Faculty members, their undergraduate/graduate schools, and research areas are listed below; more detailed information can be found via the department's WWW server (http://www.math.duke.edu). An asterisk (*) indicates a joint appointment with the department of physics.

Faculty MemberResearch AreaW. K. Allard Scientific Computing

(Villanova, Brown)

P. S. Aspinwall* String theory

(Oxford)

J. T. Beale Partial differential equations, fluid mechanics

(Cal. Tech, Stanford)

A. L. Bertozzi Nonlinear partial differential equations,

(Princeton, Princeton) applied mathematics

R. L. Bryant Nonlinear Partial Differential Equations,

(N. C. State, UNC) differential geometry

R. Constantinescu Geometric quantum field theory

(MIT)

R. M. Hain Topology of algebraic varieties, Hodge theory

(U. Sydney, U. Illinois)

J. Harer Geometric topology, combinatorial group theory

(Haverford, Berkeley)

B. Hayes Partial differential equations

(Cal. Tech., Courant)

R. E. Hodel Set-theoretic topology

(Davidson, Duke)

J. W. Kitchen Functional analysis

(Harvard, Harvard)

D. P. Kraines Algebraic topology, game theory

(Oberlin, Berkeley)

G. F. Lawler Probability, statistical physics

(Virginia, Princeton)

H. E. Layton Mathematical biology

(Asbury, Duke)

L. C. Moore Functional analysis

(N. C. State, Cal. Tech.)

D. R. Morrison Algebraic geometry, mathematical physics

(Princeton, Harvard)

W. Pardon algebra, geometry of varieties

(Michigan, Princeton)

R. Plesser* String theory, quantum field theory

(Tel Aviv, Harvard)

M. C. Reed Applications of mathematics

(Yale, Stanford) to physiology and medicine

D. Reed Arithmetic algebraic geometry

(Chicago,Oxford)

L. D. Saper Analysis and geometry on singular spaces

(Yale, Princeton)

D. G. Schaeffer Partial differential equations,

(Illinois, MIT) applied mathematics

C. Schoen Algebraic geometry

(Haverford, Chicago)

R. A. Scoville Combinatorial analysis

(Yale, Yale)

D. A. Smith Numerical analysis

(Trinity, Yale)

M. A. Stern Geometric Analysis

(Texas A & M, Princeton)

J. A. Trangenstein Nonlinear conservation laws,

(U. Chicago, Cornell) environmental clean-up, shocks in fluids

S. Venakides Partial differential equations,

(National Tech. Univ. of Athens, integrable systems

Courant Institute)

M. Weisfeld Algebra, optimization

(Brooklyn College, Yale)

J. Yang Algbraic K-theory and its relation to

(Zhejiang, Univ. of Washington) number theory and topology

F. Zheng Complex differential geometry

(Szechuan Univ., Harvard)

X. Zhou Partial differential equations,

(Chinese Acad. of Sciences, integrable systems

Rochester)

Tue Sep 3 16:48:03 EDT 1996