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Abstract

In this paper, we consider the fundamental problem of approximation of func-
tions on a low-dimensional manifold embedded in a high-dimensional space. Classi-
cal approximation methods, developed for the low-dimensional case, are challenged
by the high-dimensional data, and the presence of noise. Here, we introduce a new
approximation method that is parametrization free, can handle noise and outliers
in both the scattered data and function values and does not require any assump-
tions on the scattered data geometry. Given a noisy point-cloud situated near a low
dimensional manifold and the corresponding noisy function values, the proposed
solution finds a noise-free, quasi-uniform manifold reconstruction as well as the de-
noised function values at these points. Next, this data is used to approximate the
function at new points near the manifold. We prove that in the case of noise-free
samples the approximation order is O(h2), where h depends on the local density
of the dataset (i.e., the fill distance), and the function variation. We demonstrate
the effectiveness of our approach by examining smooth and non-smooth functions
on different manifold topologies, under various noise levels.

Keywords: Approximation of functions, High dimensions, Scattered Data,
Noisy data, Manifold learning, Dimensional Reduction .

MSC: Primary 41-xx, 65Dxx; Secondary 41A63, 65D99.

§1. Introduction

Function approximation is a fundamental problem, with foundations laid for the low-
dimensional case. Given scattered data and function values, we wish to use the regu-
larity within the data and the function values, for the approximation of the function
at a new point. With the dissemination of high-dimensional data, the interest in this
question was renewed, and the task was rephrased to deal with the new challenges that
this data raise. While for the approximation task for low dimensional data various
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methods were suggested to solve this problem (e.g., splines, Radial Basis Functions
(RBF), or Moving Least-Squares [21]), in high dimensions, approximating a function
is still a non-trivial task. High-dimensional data pose many new challenges due to the
curse of dimensionality, the presence of noise, and the unknown topology of the scatted
data. For example, in the case of a smooth function, the approximation rates deteri-
orate severely with the growth of the dimension, the reason being that the amount of
sampled data should grow exponentially with respect to the dimension if one wishes to
maintain the same approximation order.

In this paper, we study the problem of approximating functions on manifolds in a
high-dimensional space in a noisy scenario. Let M be a d-dimensional manifold in Rn,
where d ≪ n, and let X = {xi}Ki=1 ⊂ Rn, be a set of points sampled from M. Also let
f : M ⊂ Rn → Rs be a function, along with its values {f(xi)}Ki=1 at the given points.
In the current setting, noise may be present both in the domain of the function and in
its co-domain. We are looking for a noise-free approximation to f at a new point near
M.

The existing approximation methods for approximating functions in high dimen-
sions, fall broadly into two categories: the domain of the function is a smooth manifold
or not. In case the data does not lay on a manifold, several methods were suggested.
For example, solutions that treat non-smooth multivariate functions, [1], are based on
sparse occupancy trees [5], Radial Basis Functions [15] (discussed in detail below), or
address the problem in the case where the values of the function lie on a manifold [19].

On the other hand, if the high-dimensional data resides on a low-dimensional man-
ifold, this information can be exploited to improve the approximation via one of the
following two approaches: approximating in low dimension after dimension reduction,
or alternatively approximating in high dimension. At times, reducing the dimension
(e.g., in PCA [26], Multidimensional Scaling [12], Linear Discriminant Analysis [18],
Locality Preserving Projections [20], Locally Linear Embedding [27], ISOMAP [30],
Diffusion Maps [10], and Neural Networks in their general form, [24]) can lead to a bet-
ter approximation (in terms of handling the challenge of the dimensionality, as well as
the noise in the data). However, it may be non-efficient if the data volume is very large,
and in addition, may result in information loss (due to some assumptions that need to
be made on the data, e.g., regarding the data geometry, or the intrinsic dimension).

In contrast, using the manifold assumption, the approximation can be performed
in high dimensions. For example, approximation of functions on manifolds is studied
using local polynomials [4], wavelets [11], local linear regression [4], or neural networks
[2, 28, 9]. In [6] the authors propose to deal with noise and outliers by a method inspired
by the k-nearest neighbor’s regression and the local median filtering, while the outliers
are filtered using a distance to a measure function. For smooth functions on [0, 1]N

which depend on a much smaller number ℓ of variables, a solution was suggested in [14].
In addition, a recent paper, [29], proposed a solution based on Moving Least-Squares
(MLS) that was designed to deal with noisy data with good rates of approximation.

In this paper, we propose a method of approximation of functions that extends the
Manifold Locally Optimal Projection (MLOP) algorithm [17] for denoising the data,
and uses its advantages to boost the method of Radial Basis Functions (RBF) [15, 7].
We introduce this duet for approximation in high dimensions under noisy conditions
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(both in the domain and in the co-domain of the function). The new method name
is Function approximation and Manifold Locally Optimal Projection (FMLOP). While
the RBF approximation alone is sensitive to noise and non-uniform data, as will be
shown in this paper, the proposed solution is robust under these scenarios.

The rest of this paper is organized as follows: we start by summarizing our main
contribution; in Section 2 we provide the theoretical framework of the MLOP and RBF
methods; Section 3 describes the proposed methodology for approximating functions in
high-dimension, along with a theoretical analysis of the method. Numerical examples
that demonstrate the effectiveness of the proposed solution are listed in Section 4.

Main Contribution

The main contribution of this paper is to provide a simple and efficient method for
function approximation from noisy data in high-dimension. Commonly, the presence
of noise challenges the existing approximation methods. Primly, due to the lack of
additional information related to the noise model, its magnitude, or its location. The
solution reported herein deals with high amounts of noise and outliers by cleaning the
data (both the scattered data and the function values). The power of the proposed
methodology is that we assume that high-dimensional input data lies on an intrinsically
low-dimensional Riemannian manifold and use the intrinsic connections between differ-
ent samples for the denoising task. This step not only denoises the existing data but
also paves the way to improving the approximation order of function approximation
at new points. In addition, since the pre-processing step is performed only once per
problem setting, the function approximation at new points is very efficient.

Moreover, the proposed method demonstrates that, naturally, denoising the data
before performing approximation is beneficial. As will be seen below, the MLOP and
RBF duet outperforms the classical RBF function approximation. The analysis per-
formed in this paper demonstrates the effectiveness of the data-denoising method prior
to the approximation task.

§2. Preliminaries

2.1. The MLOP framework

The Manifold Locally Optimal Projection (MLOP) [17] was designed to reconstruct
the underlying manifold while dealing with noisy data in high-dimensions. The MLOP
enhances the Locally Optimal Projection (LOP) method initially introduced in [25], de-
signed to approximate two-dimensional surfaces in R3 from point-set data. The MLOP
algorithm is simple, fast, and efficient, and does not require any additional assump-
tions. The theoretical analysis, accompanied by numerical examples in [17] show that
the methodology is robust in case of noisy scenarios in high-dimension. Herein, we
provide a concise overview of the MLOP method and its key properties that later are
used for approximation of functions.

The setting of the high-dimensional reconstruction problem is the following: Let M
be a manifold in Rn of unknown intrinsic dimension d ≪ n. Given a noisy point-cloud
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P = {pj}Jj=1 ⊂ Rn situated near the manifold M such that P is a h-ρ set, we wish to

find a new point-set Q = {qi}Ii=1 ⊂ Rn which will serve as a noise-free approximation of
M. First, let us introduce the h-ρ condition, defined for scattered-data approximation
of functions (which is an adaptation of the condition in [21] for low-dimensional data),
to handle finite discrete data on manifolds:

Definition 2.1. h-ρ sets of fill distance h and density ≤ ρ with respect to a
manifold M. Let M be a manifold in Rn and consider sets of data points sampled from
M. We say that such a set P = {Pj}Ji=1 is an h-ρ set if:
1. h is the fill distance, i.e., h = maxy∈M minpj∈P ∥y − pj∥.
2. #{P ∩ B̄(y, kh)} ≤ ρkn, k ≥ 1, y ∈ M.
Here #Y denotes the number of elements in a set Y and B̄(x, r) denotes the closed ball
of radius r centered at x.

In the manifold reconstruction scenario, we seek for a solution in the form of a new,
quasi-uniformly distributed point-set Q that will replace the given data P and provide a
noise-free approximation of M. This is achieved by leveraging the well-studied weighted
L1-median [31] used in the LOP algorithm and requiring a quasi-uniform distribution
of points qi ∈ Q. These ideas are encoded by the cost function

G(Q) = E1(P,Q)+ΛE2(Q) =
∑
qi∈Q

∑
pj∈P

∥qi−pj∥Hϵ
wi,j+

∑
qi∈Q

λi

∑
qi′∈Q\{qi}

η(∥qi−q′i∥)ŵi,i′ ,

(2.1)
where the weights wi,j are rapidly decreasing smooth functions, where wi,j = exp

{
−

∥qi − pj∥2/h2
1

}
and ŵi,i′ = exp

{
−∥qi − q′i∥2/h2

2

}
. The L1-norm used in [25] is replaced

by the “norm” ∥ · ∥Hϵ
introduced in [22] as ∥v∥Hϵ

=
√
v2 + ϵ, where ϵ > 0 is a fixed

parameter (in our case we take ϵ = 0.1). The parameters h1 and h2 are selected to
guarantee a sufficient amount of P or Q points for the reconstruction (for more details,
see the subsection “Optimal Neighborhood Selection” below). Also, η(r) is a decreasing
function such that η(0) = ∞; in our case we take η(r) = 1

3r3 . Finally, {λi}Ii=1 are
constant balancing parameters.

In order to solve the problem with the cost function (2.1), we look for a point-set Q
that minimizes G(Q). The solution Q is found via the gradient descent iterations

q
(k+1)
i′ = q

(k)
i′ − γk∇G(q

(k)
i′ ), i′ = 1, . . . , I , (2.2)

where the initial guess {q(0)i }Ii−1 = Q(0) consists of points sampled from P , and∇G(q
(k)
i′ )

is the gradient of G as given in equation 2.1. For the explicit details about gradient cal-
culation as well as the selection of γk and λi parameters see the Appendix 5. The code for
the MLOP algorithm, along with examples, can be found in https://github.com/shirafai-
gen/MLOP

Norm calculation in a noisy scenario. The reasoning in terms of Euclidean
distances, which is the cornerstone of the MLOP method, works well in low dimensions,
e.g., for the reconstruction of surfaces in 3D, but breaks down in high dimensions once
the noise is present. To deal with this issue, a dimension reduction is performed via
random linear sketching [32]. It should be emphasized that the dimension reduction
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procedure is utilized solely for the calculation of norms, and the manifold reconstruction
is performed in the high-dimensional space. Thus, given a point x ∈ Rn, we project
it to a lower dimension m ≪ n using a random matrix, S, with certain properties.
Subsequently, the norm of ∥Stx∥ will approximate ∥x∥. The construction of S is carried
out in the following steps: (a) sample G ∈ RJ×m with G ∼ N(0, 1); (b) compute
B ∈ Rn×m as B := P tG; (c) calculate the QR decomposition of B as B = SR, and use
S as the dimension reduction matrix.

Optimal neighborhood selection. The parameters h1 and h2 used in the func-
tions wi,j = exp

{
− ∥qi − pj∥2/h2

1

}
and ŵi,i′ = exp

{
− ∥qi − q′i∥2/h2

2

}
, respectively, are

closely related to the fill distance of the P -points and the Q- points. Due to the im-
portance of the optimal selection of these parameters, we quote here several definitions
and results from [17]. First, we adapt the fill-distance notion defined for scattered-data
approximation functions (in [21], defined for low-dimensional data), to handle finite

discrete data on manifolds. Next, we define the ĥ0 parameter which will guarantee a
sufficient amount of active points in the neighborhood of each qi point.

Definition 2.2. Given a point-clouds, P = {pj}Jj=1 ⊂ Rn, situated near a manifold M
in Rn

1. The fill distance of the set P is defined as

h0 = maxy∈M minpj∈P ∥y − pj∥ . (2.3)

2. Given a point-set Q = {qi}Ii=1 ⊂ Rn, situated near a manifold M in Rn, such
that its sizes and the size of the set P obey the constraint I ≤ J , denote ν =

⌊
J
I

⌋
.

Then we say that the radius that guarantees approximately ν points from P in
the support of each point qi is ĥ0 = c1h0, with c1 given by

ĥ0 = c1h0, with c1 = argmin{c : #(B̄ch0
(qi) ∩ P ) ≥ ν, ∀qi ∈ Q} . (2.4)

Theoretical analysis of the MLOP method
For the sake of completeness, we summarize here several important properties of the
MLOP algorithm. In [17] the authors proved that, under mild conditions, the non-
convex optimization converges almost surely, with the number of iterations bounded, to
a quasi-uniformly set Q∗ which approximates the original manifold with a second-order
approximation order. The following theorem summarizes all the theoretical results
proven in [17]:

Theorem 2.3. Let M ∈ Rn be a C2 manifold M of unknown intrinsic dimension d.
Suppose that the scattered data points P = {pj}Jj=1 were sampled from M, h1 and h2

are set as in definition 2.2, and the h-ρ set condition is satisfied with respect to M. Let

the points Q(0) = {q(0)i }Ii=1 be sampled from P , and suppose Q∗ is a local fixed-point
solution of the gradient descent iterations. Then the following hold:

(1) The gradient descent iterations (5.6) converge almost surely to a local minimizer
Q∗.
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(2) The proximity of the set Q∗ to M is O(h2) as h → 0, where h is the support of
the weight functions wi,j.

(3) The set Q∗ is quasi-uniformly distributed with respect to M.

(4) The set Q∗ is an ϵ-first-order stationary point, i.e. ∥∇f(x)∥ ≤ ϵ, that will be
reached after k = L · (G(Q(0))–G(Q∗))ϵ−2 iterations, for ϵ > 0, step size γ = ϵ−1,
and the cost function G is an L-smooth function and L is its Lipschitz constant.

(5) The complexity of the algorithm is O(nmJ + kI(nmÎ + Ĵ)), where the number of
iterations k is given in the item above, m ≪ n is the smaller dimension to which
we reduce the dimension of the data, and Î and Ĵ are the numbers of points in
the support of the weight functions ŵi,i′ , wi,j that belong to the Q-set and P -set,
respectively. Thus, the approximation is linear in the ambient dimension n, and
does not depend on the intrinsic dimension d.

Often, that data is incomplete, and contain holes. This scenario was addressed in [16],
where missing information in the data is reconstructed.

2.2. Radial Basis Functions

Radial Basis Functions (RBF) constitute a very useful and convenient multivariate
interpolation tool [15, 7]. Assume X = {xi}i=1,...,K is a finite set of distinct points in
Rd, which are traditionally called centres, because our basis functions will be radially
symmetric about these points. Let us consider the function f : Rd → Rs, its values these
centers, f(xi). The goal is to approximate the value of the function in aa new point
x ∈ Rd. In order to approximate this function in high-dimension, the approximation is
carried out componentwise in the s components of f . The RBF estimates the value of
f at a new point x by the formula

f̃(x) =
K∑
i=1

µiϕ(∥x− xi∥) , (2.5)

where ϕ : R+ → R is a radial basis function and µi is a vector of parameters chosen to
maintain interpolation at the center points, i.e.,

f̃(xj) =

K∑
i=1

µiϕ(∥xj − xi∥) = f(xj). (2.6)

Several examples of radial basis functions appear in [8, 33]. In the numerical experi-
ments, presented below, we used the following fast decaying Gaussian RBF:

ϕ1(r) = exp{−(r/h)2},
ϕ2(r) = exp{−(r/h)2}

(
1 + r/h

)
,

In what follows, will discuss the order of approximation of the RBF algorithm, by
stating a theorem proved in [34]. The theorem addresses a general form of the RBF,
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where the polynomial term
I∑

i=1

αipi(x) is added to equation 2.5. We narrow down our

discussion to the case where αi = 0.
To state the theorem on the order of approximation of the RBF method we define below
quasi-uniformly distributed point-sets.

Definition 2.4. Let X = {xj}Kj=1 ∈ X be a set of points with fill-distance h and
separation distance δ = min

1≤i̸=j≤N
∥xi − xj∥/2. Then we say that the point-sets X ∈ X

are quasi-uniformly distributed if there exists a constant η > 0 independent of X such
that

2δ ≤ h ≤ ηδ . (2.7)

The approximation theorem presented in [34] deals with a family X of quasi-uniformly
distributed point-sets in Rd, stating the approximation order w.r.t. their fill-distance
h.

Theorem 2.5. Let X be a family of quasi-uniformly distributed scattered point-sets,
and let f̃(x), defined as in (2.5), be an interpolant to f on X ∈ X using the radial
basis function ϕ. Also let W k

∞(Ω) be the Sobolev space, for k ∈ N. Then under mild
assumptions on ϕ, for every function f ∈ W k

∞(Ω), with k ∈ N, the error of the RBF
method is estimated as

∥f − f̃∥L∞(Ω) = o(hk) as h → 0. (2.8)

Remark 2.6. While the above approximation result holds for functions on Rd, we are
going to apply the RBF procedure on smooth d-dimensional manifolds. To transfer the
approximation rate result to the approximation of functions on manifolds, we need some
further assumptions on the smoothness of the manifold and on the RBF basis function.
In the following proposition we present a partial discussion on the approximation rate
of the RBF approximation on manifolds, under some restricted assumptions.

Proposition 2.7. RBF on manifolds. Let M be a C2 d-dimensional manifold in
Rn, and let ρ(x, y) represent the geodesic distance between two points on M. Consider
f : M → R, f ∈ W k

∞ on M with respect to ρ, k ≤ 2. Assume f is given on a set of
points Q ∈ M, quasi-uniformly distributed on M, of fill-distance h, with respect to ρ.
Consider the manifold RBF approximation at a point z ∈ M defined as

f̃(z) =
∑
qi∈Q

µiϕ(ρ(z, qi)) , (2.9)

where ϕ : R+ → R is a function of finite support and {µi} is the vector of parameters
chosen to fulfill interpolation at the points Q,∑

qi∈Q

µiϕ(ρ(qi, qj)) = f(qj), qj ∈ Q. (2.10)

Then, as h → 0,
|f(z)− f̃(z)| = o(hk). (2.11)
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Proof. Consider the system of equations in (2.6) in case ϕ is of finite support h, or fast
decaying as ϕ1 and ϕ2 above. Let us denote the data vector as f̄ ≡ {f(xj)}, and the
resulting coefficients vector as µ̄ ≡ {µi}. Then,

µ̄ = Bf̄,

where B is the inverse of the matrix {ϕ(∥xi − xj∥)}. Using the same consideration as

in [13], we have that |Bk,ℓ| ≤ exp−C
∥xk−xℓ∥

h . It follows that essentially only data in an

O(h) neighborhood of x ∈ Rn affects the approximation f̃(x). The same holds for the
RBF approximation on manifolds, i.e., the approximation order at z ∈ Rn is affected
by the data in an O(h) neighborhood of z.

In order to transfer the approximation result in Theorem 2.5 to the manifold setting,
we consider the projection Π of a small neighborhoodN ⊂ M of z ∈ Rn onto the tangent
space to M at that point. The projection induces the definition of a function f̂ on
Ω = Π(N ) simply by f̂(Π(q)) = f(q), q ∈ N . Since M is C2, it follows that f̂ ∈ W k

∞ on
Ω. We also consider the projection of the data points, q̂j = Π(qj), qj ∈ N . The ordinary

RBF approximation on Ω uses the values f̂(q̂j) = f(qj) and the weights ϕ(∥q̂i − q̂j∥).
For the RBF approximation on Ω we are equipped with the approximation result of
Theorem 2.5. Since M is C2, it follows that for data points in an O(h) neighborhood
of z

ϕ(∥q̂i − q̂j∥) = ϕ(ρ(qi, qj)) +O(h2), as h → 0. (2.12)

Let us compare the linear systems of equations related to the RBF approximation on
Ω and the RBF approximation on the manifold. In view of the above discussion on the
relevant influence domains for both approximations at the point z, and in view of (2.12),
it follows that the significant equations for the approximation at z using the RBF on M
are O(h2) perturbations of the corresponding equations for the RBF approximation on
Ω. This implies an O(h2) perturbation in the solution for the coefficients defining the
approximation at z. This, in turn, implies an O(h2) perturbation in the approximation
rate result (2.8). Since k ≤ 2, the proof is completed. ■

Remark 2.8. Limitations of the RBF method. Theorem 2.5 implies that in the
ideal scenario of noise-free, uniformly-sampled data, the RBF method results in a good
approximation rate. Nevertheless, in real-life scenarios, this is not always the case. From
Theorem 2.5 it follows that the approximation order of the RBF function is o(hk), where
h is the fill-distance of the scattered data. However, non-uniform sampling as well as
the presence of noise enlarges the fill-distance and reflects the approximation rate. In
addition noise in the function values, naturally, affect the approximation rate as well.
The approach presented in the next section suggests a methodology that solves these
issues.
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§3. Function Approximation via FMLOP Method

3.1. Algorithm Description

Let M be a manifold in Rn, of unknown intrinsic dimension, where d ≪ n, and let
f : M → Rs be a Ck smooth function. Assume P̃ = {p̃i} is a noise-free set of points
sampled non-uniformly on M, and let {ei} be a set of random vectors in Rd with zero
mean and ∥ei∥ ≤ ϵ. Define a noisy point-cloud P = {pj}Jj=1 ⊂ Rn as pi = p̃i + ei, be
a disjoint set (i.e., no repetitive points exist), situated near the manifold. Given noisy
function values f(pj) at locations P = {pj}Jj=1, the approximation solution presented
in this paper consists of two steps. First, find a quasi-uniform, noise-free point set
that approximates the manifold M, and recover the function values at these points.
Later, given a new point z near M, approximate the value of the function f at it. The
approach proposed herein leverages the advantages of the Manifold Locally Optimal
Projection method to deal with issues raised in Remark 2.8. First, the available data
(scattered data as well as the function values) is denoised via the MLOP method. Once
the data cleansing is complete, it is used to estimate the function value at new points
via the RBF method. It should be emphasized that data reconstruction and denoising
is a pre-processing step that should be performed only once for each input scenario, and
later we enjoy its fruits for estimating the function at any given new point. In what
follows we use the following notations: P and Q are data sets in Rn, while P̂ and Q̂
are sets in Rn+s, where s is the dimension of the codomain of the function.

Step 1 - Data Denoising

Our approach for the first step is based on generalizing the MLOP method designed for
manifold denoising to the case of function approximation settings. The key idea of the
solution is embedding the approximation problem in a higher-dimensional space and
carrying out the denoising task for the embedded data. Given input data, consisting
of the points set P = {pj}Jj=1 ⊂ Rn and the set of the corresponding function values

at them {f(pj)}Jj=1 ⊂ Rs, we define a new point-set P̂ = {p̂j}Jj=1 as the graph of the
function f on P , as

p̂j = (pj , f(pj)). (3.1)

From the definition it follows that the newly defined points P̂ are data points in Rn+s.
Noteworthy is the data standardization step which is an essential phase prior to defining
the points p̂j , see Remark 3.2 for a complete discussion of this delicate point.

Lemma 3.1. Assume M is a smooth d-dimensional manifold in Rn, where d ≪ n and
let f : M → Rs be a Ck smooth function. Let M̂ = Graph f = {(x, f(x)) : x ∈ M} ⊂
Rn+s, then M̂ is a smooth d-dimensional manifold in Rn+s.

Proof. From the definition of M̂, it follows that it is the graph of a smooth function f
defined on a smooth d-dimensional manifold. Therefore, there are only d free parameters
that define M̂, and thus it is itself a smooth d-dimensional manifold in Rn+s. ■
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In this context, the points set P̂ represents noisy data sampled from a d-dimensional
manifold embedded in the Rn+s. In the new setting applying the MLOP method on
the new data set P̂ results in a clean, quasi-uniformly sample set Q̂ = {q̂i}Ii=1 ⊂ Rn+s

which serve as a noise-free approximation of M̂. From Theorem 2.3, the set Q̂ has
several properties that will be later used in the theoretical analysis. First, it follows
that the set Q̂ is a quasi-uniform approximation to M̂, which is a cornerstone for the
second RBF approximation step below (see the discussion in Remark 2.8). In addition,
applying the MLOP in the high dimensional case denoises the entire data efficiently.
Due to our construction the denoising is performed both the domain of the function
and its co-domain.

Let us examine the end product of the MLOP reconstruction, Q̂, and its structure.
The construction of the set P̂ in (3.1) determines the structure of Q̂. Thus, each point
q̂i can be rewritten as

q̂i = (qi, f̃(qi)), i = 1, ..., I. (3.2)

Let us define a points set Q = {qi}Ii=1 ⊂ Rn. This set is recovered as the set of the
first n component of each point in the graph, while the last s components represent the
denoised values of f at these points. From Theorem 2.3 it follows that it approximates
the original manifold M.

Step 2 - Approximation of the Function at a New Point

Given the denoised data set (qi, f̃(qi)), we now address the problem of estimating the
function at a new point z near M by applying the RBF approximation taking into
account the denoised data. Since the outcome of the first step is a set of points Q which
is noise-free, and is also quasi-uniformly distributed on the manifold M, applying the
RBF using these points, is beneficial as opposed to non-uniformly sampled points (see
Remark 2.8). This key idea paves the way towards estimating the value of the function
at a new given point on M, or near M, with a satisfactory order of approximation.

In what follows, we approximate f using the RBF approximation (2.5), while setting

the centers at the noise-free points Q, and relying on the noise-free function values f̃(Q).
Thus, given a new point z ∈ Rn, f is estimated by the formula

f̃(z) =

I∑
i=1

µiϕ(∥z − qi∥) , (3.3)

where qi are the points found by the MLOP in Step 1 as appearing in 3.2, and µi are
found by solving the system of equations (2.6),

I∑
i=1

µiϕ(∥qi′ − qi∥) = f̃(qi′), qi′ ∈ Q. (3.4)

The steps of the FMLOP algorithm 1 are summarized below:
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Algorithm 1 Function Approximation on a Manifold in High Dimensions (FMLOP)

1: Input: P = {pj}Jj=1 ⊂ Rn, {f(pj)}, {zk}Kk=1 ▷ where {zk}Kk=1 is a set of
new points for function approximation

2: Output: Q = {qi}Ii=1 ⊂ Rn, f̃(Q), {f̃(zk)}Kk=1

3: Normalize the P points and the f(P ) values to a common scale (see Remark 3.2) .

4: Embed the data to Rn+s as the graph of the function P̂ = (P, f(P )) ⊂ Rn+s.

5: Denoise the input data by running MLOP with P̂ that result with Q̂ = (Q, f̃(Q)).
6: for each zk ∈ {zk}Kk=1 do

7: Approximate f̃(zk) via RBF (3.3), with centers at Q and the matching f̃(Q)
values.

8: end for

Remark 3.2. Data standardization. Distance calculation is the cornerstone of the
MLOP algorithm. It is known that the vector norm is tightly dependent on the scale
of its entries. Therefore, when dealing with high-dimensional data, one needs to make
sure that the data in use is homogeneous (i.e. that the entries of each sample are from
the same numerical range). This is a basic requirement not only in our case but also in
many manifold learning and machine learning tasks when data acquired from different
domains are combined. There exist several ways to perform data normalization, starting
from standardization (by normalizing the features utilizing the mean and variance), such
as min-max normalization, or unit vector normalization.

In our case, upon embedding the data in a higher-dimensional space as the graph
of the function, one needs to address the data normalization problem. Since naturally
the points pj and their function values f(pj) are not necessarily on the same scale,
performing a normalization is an essential step to avoid the dominance of one over the
other. In the numerical examples, we choose to normalize the values of f to match the
scale of the P coordinates, by scaling the function values with respect to the maximum
absolute value of the pj coordinates.

3.2. Theoretical Analysis of the FMLOP Method

In this section, we discuss some of the theoretical aspects of the proposed approximation
method. Our analysis is incremental and relies on the theory of the MLOP method
as discussed in Theorem 2.3, as well as the RBF method. Naturally, some of the
properties of the FMLOP are inherited from the MLOP method, we summarize them
in the following theorem:

Theorem 3.3. Let P = {pj}Jj=1 be a set of points sampled from a d-dimensional C2

manifold M without noise that satisfy the h-ρ condition. Let f : M → Rs be a smooth
multivariate function given at points of P . Let P̂ be the graph of the function defined
in 3.1 sampled from a manifold M̂ in Rn+s. Assume ĥ1 and ĥ2 are tightly related to
the fill-distance of the dataset P̂ , as prescribed in Definition 2.2, and also the h-ρ set
condition is satisfied with respect to M̂. Then the MLOP converges almost surely to a
local minimizer, the reconstructed set Q̂ is evenly distributed with respect to the manifold
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M̂, and the MLOP reconstruction is reached after a bounded number of gradient descent
iterations.

The proof of the theorem follows immediately from the fact that from Lemma 3.1,
the P̂ set was sampled from a manifold in Rn+s. Thus, all the conditions in Theorem
2.3 are satisfied, and the proof follows for the P̂ and Q̂ data.

Next, we build on top of the MLOP results concerning the order of approximation
and the complexity of the method to analyse the FMLOP properties. It should be noted
that although the theoretical analysis deals with noise-free samples, in the numerical
examples section we illustrate the application of the algorithm to noisy data.

Theorem 3.4 (Order of Approximation). Let P = {pj}Jj=1 be a set of points sampled

from a d-dimensional C2 manifold M without noise that satisfy the h-ρ condition.
Let f : M → Rs be a smooth multivariate function given at points of P . Suppose
that f ∈ W k

∞(Ω), k < 2, and fulfills all the conditions of Theorem 2.5. Let P̂ =

{(pj , f(pj))} ⊂ Rn+s be the corresponding graph of the function f on P . Assume ĥ1

and ĥ2 are tightly related to the fill-distance of the dataset P̂ , as prescribed in Definition
2.2. Let also Q̂ = {(qi, f̃(qi))} be the pair of Q = {qi}Ii=1 ⊂ Rn the points set that

reconstruct M that result from the FMLOP method, accompanied with the f̂(Q). Then
the following holds

1. For a fixed ρ and δ, the set Q approximates M with order O(ĥ2), where ĥ =

max{ĥ1, ĥ2}. In addition, the order of approximation of the function f on the set

Q is also O(ĥ2).

2. The error of approximating the function value at a new point using the RBF
approximation with centers at Q, and the values of f̃(Q), is bounded by C1ĥ

2 +

C2h
k
2 , where ĥ2 is found with respect to the set Q̂, h2 is estimated taking in to

account the set Q , and C1 and C2 are constants.

Proof. Given the input data, consisting of the points P = {pj}Jj=1 and the function

values {f(pj)}Jj=1, we follow the FMLOP procedure. Let us define a new point-set

P̂ = {p̂j}Jj=1, which lie on the graph of the function f . By Lemma 3.1 it follows that

these points are sampled from the manifold M̂ in Rn+s. In this setting, applying the
MLOP algorithm denoise the d-dimensional manifold embedded in (n + s)-dimension.

Let ĥ be the representative distance introduced in Definition 2.2 for the data set P̂ =
{(pj , f(pj))} ∈ Rn+s. From Theorem 2.3 it follows that Q̂ approximates M̂ with the

order O(ĥ2), and also that the reconstruction is a quasi-uniformly distributed set Q̂.

Recall that Q̂ is in fact a combination of a noise-free set Q, which reconstructs the
manifold M, and an estimate of the clean values of the function at these points in Q,
f̃(Q). Therefore, the order of approximation of Q to M, and of the estimated values f̂

to f is O(ĥ2). This proves the first part of the Theorem.
Next, let h2 be the the support size of ŵi,i′ as in Definition 2.2 with respect to the

point-set Q. From Proposition 2.7 it follows that the error of approximation of the
function value at a new point is o(hk

2). Therefore, the overall order of approximation
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for a new point is a combination of the two orders, namely ≤ C1ĥ
2 + C2h

k
2 , with C1

and C2 are constants. ■

Remark 3.5. The fill-distance ĥ of the set P̂ ⊂ Rn+s defined as in 2.2 is related to
the construction of that set in 3.1. On the one hand, it depends on the local density of
the dataset P , and on the other hand, it also incorporates the information on function
variation.

We now turn to discuss the complexity of the approximation of functions. The
complexity consists of a pre-processing MLOP stage performed only once, and the RBF
approximation of the function at new points.

Theorem 3.6 (Complexity of the Approximation of Functions). Let P = {pj}Jj=1 be a
set of points sampled near a d-dimensional manifold M ⊂ Rn and let f : M → Rs be
a multivariate function given at the points of P . Let us apply the MLOP iterations k
times, which will result in the points Q = {qi}Ii=1. Let m be m ≪ n, the dimension of
the domain where the linear sketching reduces the data. Then the complexity of function
approximation via the MLOP is O((n + s)mJ + kI((n + s)mÎ + Ĵ) + nmI + I log22s),

where Î and Ĵ are the numbers of active points from the Q and P -sets, respectively. In
addition, the complexity of evaluating the function at a new point is O(nm+ I).

Proof. The estimate of the complexity of the algorithm can be separated into two steps:
a) pre-processing and b) evaluating the function at a new point. The pre-processing step
consists of applying the MLOP algorithm in Rn+s, as well as finding the RBF coefficients
µi by solving the Least-Squares problem in 2.6. By Theorem 2.3, the complexity of
applying the MLOP in the higher dimension n+s is O((n+s)mJ+kI((n+s)mÎ+ Ĵ)).
The output of this stage is a point set Q of size I, and the corresponding set of values
f̃(Q). From this point on, all the approximation operations are performed on Q, and
if I ≪ J then we can increase sufficiently the efficiency. The next part of the pre-
processing step is to evaluate the radial basis function ϕ for each qi ∈ Q, which costs
O(nmI), and then to find the µi by solving the Least-Squares problem in 2.6, which
takes O(I log22s) (as shown in [23]). As a result, the complexity of the pre-processing

step is O((n+ s)mJ + kI((n+ s)mÎ + Ĵ) + nmI + I log22s).
Finally, using the µi already found, we evaluate the function at a new point in time

O(nm+ I). It should be stressed that although the pre-processing steps are expensive,
they are executed once before the function is approximated at new points set. Thus, if
the number of new points for which the approximation needs to be found is large, then
the pre-processing steps have less effect on the runtime. ■

§4. Numerical Examples

In what follows we present several numerical experiments to demonstrate the effective-
ness and advantages of our methodology. Our study includes various types of functions
evaluated on manifolds of different intrinsic dimensions, among them are:

a. Smooth/non-smooth function on a one-dimensional manifold of orthogonal ma-
trices embedded in R60.
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b. A sinusoidal function on a two and six-dimensional cylinder in R60.

c. A function with a codomain in R2 on a two-dimensional cone in R60.

d. Robustness test with various noise levels of a function on a Swiss Roll embedded
in R60.

Our examples illustrate the strengths of the proposed approximation approach. On
the one hand, denoising the data domain as well as the function codomain plays an
important role in the approximation of functions. On the other hand, sampling the
manifold quasi-uniformly improves significantly the approximation of functions using
classical approximation methods on new data. It should be emphasized that in all the
numerical examples the noise was added both to the data and the observed function
values. The accuracy of the approximation is measured as the relative maximum error
of the L1 norm of the difference between the value of f̃ at the new point and the value
of f at the closest point in the reference dataset, as well as the root-mean-square error
and the standard deviation. In addition, for evaluating the efficiency of approximating
function at new points, we randomly selected 100 points.

4.1. Smooth/ Non-Smooth Functions on One-Dimensional Or-
thogonal Matrices

We start with two examples of functions, one smooth and the other non-smooth, both
calculated on a one-dimensional manifold embedded in a high-dimensional space. Al-
though in principle the approximation requires a smooth function, it can still be applied
to a non-smooth function, provided that we end up with a smoothed result. In this
experiment, we sampled 500 equally distributed points from the manifold O(2) of or-
thogonal matrices

p̂θ = [cos(θ),− sin(θ), sin(θ), cos(θ), 0, . . . , 0]

for θ ∈ [−π, π]. Next, we projected the data to a non-trivial domain using randomly
generated orthogonal matrix A ∈ R60×60, resulting in a new point-set via the non-
trivial vector embedding P = AP̂ , and added uniformly distributed (between -0.1 and
0.1) additive noise. Next, the set Q was formed from 55 points randomly sampled.
Figure 1 (A) illustrates the first two coordinates of the points, after multiplication by
the matrix A−1. The noisy sample points are shown in blue, while the initial Q points
are in red.

We studied two functions on this manifold. The first one was a smooth function
given in the following parameterization

f(x) =
1

4
(1 + sin(10 θ)),

while the other function was the non-smooth function given by

f(x) =
1

6
(1 + arccos(cos(10 θ))).
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In both of the cases, θ corresponds to the value used in the definition of p̂θ above.
The two functions were evaluated at the P -points and uniform noise U(−0.1, 0.1) was
added, see Figure 1 (B) and (C) respectively. Later the MLOP algorithm was applied,
which reconstructed and denoised the manifold (see Figure 1 (D)), as well as denoised
function values; see Figure 1 (E) and (F). The comparison between the approximation
and the original as presented in Figure 1 speaks for itself. This is also reflected in the
errors listed in Table 1, which shows that the maximal approximation error decreased
from 0.31, and 0.13 for the smooth function and from 0.2 to 0.1 for the non-smooth
one.

Figure 1: Approximating sinusoidal and zigzag functions on an orthogonal matrices
manifold embedded in R60. Displayed using the first two coordinates of the point-set
(after multiplication by A−1) (A); Scattered data with uniformly distributed noise in
blue, and the initial point-set in red; Noisy function values in red and the noise-free
reference data in gray. The smooth case presented in (B); and non-smooth in (C); (D)
The denoised manifold resulting after the MLOP algorithm after 150 iterations in red;
Noise-free functions values of the smooth (E); and non-smooth function (F).

Table 1: Error estimation of function values f(Q(k)) on the O(2) manifold embedded

into 60-dimensional space.

f(x) = 1
4 (1 + sin 10x) f(x) = 1

6 (1 + arccos(cos 10x))

Max relative

error

RMSE ± var Max relative

error

RMSE ± var

k = 0 0.31 0.06± 0.0011 0.2 0.04± 0.0007

k = 150 0.13 0.03± 0.0003 0.1 0.03± 0.0002
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Next, we examined the effectiveness of Step 2 of the FMLOP algorithm, i.e. es-
timating the function values at new points. For this purpose, 100 new points were
randomly chosen on the manifold, and the function was estimated at them using the
RBF approximation while using the Q points. The results are summarized in Table
2. For instance, for the smooth case, we see that the maximal error was reduced from
0.66 to 0.12 for the smooth case, while for the non-smooth it was reduced from 0.77 to
0.15. This is also strengthened by the RNSE and variance calculation. This shows the
robustness of the approximation process with respect to the clean data.

Table 2: Error estimation of the RBF approximation at 100 new data points using the

denoised centers
f(x) = 1

4 (1 + sin 10x) f(x) = 1
6 (1 + arccos(cos 10x))

Max relative

error

RMSE ± var Max relative

error

RMSE ±
var

RBF, ϕ1, centers at

Q(0), noisy f

0.66 0.14±0.0079 0.77 0.16± 0.010

RBF, ϕ1, centers at

Q(150), cleaned f̃

0.12 0.03±0.0002 0.15 0.03±0.0004

RBF, ϕ2, centers at

Q(150), cleaned f̃

0.12 0.03±0.0002 0.16 0.03±0.0003

4.2. Two and Six-Dimensional Cylindrical Structure

In this subsection, we study the two and six-dimensional cylinder embedded to R60.
We start with the two-dimensional cylindrical structure, sampled using the parameter-
ization

p = tv1 +
R√
2

(
cos(u)v2 + sin(u)v3

)
,

where v1 = [1, 1, 1, 1, 1, . . . , 1], v2 = [0, 1,−1, 0, 0, . . . , 0], v3 = [1, 0, 0,−1, 0, . . . , 0] (v1, v2, v3 ∈
R60), t ∈ [0, 2] and u ∈ [0.1π, 1.5π]. Here we sampled 800 equally distributed (in param-
eter space) points and added uniformly distributed noise U(−0.1, 0.1). The function
used is f(t, u) = 1.3(1 + sin(0.5u + 1.5t)), and additive noise was added U(−0.1, 0.1).
The set Q consisted of 150 points randomly sampled from P , see Figure 2 (A) for the
manifold and (B) for the function values illustrated by the color.
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Figure 2: Approximating sinusoidal function on a two-dimensional cylindrical structure
embedded in a 60-dimensional space. The first three coordinates of the point-set are
shown. (A) Scattered data with uniformly distributed noise U(−0.1; 0.1) (green), and
the initial point-set Q(0) (red). (B) The initial values of the function at the original Q(0)-
points with noise U(−0.1, 0.1). (C) The resulting point-set of the MLOP algorithm after
300 iterations (red), overlays the noisy samples (green). (D) function approximation at
the data points Q(300).

The results of applying the first step of the FMLOP are presented in Figure 2
bottom. In plot (C) the denoised Q-points data is shown. We see that the cylinder
was reconstructed uniformly, and that the data, as well as the function values, were
denoised. In plot (D) the cleaned function values at the new Q-points are presented,
it’s apparent that the color transition is smooth, indicating denoised function values.
This is also apparent in the error analysis in Table 3 left column, where the maximal
relative error decrease from 0.11 to 0.06.

Next, we approximated the values of f at 100 new points, randomly selected from
the reference data. The evaluation error results are summarized in Table 4. It should
be noted that since we compare the maximum error to clean data, the relative error
can exceed 1. The improvement in the approximation is apparent with an error of 1.37
reduced to 0.11 achieved using ϕ2.
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Table 3: Error estimation of function values f(Q(k)) on the two-dimensional and six-

dimensional cylindrical manifold embedded into 60-dimensional space.

2D cylinder in R60 6D cylinder in R60

Max relative

error

RMSE ± var Max relative

error

RMSE ± var

k = 0 0.11 0.09± 0.0029 0.066 0.08± 0.0018

k = 300 0.06 0.05± 0.0012 0.054 0.06± 0.0012

Six-Dimensional Cylindrical Structure

Next, we tested our method on higher-dimensional manifolds by utilizing an n-sphere
to generate an (n + 1)-dimensional cylinder. Using a five-dimensional sphere we build
a six-dimensional manifold, parameterized as

x1 = R cos(u1) , x2 = R sin(u1) cos(u2), . . . , x6 = R sin(u1) sin(u2) · · · sin(u5) sin(u6) .

We then embedded the sampled data in a 60-dimensional space by calculating

p = tv0 +R2[x1, x2, x3, x4, x5, x6, 0, . . . , 0] , (4.1)

where R = 1.5, t ∈ [0, 2], ui ∈ [0.1π, 0.6π], v0 ∈ R60 is a vector with 1’s in positions
1, ..., d+1 and 0 in the remaining positions. In this experiment we sampled 1200 equally
distributed points on the six-dimensional cylindrical with additive noise U(−0.2; 0.2),
and 460 points were used for the reconstruction. The function that was approximated
on this manifold was

f(u1, . . . , u6) =

6∑
i=1

ui.

Avoiding visualization of a six-dimensional manifold, in Figure 3 we plot the cross-
section of the cylindrical structure in three dimensions in (A), as well as the initial
function values at these points in (B).

We then applied the MLOP algorithm and reconstructed the manifold (as can be
seen in (C)) and the function values at these points (D). Despite the high dimension, the
manifold was reconstructed uniformly and the result of function denoising is impressive.
The maximum error rate reduced from 0.066 to 0.054, as can be seen in Table 3.

In addition, we approximated the values of the function at 100 new points, ran-
domly selected from the reference data. The maximum relative L1 error and the RMSE
accompanied with the variance are summarized in Table 4. One can see that the error
reduced from 0.42 to 0.08 while using the ϕ2.
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Figure 3: Approximating the sum function on a six-dimensional cylindrical structure
embedded in a 60-dimensional space. The first three coordinates of the point-set are
shown. (A) Scattered data with uniformly distributed noise U(−0.1; 0.1) (green), and
the initial point-set Q(0) (red). (B) The initial values of the function at the original Q(0)-
points with noise U(−0.1, 0.1). (C) The resulting point-set of the MLOP algorithm after
300 iterations (red), overlays the noisy samples (green). (D) function approximation at
the data points Q(300).

Table 4: Error estimation of the RBF approximation at 100 new data points using the

denoised centers
2D cylinder in R60 6D cylinder in R60

Max relative

error

RMSE ± var Max relative

error

RMSE ± var

RBF with ϕ1, centers

at Q(0), noisy f

1.37 0.3± 0.04 0.42 0.4± 0.063

RBF with ϕ1, centers

at Q(300), cleaned f̃

0.38 0.13± 0.007 0.26 0.26± 0.026

RBF with ϕ2, centers

at Q(300), cleaned f̃

0.11 0.05± 0.0009 0.08 0.07± 0.0018
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4.3. A 3D Function on a Three-Dimensional Cone in R60

Next, we demonstrate the strength of the FMLOP to cope with a geometric structure
of different dimensions at different locations, as well as a function with non trivial
codomain. Here we combined a cone structure, which is a 3-dimensional manifold, with
a line segment. This geometry was embedded into a 60-dimensional linear space. The
cone’s parameterization used was

p = tv1 +
e−R2

√
2

(cos(u)v2 + sin(u)v3) ,

where v1 = [1, 1, 1, 1, 0, . . . , 0], v2 = [0, 1,−1, 0, 0, . . . , 0], v3 = [1, 0, 0,−1, 0, . . . , 0], (v1, v2, v3) ∈
R60, t ∈ [0, 2], R ∈ [0, 2.5], and u ∈ [0.1π, 1.5π]. The function that was approximated
on this manifold was the MATLAB peak function that uses the same u, and t values
(normalised between -3 and 3)

f(t, u) = 3(1− t)2e−(t2)−(u+1)2 − 10(t/5− t3 − u5)e−t2−u2

− 1/3e−(t+1)2−u2

.

We sampled 880 points from this structure and added uniformly distributed noise of
magnitude 0.2. The initial set Q(0) of size 60 was selected. In Figure 4 (A) the original
cone structure is illustrated, along with the initial function values with noise in the
magnitude of 0.5 (4 (B) ). We performed 700 iterations of the MLOP were performed
to reconstruct and denoise the geometrical structure, as well as denoise the function
value. The results are plotted in Figure 4 (C) and (D) accordingly. One can see the
noisy data in (C) in the upper part of the peak, that was denoised as appearing in (D).
We see that the method deals with functions with a high codomain as well as with high
levels of noise in a robust manner. Our numerical results show that the maximum error
reduced from 1.42 to 0.14, that speaks for itself.

4.4. Robustness to Noise

In the following example, we examine the effect of the noise level in the target domain
on the quality of the approximation. In this experiment we sampled a function over a
Swiss Roll using the parameterization

p =
1

10
[x, y, z, 0, . . . , 0] ,

where x = t sin(t), y is a random number in the range [−6, 6], and z = t cos(t), with
t = 8k/n + 2 and k ∈ N. The function we approximated was f(p) = t. We created a
Swiss Roll with 800 data points and randomly sampled 200 points as the initial Q-set.
We added noise with various magnitudes (0.1, 0.2, 0.5, and 0.7) to the P -points as
well as to the values of f at the P -points. For example, Figure 5 left shows a case
of approximation with uniformly distributed noise U(−0.2, 0.2), while the right plot
presents the denoised version. We see that the data was cleaned both in the domain
and in the codomain of the function.

A summary of the effect of the noise level on approximation error is given in Figure
6. The plot consists of two graphes, one in orange that contain the errors for the noisy



Approximation of Functions on Manifolds in High Dimension from Noisy Scattered Data21

Figure 4: Approximating the peak function on a cone structure embedded to R60. The
first three coordinates of the point-set are shown. (A) Scattered data with uniformly
distributed noise U(−0.1; 0.1) (blue), and the initial point-set Q(0) (red). (B) The initial
values of the function with noise U(−0.5, 0.5) on top of the reference clean data. (C)
The resulting point-set of the MLOP algorithm (red), overlays the noisy samples (blue).
(D) function approximation at the denoised data points.
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Figure 5: The first three coordinates of the Swiss Roll embedded in R60 are presented.
Left: The initial function values (represented with a color) at the original Q(0) points
with noise U(−0.2, 0.2). Right: MLOP function approximation at the data pointsQ(300)

cleaned via the MLOP.

data (f(Q(0))) and the other for the denoised function values (f(Q(300)). As can be seen
although the approximation error increases on the noisy data (from 0.03 to 0.22), the
approximation error on clean and quasi-uniformly distributed data error grows slower
(from 0.02 to 0.18). We also see that at high levels of noise (e.g., 0.7) the denoising
operation as well as quasi-uniform sampling has more effect of the error.

Figure 6: Effect of noise level on the accuracy of function approximation for a Swiss
Roll embedded in a 60-dimensional space. The RMSE error evaluated on the original
noisy data is shown in orange, while the RMSE error on the cleaned data is presented
in blue.
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§5. Appendix

The MLOP cost function is of the form

G(Q) = E1(P,Q)+ΛE2(Q) =
∑
qi∈Q

∑
pj∈P

∥qi−pj∥Hϵ
wi,j+

∑
qi∈Q

λi

∑
qi′∈Q\{qi}

η(∥qi−q′i∥)ŵi,i′ ,

(5.1)
where the weights wi,j are rapidly decreasing smooth functions. The MLOP im-

plementation uses wi,j = exp
{
− ∥qi − pj∥2/h2

1

}
and ŵi,i′ = exp

{
− ∥qi − q′i∥2/h2

2

}
.

The “norm” ∥ · ∥Hϵ is introduced in [22] as ∥v∥Hϵ =
√
v2 + ϵ, where ϵ > 0 is a fixed

parameter (in our case we take ϵ = 0.1). In addition, h1 and h2 are the support size
parameters of wi,j and ŵi,i′ which guarantee a sufficient amount of P or Q points for the
reconstruction (for more details, see the subsection “Optimal Neighborhood Selection”
in [17]). Also, η(r) is a decreasing function such that η(0) = ∞; in our case we take
η(r) = 1

3r3 . Finally, {λi}Ii=1 are constant balancing parameters.
We solve this problem via gradient descent iterations

q
(k+1)
i′ = q

(k)
i′ − γk∇G(q

(k)
i′ ), i′ = 1, . . . , I , (5.2)

Where the gradient of G is given in the form of

∇G(q
(k)
i′ ) =

J∑
j=1

(
q
(k)
i′ − pj

)
αi′

j − λi′

I∑
i=1
i ̸=i′

(
q
(k)
i′ − q

(k)
i

)
βi′

i , (5.3)

with the coefficients αi′

j and βi′

j given by the formulas where αi′

j and βi′

i

αi′

j =
wi,j

∥qi − pj∥Hϵ

(
1− 2

h2
1

∥qi − pj∥2Hϵ

)
(5.4)

and

βi′

i =
ŵi,i′

∥qi − qi′∥

(∣∣∣∣∂η (∥qi − qi′∥)
∂r

∣∣∣∣+ 2η (∥qi − qi′∥)
h2
2

∥qi − qi′∥
)
, (5.5)

for i = 1, ..., I, i ̸= i′. In order to balance the two terms in ∇G(q
(k)
i′ ), the factors λi′ are

initialized in the first iteration as

λi′ = −

∥∥∥∥ J∑
j=1

(
q
(k)
i′ − pj

)
αi′

j

∥∥∥∥∥∥∥∥ I∑
i=1

(
q
(k)
i′ − q

(k)
i

)
βi′
i

∥∥∥∥ . (5.6)

Balancing the contribution of the two terms is important in order to maintain equal
influence of the attraction and repulsion forces in G(Q). The step size in the direction
of the gradient γk is calculated as indicated in [3]:

γk =
⟨△q

(k)
i′ ,△G

(k)
i′ ⟩

⟨△G
(k)
i′ ,△G

(k)
i′ ⟩

, (5.7)
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where △q
(k)
i′ = q

(k)
i′ − q

(k−1)
i′ and △G

(k)
i′ = ∇G

(k)
i′ −∇G

(k−1)
i′ .
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