)?
2

IR Z
N—Zf e“Y

Jor {Y;}, itd N'(0,1). Under this new distribution, the indicator function often positively to the
sampling, and we need significantly less samples to obtain an accurate estimate of the expectation.

E[f(X e Sdr=E [f(Y)e#Y—“f]

Multidimensional Gaussian case. Now let’s consider a higher dimensional version of the
above example. Let = R” and let P be n-dimensional Gaussian probability measure with
covariance 021 where o > 0 and I is the n x n dimensional covariance matrix. In analogy to before,
we define for w = (w1,...,w,) € R”

and for p = (p1,...,un) € R"

Then if we define the R" valued random variables Z(w) = (Z1(w),...,Zn(w)) and Z(w) =
(Z1(w), ..., Zp(w)) = Z(w) + p. Then if we define Q(dw) = A, (w)P(dw) then following the same
reasoning as before that the distribution of Z under Q is the same as the distribution of Z under P.

2. Tilted Brownian motion

Consider the tilted Brownian motion process
dXt 1% dt + dBt y

where B, is standard Brownian Motion, y € R. Furthermore, let 0 =tg <t; <--- <t, < T, and
fyg:R™ —> R such that f(x1,29,...,2,) = g(r1,22 — 1, ..., Tp — Tp_1).
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The to compute the expectation of f we write:
E [g(th,Xt2 — th, e ,th — th71>]

(wi—wi_1)—mlt;—t;_1)2

2
_ J g(z1, 20 — T1, ..., Ty — Tp—1) ﬁe—[ Gt D) ] Hdw
- (2
QX xQ (

w1
2m) 52 (ty — 11)2 - (b — tn1)2 ) i=l

In light of what has been discussed in the previous section, we transform the above in iid Gaussian
distributions:

(z—zi_1)? M
e_ 2(t;—t;—1) H elj/(xi_xifl)_%ﬂ?(ti—tifl)
i=1

n [(zz’*zi—l)*ﬂ(ti*ti—ﬁz]Q
1

n
H e 2(t;—ti—1) =
i=1

1= 7
n (wi—wi_1)*
s T H e 2i—ti_1)
i=1
Now we can consider the multiplication as the desired measure of Gaussian distribution and the
prefactor as the random variable A, (w,t):

E [f(Xt17 s 7th)] =E [f(Btla ce ,Btn)euBtn*%/ﬂtn]
=E[f(By,... vBtn)Au(w,t)]

We note en passant that the “coefficient” A, (w,t) can be written as a martingale M;(w), more

precisely the exponential martingale M; = eHBr—3pt (we are going to define this concept more
precisely in the next section).

3. Girsanov’s Theorem for spEs

We now introduce some notation to generalize the above observations to the framework of
measure theory. Let (€, F) be a measurable space, then

DEFINITION 3.1. Given two measures i, v, we say that v is absolutely continuous wrt (denoted
by p v < pif
u(A) =0=v(A) =0 for all measurable sets A.

Provided that a measure Q is absolutely continuous wWRT another measure P, the following
theorem from measure theory ensures that it is possible to perform the changes of measure that we
carried out in the previous section, i.e., it is possible to define a random variable A (the reweighting
factor) that compensates for such change of measure.

THEOREM 3.2 (Radon Nikodym). Let P,Q be two probability measures on (2, F), such that
Q@ < P, then there exists a measurable function A : Q +— R (a random variable) such that Ep [A] = 1
and

Q[A] = Ep [14A] = L Aw)dP(w) VAeF.

We denote such function

Aw) = 2w),

and we refer to it as the Radon Nikodym derivative.
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The assumption of absolute continuity guarantees that the Radon Nikodym derivative is well
defined. Indeed, in the case where both probability measures have densities pp, pg, A = pg/pp and
absolutely continuity guarantees that the above ratio is well defined (i.e., it does not explode).

We now present, without proof, a lemma from measure theory that allows to obtain most of the
results in this chapter.

LEMMA 3.3 (General Bayes rule). Let u and v be probability measures on (2, F) with dv(w) =
f(w)du(w) for some f e L'(u). Let X be a random variable with:

B = [ IX@)dv(w) = [ 1X@)If @)dn(e)
If G < F is a o-algebra, then:
E, [X[G]E,[f1G] = B, [fX]|]]
Before using the above theorem in the context of stochastic processes, we recall the concept of
stochastic exponential of a process Xy, given by
1

£(X), = exp <Xt — Xo — 2[X]t> .

Recall that the stochastic integral of a process X; are defined as the solution to the abbrsde
dU; = Uy dX;. (9.1)

When X; wr know by the Martingale representation theorem Theorem 8.3 that we can express
dX; = CsdBy for a predictable process Cs. Therefore, by (9.1) stochastic exponentials of local
martingales are local martingales themselves, as summarized in the following theorem. This result
also gives a sufficient condition (called the Novikov condition) for the stochastic exponential of a
(local) martingale to be a true martingale.

THEOREM 3.4 (Exponential Martingale). If M; is a local martingale with My = 0 (like, for

instance, every Sé as dBs with P [SS ads < oo] = 1) then the stochastic exponential E(M); is a
continuous positive local martingale, and hence a supermartingale. Furthermore, if

E [exp <;[M]T>] < 0, (Novikov)
then E(M); is a martingale on [0,T] with E(E(M):) = 1.

REMARK 3.5. Other conditions gquaranteeing that the stochastic exponential of a local martingale
is a true martingale exist. Some of them are summarized in [9, Thm. 8.14 — 8.17]. Furthermore, if
M; has the form M; = Sé as dBg, then the condition as < c(s) < o for all € (0,T) is a sufficient
condition for E(M); to be a martingale.

We finally come to the first version of Girsanov’s theorem. This result allows to do something
very similar to what was done in the first section of this chapter: Switching to a new probability
measure so that an “unnatural” random variable becomes a normal-distributed one. This result can
be generalized to the framework of stochastic processes: Girsanov’s theorem allows, under some
conditions summarized below, to transform an Ito process

d}/t = CLt((xJ) + dBt (92)

on a given probability space (2, F,P) to the “simplest” stochastic process we encountered in this
course, ¢.e., Brownian motion, by changing the measure on that space.
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THEOREM 3.6 (Girsanov I). Let Y; be defined as in (9.2) with By a Brownian motion under P.
Assume that Sé asdBys is well defined, define the stochastic exponential

t 1 t
Ay = exp [—f asst—J aﬁds] .
0 2 Jo

and assume that A; is a martingale on [0,T] with respect to P (i.e., a P-martingale). Then under
the (equivalent) probability measure

dQ
dP

the process Y; is a Brownian motion By on [0,T].

(w) = Ar(w) (9-3)

PrOOF. We want to show that Y; is a SBM wrt Q. To do so, by Lévy’s characterization of
Brownian motion Theorem 5.2, it is sufficient to show that

i) Y; is a local martingale wrt Q,
provided that Yy = 0 (which we assume without loss of generality).
Part ii) follows from the following computation:

d[B]; = d[Y]; = (azdt + dBy) - (az dt + dB;) = d[B]; = dt,

provided that quadratic variation of processes are unchanged by absolutely continuous changes of
probability measures such as the one defined by Apr. To show this, because the quadratic variation
process is defined as a limit in probability, it is enough to show that for a sequence of random
variables {X,}, if lim}_, X,, = X in probability in P then the same holds in Q. To this aim, let
Ay = {| X, — X| > ¢} and assume P[A,] — 0 then by integrability of A7 we can apply dominated
convergence theorem and obtain that

Q[An] =Ep[1l4,A7] — 0.

For part i) we apply It6’s product rule to K; = Y;A; and obtain dK; = AydY; + YidAy + dYidA,.
Combining this with the spE for Ar,

dAt = —AtatdBt
we obtain
th = At(at dt + dBt) - }/tAt(ItdBt - AtatdBtQ
=At(at dt + dBt) —YiAiaydBy — Apag dt
=At(1 — Ytat)dBt

and so K; is a martingale wrt PP.

Now, we have that

Ep [A+Y}]F5]
Ep [A¢]Fs]

implying that Ys is a martingale wrt Q. O

K

REMARK 3.7. We note that instead of proving part ii) of the above theorem one could also have
applied Theorem 5.1, i.e., we could have shown that K? —t is a martingale. The proof of this result
follows the same lines of the one of part i) above
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EXAMPLE 3.8 (Brownian motion Tracking a Continuous Function). We would like to estimate
the probability that during the interval [0,T] Brownian motion By stays in a “tube” of radius €
around a given differentiable function h(t) € C1(R) with h(0) = 0. More precisely, we would like to
estimate the following probability:

P(sup | B — h(t)] <€> >0

o<i<l1

Let the event G be given by:
G = {|Bs — h(s)| <e,s€0,1]}
= {|Xs| <e,s€[0,1]}
for the process Xs = Bs — h(s) which has differential
dXs = —h'(s)ds + dBs
Then by the above theorem we define the change of measure

Ay = (o (s)dBo—5 5 |1 (s) 2ds)

Because h'(s) is continuous on a compact interval it is uniformly bounded and the Novikov condition
holds. Hence we can define the measure dQ = AidP, by the above theorem under Q, X is a standard
BM. Therefore we can write

QG) - J(fg) 1dP < U (ﬁ)QdP);P(G)

where in the step inequality we have used Cauchy-Schwartz inequality and so:
> - Q(SUP(O,l) |Bs| <€)
= 40
§ (W) dQ
Looking at the above inequality we see that we have reduced the estimation of the relevant probability

to the estimation of the probability of Brownian motion exiting an interval and the expected value of
the random wvariable Aq.

=

P < sup |B: —h(t)| <e

0<t<1

The above result can be extended to the d-dimensional setting with nontrivial diffusion coefficient
o(X¢). Furthermore, we may be interested in transforming Y; (in the distributional sense) to a
different It6 process X; different than Brownian motion. Conditions to do this are summarized in
the following more general theorem:

THEOREM 3.9 (Girsanov II). Let X;,Y; € R? be processes satisfying

dX; = p(Xy,t)dt +0(Xy,t)dBy,
dY; = (u(Y,t) + v(w, 1)) dt +0(Y3, 1) dBy,
with Yo = Xo = x for a m-dimensional P-Brownian motion By on t € [0,T]. Suppose that there
exists a process u(w,t) such that
o(Yu(w,t) = v(w, ).

Furthermore let . .
1
Ay :=exp [—J u(w, s)dBs — QJ u(w, s)? ds] , (9.4)
0 0
Then if Ay is a P-martingale on [0,T] and Q is defined as in (9.3) we have that
dY; = u(Yi, t)dt + o(Y;, ) dB;,
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for a Q-Brownian motion

t
Btzf u(w, s)ds + B.
0

Proor. It follows from Theorem 3.6 that Bt is a Brownian motion wrt Q. Furthermore we
observe that

dY; = (u(Ys, 1) +7(w, 1)) dt + (Y, t)(dB; — u(w, t) dt)

(1(Ye, 1) + y(w, ) dt + o(Yy, 8) dB; — y(w, t) dt

p(Yist) dt + (Y, t) dBy

as desired. O

‘We note that the above result can be added to our arsenal of methods to find weak solutions to
spEs! Indeed, let X, Y; be defined by:

® dXt = ,U,l(Xt) dt + O'(Xt)dBt
© dY; = po(¥;)dt + o(Y)dB,
XO = YE) =T
and assume that we cannot solve ® but have an idea on how to solve ®. Then we can define u(y)
by:
o(y)uly) = pa(y) — m(y)

and set, as in Theorem 3.9
A =e” §o w(Ys)dBs—5 §; [u(Ys)[2ds

which allows us to define the measure dQ = A;dP. Then by Theorem 3.9 we have that
By = By + ftu(Ys)ds
0
is a standard Brownian motion under @@, and
dY; = i (Yz) dt + o(Y;)dB;
= p1(Yy) dt + o(Yy) [u(Yy) dt + dBy]
— w(Ye) dt + oY) dt — (Vi) dt + o (Y,)dBy
= p2(Yy) dt + o(Yy)dB,
Hence, Y; in Q solves the same spE as X, but with a different Brownian motion. This implies that
the Law of ¥; on C(0,T;R?) (and therefore all of its marginals) is equivalent to the Law of X; on
C(0,T;R%). Hence we can write the unknown marginals for the process ® in P as

Ep [f(X¢)] = Eq [f(Y?)] = Ep [f(Y1)Ar] ,
i.e., as an expectation on a process that we know multiplied by a weighting factor that can be
estimated /computed.
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CHAPTER 10

One Dimensional spes

1. Natural Scale and Speed measure

We now want to consider spes which do not satisfy the Lipschitz assumptions of Chapter 3. Let
b and ¢ be bounded, continuous real-valued functions with ¢ uniformly bounded from below by a
positive constant. Consider the SDE

We want to find a function ¢ : R — R so that if we define ¥; = ¢(X;) then Y; is a martingale.
Applying It6’s formula gives
dYy = (Lo)(Xy) dt + ¢/ (X¢)o(X¢) dBy . (10.2)

where L is the generator of the process X; defined by

1
(Lo)(w) = b(a)¢/ (x) + 507 (2)¢" ()
Assuming that our choice of ¢ is such that ¢ is bounded, Y; will be a martingale if (L¢)(z) = 0.
This implies that
/! 2b r Y 2b
(log ¢') = 2/ == implies  ¢(x) = L exp ( —L g(z)dz) dy

for any choice of @ and 3. Notice that by construction ¢ is twice-differentiable, positive and
monotone increasing function of R onto R. Hence ¢ is invertible and we can understand ¢ as a
warping of R so that X; becomes a Martingale. For this reason, the function ¢ is called the natural

scale for the process X;.
In light of (10.2), Y; = ¢(X) satisfies

dY, = (¢'0) (¢~ (V1)) dB (10.3)

which shows that Y; not only is a Martingale but it is again an SDE.
In the discussion of random time changes, we saw that the when the martingale M; was solves
the spE

then if we consider M; on the time scale

t
1
= | ——=ds
JO 9*(M;)
then By = M, ;) is a Brownian motion. Since the rate of randomness injection into the system, as

measured by the quadratic variation, for a Brownian motion is one, this time changes is given a
distinguished status. The measure on R which gives this time change is g%(x) when integrated along
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the trajectory so called the speed measure. In the setting of (10.4), the speed measure, denoted
m(z)dz, would be

Returning to the setting with a drift term (10.1), we look for the time change of the resulting
martingale after the system has been put on its natural scale. Looking at (10.3), we see that

1
(@) (¢~ (w)]?

is the speed measure for the system expressed in the y variable where y = ¢(x). Undoing this

transform using and using dy = ¢'(z)dz shows the speed measure in the original variables to be
1
m(x)dr = ————dx

(¢'0)()

2. Existence of Weak Solutions

dy (10.5)

In the previous section we saw how to transform the one-dimensional spe (10.1) in to a
Brownian motion by warping space and changing time. Noticing that each of these processes was
reversible/invertible, we now reverse our steps to turn a Brownian motion in to a solution of (10.1).

Let B; be a standard Brownian motion. Looking back at (10.3) and (10.5), we define Y; by

dY; = (¢'o) (67" (¥1))dBy
The equation has a weak solution given by Y; = Br, where

T, = f [(6'0) (6} (B)] ds

0

Next we define X; = 9(Y;) where for notation compactness we have defined 1) = ¢! then Itd’s
formula tells up that

1
dXy = ¢/ (Yi)dY + S (Yo)d[Y ],
Need to finish argument

3. Exit From an Interval
Let M; = ¢(X;) where ¢ is the natural scale and X; solves (10.1). And define the hitting time
Ty = inf{t > 0: X; = y}
Assuming that X = z € (a,b) we define the exit time of the interval by
T(ap) = Ta A Th-

By the construction of ¢, M; is a martingale. Hence since 7, 3) A ¢ is a bounded stopping time, the
Optional Stopping lemma says that

Eo M, yat = Ec Mo = ¢(x)
If we assume that o(y) > 0 for all y € [a, b] then it is possible to show that
EyT(ap) < ©.
This in turn implies that 7,3 At — T(qp) as t — 00. Hence we have that
o(x) =E My, = (Ta < )My, + Py(my < 70) M-,

Py
=P, (12 < 7)b(a) + (1 — Py(7a < 7)) (D)
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Rearranging produces
() - b(a) "
)~ ola) (10:0)

(a

Another way to find this formula is to set u(x) = P, (7, < 7). Then u(z) solves the PDE
(Lu)(z) =0 z € (a,b), wu(a)=1, and wu(b)=0

It is not heard to see that the above formula solves this ppE. (Try the case when X; is a standard
Brownian motion to get started).
Now we derive a formula for v(z) = E,7(4). Since it is a solution to
(Lv) = =1 =z € (a,b) and v(a) =v(b) =0

one finds

Xr) — a b
v(2) = BaTiap) = 2% [ 160) - o) m(e1a=

4. Recurrence
DEFINITION 4.1. A one-dimensional diffusion is recurrent if for all x, P(1, < ) = 1.

THEOREM 4.2. If a < x < b then
i) Py(T, < ) =1 if and only if ¢p(c0) = o0.
ii) P,(Tp < ) =1 if and only if p(—0) = —c0.
iii) Xy is recurrent if and only if $(R) = R if and only if both ¢(0) = 00 and ¢(—w0) = —o0.
PROOF OF THEOREM 4.2. t

5. Intervals with Singular End Points

Let [, 5] be an interval such that on any [r,[] € («, 8) we have that the coefficients b(z) and
o(x) are bounded and o(z) positive on [r,l]. Under these assumptions the only points were o can

vanish or o and 8 become infinite are o and . Without loss of generality, we assume that = € («, /).
If we define

0 B
I - j [6(0) — 6(2)m(x)d= Iy - f [6(2) — 6(0)]m(x)d=

a 0

0 B
Ju = f [M(0) - M()]'(x)d= Ty - J [M(z) — M(0)]/(x)d=

e’ 0
then we have the following result.
THEOREM 5.1. Let v € {a, B}, then
i) I, < oo if and only if Xy can reach the point .
ii) J, < o0 if and only if X; can escape the point .
Following Feller, we have the following boundary point classification.
P Jy  Boundary Type of ¢

<o < regular point
<o =00 absorbing point
=00 <o entrance point
=00 =0 natural point
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APPENDIX A

Some Results from Analysis

Recalling that, given a probability space (£2, X, P) and a random variable X on such a space we
define the expectation of a function f as the integral

X)] = JQ £ () P(duw

where P denotes the (probability) measure against which we are integrating. The following results
are stated for a general measure p (i.e., not necessarily a probability measure).

THEOREM 0.1 (Holder inequality). Let (2,3, 1) be a measure space and let p,q € [1,00] with
1/p+1/q = 1. Then, for all measurable real- or complea;—valued functions f and g on €2,

[ 1r@a@iane) < ([ 17 Pra ) (], ot anta )

THEOREM 0.2 (Lebesgue’s Dominated Convergence theorem). Let {f,} be a sequence of mea-
surable functions on a measure space (2,2, p). Suppose that the sequence converges pointwise to a
function f and is dominated by some integrable function g in the sense that

[fn(@)] < g(x)
for all numbers n in the index set of the sequence and all points x € S. Then f is integrable and
Jim Qlfn—f\du=0
which also implies
lim | fodu= J fdu

THEOREM 0.3 (Fatou’s Lemma). Given a measure space (2,3, 1) and a set X € X, let {f,} be
a sequence of (X, Br.,)-measurable non-negative functions f, : X — [0, +0]. Define the function
f:X —[0,4+00] by setting
f(a) = liminf £, (@),

for every x € X. Then f is (X, Br.,)-measurable, and
f fdu < liminff fndpu.
Q n=oJo

where the integrals may be finite or infinite.

REMARK 0.4. The above theorem can in particular be used when f s the indicator function 14,
for a sequence of sets {A,} € ¥, obtaining

p(lim iolgf Ap) = f liminfly,, dp < lim mff 14, dp = lim iorolf,u(An) .
n— 0 n—

n—a0 n—o0
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APPENDIX B
Exponential Martingales and Hermite Polynomials

Let o(t,w) be a bounded adapted stochastic process. Define I(t,w) = So os(w)dB(s,w). We
showed that

t t
Er(t,w) = It =3 T(Ew) — exp (f os(w)dB(sw) — ;f Js(w)2ds>
0 0

was a martingale. £(t,w) is often called the exponential martingale of I. This is reasonable because
of the following analogy. In the standard ODE setting we have

AY () = Y (Da(t) dt — V() = Y(0) exp (JO a(s)ds) .

The analogous SDE is
dZ(t,w) = Z(t,w)dI (t,w) = Z(t,w)o(t,w)dB(t,w)

or

t
Z(t) = Z(0) +f Z(s,w)os(w)dB(s,w)
0

The solution to this is Z(t,w) = £1(t,w). Hence it is reasonable to call it the stochastic exponential.
From the SDE representation it is clear that £7(¢,w) is a martingale, assuming I(¢,w) is a nice process
(bounded for example). (The Novikov condition is another criteria (in [8] or [17] for example)).

Just as the exponential can be expanded in a basis of homogeneous polynomials, it is reasonable
to ask if something similar can be done with the stochastic exponential. (A function f(x) is
homogeneous of degree n if for all y € R, f(yz) = ~"f(z).) For the regular exponential, we have

0 n
_ n
;07 n!
Hence we look for Hy,(I,[I]) such that

£ty w) = )73 1k) _ Z o ( (t, w)'[f](t,w)> |

Since the stochastic exponential is a martingale, it is reasonable to expect that the H, (It, [I]t)
should be martingales. In fact, you can argue that the H, must be mean zero martingales by
varying 7. Recall that from its definition [v/](t,w) = v*[I](t,w). Hence if we want Hy, (vI¢, [vI]:) =
Y"Hy (It, [I]t), we are lead to look for polynomials of the form

Hn('ray) = Z Cn’mxn—Zmym .
0<m<|n/2|
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In homework 2, you found the conditions on the C;, ,,, so that H,(I,[I]) was a martingale. In fact,
these polynomial are well known in many areas of math and engineering. They are the Hermite
polynomials. They can also defined by the following expression

Hp(z,y) = y"Hy <5y)

Ho(2) = (~1)"e7 Zn (e>

Here the H,, are the standard Hermite polynomial (possible with a different normalization than you
are used to).
We now have two different expressions for the stochastic exponential of vI(¢,w) with z(0) = 1.
Namely, setting Z(t,w) = £,1, we have
¢
Z(t,w) =1+ ’yf Z(s,w)os(w)dB(s,w)
0

and

tw), [I](t,w))

n!

©  Hy(I(
Z(t,w) =Y A" (
k=0

The first expression has Z on the right hand side. At least formally, we can repeatedly insert the
expression of Z(s,w). Suppressing the w dependence, we obtain
¢

Z() =1+ VJ Z(s1)0(s1)dB(s1)

0

=14+ ny Z(s1)o(s1)dB(s1) + 72J0 J:l Z(s2)o(s2)dB(s2)o(s1)dB(s1)

0

~ 19 [ ZnolsndBion +
A JJ f o(sn)dB(sp) - 0(s1)dB(s1)
:éykLL -~-£k—1 o(sr)dB(sg) - o(s1)dB(s1)

Now if we equate like powers of v, we obtains

H, (I(t),[I] f odB, f 2ds = n'f f 0(5,)dB(s,,) - - o(s1)dB(s1)

From this expression, it is again clear that Hy, (I(t),[I](t)) is a martingale.
For more information along the lines of this section first see [12] and then see [19, 17].
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