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1 Introduction

In our paper, we consider several models for traffic flow. The first, a steady
state model, employs a model for car following distance to derive the a traffic
flow rate in terms of empirically estimated driving parameters. From this
result, we go on to derive a formula for total evacuation time as a function of
the number of cars to be evacuated. The steady state model is analytically
convenient, but has the drawback that it does not take the variance in the
travelling velocities of vehicles into account. To address this problem, we
develop a cellular automata model for traffic flow in one and two lanes, and
augment our results through simulation. After presenting the steady state
model and the cellular automata models, we derive a space-velocity curve
that synthesizes these results. The section following this development of the
basic models addresses the issue of restricting vehicle types using several
tools for analyzing vehicle velocity variance.

To assess the problem of two lanes converging into one and traffic merg-
ing, the next sections address optimal flow issues and explain how congestion
occurs. Finally, we bring the collective theory of our assorted models to bear
on the five evacuation strategies in question in the section titled “Parallel
Paths, and Applications to Evacuation Strategy.” Lastly, we present a news-
paper article/conclusion summarizing our results clearly and without going
into a high level of mathematical detail.

2 Assumptions and Hypotheses

• Driver reaction time is approximately 1 second.

• Drivers tend to maintain a safe following distance; tailgating is un-
usual.
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• All cars are approximately 10 feet long and 5 feet wide.

• Almost all cars on the road are headed to the same destination.

3 Terms

• Density - the number of cars per unit distance.

• Occupancy - the proportion of the road that is covered by cars.

• Flow - the number of cars per time unit that pass a given point on the
highway.

• Travel Time - the amount of time that a given car spends on the road
during evacuation.

• Total Travel Time - the sum of the travel times for all evacuated cars.

4 The Steady State Model of Traffic Flow

4.1 Motivation

The subtask of car following has been described successfully by mathemati-
cal models, and as authors such as Rothery have noted, understanding this
part of the driving process contributes significantly to an understanding of
traffic flow. Here, we use a model for the average spacing between vehicles,
s, as a function of common velocity, v, which was obtained from data com-
piled in a series of 23 observational studies of highway capacity (Highway
Capacity Manual, p. 4-1 in Rothery, Car Following Models).

4.2 Development

The speed-spacing relations that were obtained from these studies can be
represented by the equation

s = α + βv + γv2, (1)
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where α, β, and γ can take on various values and have the following physical
interpretations:

α = the effective vehicle length, L

β = the reaction time
γ = the reciprocal of twice the maximum average deceleration

of a following vehicle.

The measure of seperation distance given by the above equation denotes
the distance between the midpoints of successive cars. Using these relation-
ships, we can obtain the optimal value of traffic density (and velocity) that
maximizes the flow rate. We express this fact in the following theorem:

Theorem 4.1. When coupled with the fundamental equation for traffic flow,
q = kV, Equation 1 implies the following values for maximal traffic flow (q∗),
optimal traffic density (k∗), and optimal velocity (v∗):

q∗ = (β + 2γ1/2L1/2)−1 (2)

k∗ =
β(γ/L)1/2 − 2γ

β2 − 4γL
(3)

v∗ = (L/γ)1/2 (4)

Proof. First, consider a group of N identical vehicles, each of length L, trav-
eling at a steady state velocity with separation distance given by Equation
1. If we take a freeze frame picture of this group of vehicles spaced over
a distance D, then the relation D = NL + Ns′, where s′ is the bumper to
bumper seperation distance, must hold. By definition, s′ = s−L. Combining
these facts, we obtain k = N/D = N/(NL + Ns′) = 1/(L + s′) = 1/s.

Now, with this relationship between density (k) and separation distance
(s) in hand, we invoke Equation 1 to get an equation for density in terms of
steady state velocity:

k =
1

α + βv + γv2
.

This can be rearranged to obtain a quadratic equation in v that has two
roots. Taking the positive root to ensure positive values for velocity yields
the equation for velocity in terms of density,

v(k) =
1
2γ

√
4γ/k + (β2 − 4γL)− β

2γ
.
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Using the fundamental equation for traffic flow, q = kv, we have the
following expression for flow as a function of density:

q(k) =
k

2γ

√
4γ/k + (β2 − 4γL)− kβ

2γ
.

Differentiating with respect to k, setting the result equal to zero, and wading
through a lot of algebra yields the optimal value for density, k∗, which is
quoted in the statement of the theorem. The expressions q(k∗) and v(k∗)
give, respectively, values for the maximum steady state flow and the velocity
associated with optimal steady state density. It is merely a matter of com-
putation to check that q(k∗) is a maximum by evaluating q′′(k) at k = k∗

for the values of k∗ that result from the assignments of α, β, and γ in this
paper.

4.3 Interpretation and Uses

These equations for the maximum flow, the optimal density, and the optimal
velocity in the steady state allow us to estimate plausible values for q∗,
k∗, and v∗ given reasonable assumptions regarding car length (L), reaction
time (β), and the deceleration parameter (γ). According to Rothery (Car
Following Models), a typical value empirically derived for γ would be γ ≈
.023 sec2/ft. If we let reaction time β = 1 second, and assume that car
length is approximately L = 10 ft., then we obtain the following optimal
values for the state parameters of interest:

q∗ = .510 cars/sec
k∗ = .024 cars/ft
v∗ = 20.85 ft/sec

Rothery notes that a less conservative estimate may be obtained for γ via
the equation γ = 1

2(a−1
f − a−1

l ), where af and al are the average maximum
decelerations of the following and lead vehicles, respectively. In principle,
one might estimate a less conservative value for γ than the one quoted above
(.023 sec2/ft) by computing the average value of |a−1

i − a−1
j | for all vehicle

pairs (i, j) in a representative sample of US vehicles whose deceleration ca-
pabilities are known. In practice, we estimate the value for γ by assuming
that, instead of being able to stop instantaneously (having an infinite decel-
eration capacity), the leading car has an deceleration capacity that is twice
that of the following car. Thus, instead of using γ = 1/2a = .023 sec2/ft.,
we use this implied value for a to compute γ′ = 1

2(a−1−2a−1) = 1
2γ = .0115
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sec2/ft. Unless otherwise stated, we will henceforth assume this value of γ
in our computations of maximum flow based on the steady state model. In
the case at hand, the less conservative value for γ yields

q∗ = .596 cars/sec
k∗ = .020 cars/ft
v∗ = 29.5 ft/sec

The value for v∗ given above is about 20 m.p.h., which seems fairly rea-
sonable given that our objective is flow maximization (not velocity maxi-
mization). From practical experience, going 20 m.p.h in a regime of high
traffic density with an implied bumper to bumper distance of 40 feet is not
bad. With regards to the evacuation scenario in question, we can apply
the flow maximizing formula for velocity to show that the evacuation of the
South Carolina coast was far from optimal. From the fact that the trip from
Charleston to Columbia usually takes about 2 hours at 60 m.p.h., we get
a distance of about 120 miles. Traversing this distance in 18 hours implies
an average velocity of about 7 m.p.h. and a bumper to bumper seperation
distance of about 7.3 feet. Clearly, these driving conditions are abyssmal,
and the steady state model gives us some sense of how far from optimal they
are from the perspective of the individual driver.

4.4 Limitations of the Steady State Model

Although the steady state model allows us to compute a flow maximizing
density and the corresponding velocity of a vehicle that is part of a group
of vehicles moving in a convoy, it does not take into account the variance
of the automobiles’ individual velocities. Since situations of high traffic
density are especially susceptible to inefficiencies of movement caused by
the tendency of individual drivers to overcompensate or undercompensate
for the movements of other drivers, understanding the behavior of velocity
variance is important. Several of the following sections address this issue.

A second weakness of the steady state model is that the value for maxi-
mum flow encoded in it can only give us a first order approximation for the
minimum evacuation time. Put another way, the problem of determining
maximum flow is distinct from the problem of determining minimum evac-
uation time, and it is not necessarily the case that we can simply compute

(Number of Cars to be Evacuated) / (Maximum Flow Rate)

to obtain an estimate for the latter quantity. In the next section, we will
tackle the problem of minimizing total evacuation time directly using the
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steady state model, and discuss the relationship of this (central) problem
to a class of reasonable performance measures for evaluating evacuation
strategies.

5 Minimizing Evacuation Time with the Steady
State Model

5.1 Initial Considerations

Before we apply the machinery of the steady state model to the problem
of minimizing total evacuation time for a group of vehicles, let us take a
step back and consider the general problem of defining what it means for
an evacuation to “succeed.” The effectiveness of an evacuation is based on
several factors. The first goal, as indicated, is keeping evacuation time to a
minimum.

Second, it is imperative that the evacuation route be as safe as possible
to drive on under the circumstances, which in the case of hurricanes could
include inclement weather. While the authorities cannot control the state
of the weather, they should be concerned with the elements of the driving
conditions that affect the number of accidents that are likely to occur en
route. Since the salient factors that affect the occurence of accidents (traffic
density, the variance of vehicle velocities, and traffic speed) are modeled
more explicitly in later sections, we will delay a discussion of their role in
evaluating evacuation success.

The third factor affecting the success of an evacuation is how long, on
average, it takes the individual driver to get to a safe destination (Columbia).
This issue is related to the problem of minimizing total evacuation time,
but not equivalent to it. We now present a general performance measure
that relates the problem of minimizing evacuation time to the problems of
maximizing traffic flow and minimizing individual driver transit time.

5.2 A General Performance Measure

In defining a general performance measure, we take into account both the
goal of maximizing traffic flow and the desire of individual drivers to mini-
mize their transit time, T, subject to the constraint that their velocity, v, is
bounded above by a preferred cruising velocity, vcruise. A natural metric M
which captures both of these factors is

M = W
N

lq
+ (1−W )

D

v
, (5)

Page 6 of 47



Team 185

where 0 ≤ W ≤ 1 is a weight factor, D is the distance that must be traversed,
l is the number of lanes, and N is the number of cars to be evacuated. This
metric makes the assumption that the interaction between lanes of traffic
(passing) is negligible, so that we may simply consider total flow to be the
flow of an individual lane times the number of lanes. Given a value for W, the
problem of minimizing M amounts to solving a one variable optimization
problem in either v or k. Setting W = 1 corresponds to the problem of
maximizing flow, which was solved analytically in the preceeding section.
Setting W = 0 corresponds to the problem of maximizing velocity subject
to the constraint that v ≤ vcruise. Trivially, this problem has the solution
M = D/vcruise. Recall that the steady state model is based on a model for
car following, and does not apply to situations where cars can travel at the
velocity vcruise. In fact, the metric M balances the desire of drivers to go
faster than is allowed in heavy traffic conditions with the natural goal of
maximizing the flow rate of the traffic stream.

For clarification, observe that setting K = 1/2 corresponds to minimizing
the total evacuation time (divided by two), since total evacuation time equals
N
lq + D

v . This expression follows from the assumption that, at the beginning
of the path to be traversed, the cars are already traveling at steady state
velocity. Thus the approximate evacuation time equals the time it takes the
“first” car to traverse the distance D plus the time it takes for the N cars
to flow past the endpoint of the path, which is given by N/lq.

To illustrate the fact that the goals of maximizing traffic flow and maxi-
mizing velocity are out of sync, we calculate the highest value of K for which
minimizing M would result in an equilibrium speed of vcruise. This requires
a formula for the equilibrium value v∗ that solves the problem

minimize M(v) = W N(L+βv+γv2)
lv + (1−W )D

v
subject to v ≤ vcruise.

Using the methods of the previous section, we obtained the formula for M(v)
by using Equation 1, the fundamental law of traffic flow q = kv, and the
relationship k = 1/s. Differentiating with respect to v, setting the result
equal to zero, and solving for velocity yields

v∗ = min

{
vcruise,

√
1
γ

[
L +

(1−W )
W

Dl/N

]}
.
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In order to have vcruise =
√

1
γ

[
L + (1−W )

W Dl/N
]
, we would need

W =
(

1 +
N

Dl
(v2

cruiseγ − L)
)−1

.

Using the empirical values N = 160, 000 cars, D = 633, 600 ft (120 miles),
l = 2 lanes, vcruise = 88 ft/sec, γ = .0115 sec2/ft and L = 10 ft, we obtain a
value of W ≈ 1/11. Clearly, then, minimizing evacuation time in situations
involving heavy traffic flow is incompatible with allowing drivers to travel
at cruise velocity while leaving a safe stopping distance between themselves
and the driver in front of them.

The relative weight of the two summands in the metric M depends on
the number of cars to be evacuated and the travel distance, as well as the
value of K. Because evacuation time is the most reasonable measure to use
in evaluating the success of an evacuation, and because minimizing it is
slightly different than the problem of maximizing flow, we state analytical
solutions for minimum evacuation time and optimal velocity as a function
of the number of cars to be evacuated. It turns out that for N large, the
problem of evacuation time minimization is essentially equivalent to the
problem of flow maximization, a result that will be used later on in the
section on parallel paths.

5.3 Computing Minimum Evacuation Time

From the fact that T = 2M when K = 1/2, we obtain the following values
for the optimal flow, optimal density, and steady state velocity that minimize
evacuation time:

q∗ = k∗v∗

k∗ =
βγ1/2[L + Dl/N ]−1/2 − 2γ

[L+ 1
2
Dl/N ]

[L+Dl/N ]

[β2 − 4γL]− γ [Dl/N ]2

[L+Dl/N ]

v∗ =
√

1
γ

[L + Dl/N ]

The minimum evacuation time is

T ∗ =
N

lq∗
+

D

v∗
.
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5.4 Predictions of the Steady State Evacuation Time Model

The chief virtue of the steady state evacuation time model is that it takes
a reasonable, empirically tested model of car following and builds from it
an estimate for best case evacuation time as a function of the number of
automobiles to be evacuated and the number of lanes of traffic. Naturally,
the predictions of the model vary based on our assumptions about the values
of the constants L, β, γ, and D. For simplicity, we use the values L = 10 ft,
β = 1 sec, γ = .0115 sec2/ft, and D = 633, 600 ft (120 mi) that we have used
in previous calculations, and assume for the time being that the number of
lanes l = 2.

To demonstrate visually that the evacuation time minimization prob-
lem is effectively equivalent to the flow maximization problem for N large,
we compare the functions Tmin(N) (the minimum evacuation time) and
Tflow(N) (the evacuation time associated with the maximal flow traffic ve-
locity and density). In the graph shown on the following page, the upper
line is the the graph of Tflow(N) and the lower line is the graph of Tmin(N).
In fact, it can be show analytically that limN→∞

Tflow(N)
Tmin(N) = 1.

The predicted evacuation time for N = 160, 000 of slightly over 40 hours
seems fairly reasonalble. We can evaluate the impact of the strategy of
converting Highway I-26 to four lanes by setting l = 4 in the equation
for minimum evacuation time. This supposition yields the result T ≈ 23
hours. For the steady state model, this prediction makes sense, since the
model does not deal with the effect of a bottleneck that will occur when
Columbia is bombarded by the evacuees. Naturally, the bottleneck could
be compounded by the use of four lanes instead of two; we will address
the bottleneck problem in more detail later by analyzing the relationship
between the flow carrying capacity of the highway and the flow carrying
capacity of the Columbia entranceway. On balance, however, it would seem
from the strong prediction of the steady state model that the strategy of
doubling the number of lanes on I-26 would lead to a net decrease in the
evacuation time.

As mentioned previously, the steady state model has the drawback of not
taking into account the effect of the variance in traveling velocities in areas
of high density on traffic flow. As a framework to address this problem, we
introduce the following model.
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6 The One-Dimensional Cellular Automata Model

6.1 Motivation

In heavy traffic cars make repeated stops and starts, and the timing of these
is somewhat arbitrary. This randomness has a significant effect on traffic
flow, and so a good model of heavy traffic should take it into account. We
also desire a model which is simple enough that an explicit formula can be
computed for its velocity.

6.2 Development

A single-lane road is divided into a series of sections (cells) of the same
length, each slightly longer than the length of one car. Each cell either
contains one car or does not contain any cars. A car is said to be blocked if
the cell directly in front of it is occupied. A fixed probability p is given. At
each time state, cars move according to the following rules:

• If a car is not blocked then it advances to the next cell with probability
p.

• If a car is blocked then it does not move.

Note that the decisions of each driver to move forward are made inde-
pendently.

Question 6.1. What is the relationship between traffic density and traffic
velocity in this model?

We will obtain an exact answer to this question. First we define the
one-dimensional cellular automata model more formally.

A traffic configuration may be represented by a function

f : Z→ {0, 1}

where f(k) = 1 means that there is car in the kth cell and f(k) = 0 means
that there is not. Since our model involves randomness, what we are really
interested in are probability distributions on the set of all such functions.
Such distributions are called binary processes.

Given a process X, define a process Ip(X) according to the following
rule: If

(X(i), X(i + 1)) = (1, 0)
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then

(Ip(X)(i), Ip(X)(i + 1)) =
{

(0, 1) with probability p
(1, 0) with probability 1− p

This rule is identical to the traffic flow rule given above. Thus, if X repre-
sents the traffic configuration at time t, Ip(X) gives the traffic configuration
at time t + 1.

We are interested in what the traffic configuration looks like after several
iterations of I. For convenience, write In

p (X) to mean Ip applied n times
to X. The formula for traffic velocity in terms of density comes from the
following theorem1:

Theorem 1. Suppose X is a binary process of density d. Let Mp,d denote
the Markov chain with the following transition probabilities:

0 −→




0 w/ prob. 1− 1−
√

1−4d(1−d)p

2p(1−d)

1 w/ prob. 1−
√

1−4d(1−d)p

2p(1−d)

1 −→




0 w/ prob. 1−
√

1−4d(1−d)p

2pd

1 w/ prob. 1− 1−
√

1−4d(1−d)p

2pd

The sequence of processes X, Ip(X), I2
p (X), I3

p (X), . . . converges to Mp,d.

Here “density” means the frequency with which 1’s appear–this is anal-
ogous to the average number of cars per cell on the road. (See the appendix
for a complete definition, as well as an explanation of the notion of conver-
gence for binary processes.) Essentially, this theorem tells what the traffic
configuration looks like after a long period of time has elapsed.

Knowing the transition probabilities allows us to easily compute the
average velocity of the cars in Mp,d: the average velocity is the likelihood
that a randomly chosen car is not blocked and advances to the next cell at

1This theorem is the result of previous research done by one of the authors of this
paper. The appendix on binary processes (which was written during the contest period)
gives a relatively complete proof of the result.
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the next time state.

v = P (I(Mp,d(i)) = 0 |Mp,d(i) = 1)
= P (Mp,d(i + 1) = 0 |Mp,d(i) = 1)

· P (I(Mp,d(i)) = 0 |Mp,d(i) = 1 and Mp,d(i + 1) = 0)

=

(
1−

√
1− 4d(1− d)p

2pd

)
· p

=
1−

√
1− 4d(1− d)p

2d

Thus,

Corollary 1. In the one-dimensional cellular automata model with a start-
ing configuration of density d, the average velocity tends to

v =
1−

√
1− 4d(1− d)p

2d

as t tends to infinity.

6.3 Relevance

Many factors cause drivers to have different reaction times: distractions,
other passengers, level of attention, physical handicaps, etc. As can be seen
in a bird’s-eye view of heavy traffic, these vagaries alone can cause small
traffic jams that appear spontaneously and then dissipate. Any model that
does not take this random behavior into account is likely to overpredict the
speed of traffic. The one-dimensional cellular automata model accounts for
independently random behavior, and it is simple enough that velocity may
be computed quickly.

6.4 Limitations

The main limitation of the model is that it does not accurately simulate
high-speed traffic. It does not take into account following distance, and the
stop-and-start model of car movement is not accurate when traffic is sparse.
The model is best applied to slow traffic flows (say, under 15 miles per hour)
where the drivers must make frequent stops.
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6.5 The One-Dimensional Cellular Automata Model Applied
at Low Speeds

To apply the one-dimensional cellular automata model at low speeds requires
setting three variables:

∆x the size of one cell
∆t the length of one time interval

p the movement probability

∆x would be equal to the space taken up by a car in a tight traffic jam, so
we set it to 15 ft, slightly longer than the length of most cars. ∆t should be
the time taken by the shortest time taken by drivers to move into the space
in front of them after it is vacated. Based on general observation we take
this to be 0.5s. p represents the proportion of drivers who indeed move at
close to this speed; we let p = 0.85.

We recall the formula from the previous section, inserting the factor
(∆x/∆t) to convert from cells per time-state to feet per second.

v =
(

∆x

∆t

)
1−

√
1− 4d(1− d)p

2d

Density d is given in cars per cell. This corresponds to the usual notion of
density via

d = (15 ft)K

and to the notion of occupancy (the proportion of road length taken up by
cars) by

d =
15ft
10ft

n =
3n

2
.

We calculate v for various values of n and k.

n K( ft−1) d v (mph)

0.60 0.060 0.90 1.90
0.55 0.055 0.83 3.55
0.50 0.050 0.75 5.43
0.45 0.045 0.68 7.51
0.40 0.040 0.60 9.73
0.35 0.035 0.53 11.88
0.30 0.030 0.45 13.67
0.25 0.025 0.38 14.98
0.20 0.020 0.30 15.86
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7 Cellular automata simulation: one lane model

In order to explore the one-dimensional cellular automata model, a simple
simulation was written in C++. The simulation (simcell1.cc, see appendix
for source code) consists of a 5000-element long (circular) array of bits, with
a ”1” representing a car and a ”0” representing a (car-sized) empty space.
The array is initialized randomly based on a given value of the occupancy n:
an element is initialized to ”1” with probability n, or to ”0” with probability
1−n. (Recall that n is a unitless value defined as the proportion of highway
length taken up by cars: n = Lk, where L is the length of a car in feet
and k is the density in cars/foot). Once the array is initialized, it is then
iterated over 5000 time cycles: on each cycle, a car will move forward with
probability p if the square in front of it is empty. The flow q is calculated
to be the number of cars N passing the end of the array divided by the
number of time cycles, ie. q = N/5000, and thus the average velocity of an
individual car in cells per time cycle is v = q/n = N/5000n.

The simulation was first used to verify the accuracy of the one-dimensional
cellular automata equation:

v =
1−

√
1− 4n(1− n)p

2n

where v is the average velocity of a car in cells per time cycle, n is the
occupancy, and p is the probability that a car moves forward if it is not
blocked by a car in front of it. The simulation was run for various values
of the occupancy n and probability p, and simulation results were found to
closely match the values predicted by the one-dimensional cellular automata
equation (see table).

n vsim(p = 1/2) vexp(p = 1/2) vsim(p = 3/4) vexp(p = 3/4)
0.2 .4334 .4384 .6942 .6972
0.4 .3556 .3486 .5918 .5886
0.6 .2342 .2324 .3922 .3924
0.8 .1078 .1096 .1708 .1743

Table 1: Comparison of simulation and expected values of velocity

Having confirmed the correspondence between theory and simulation, we
now consider what a reasonable value would be for the parameter p. Since
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(on a given time cycle) an unblocked car moves ahead with probability p,
it is clear that p should be related to the mean and standard deviation of
vcruise, the velocity of a car unimpeded by traffic. To see the relationship, we
note that the mean and standard deviation of a binary random variable are
p and

√
p(1− p), respectively. As above, we make reasonable assumptions

for the mean and standard deviations of vcruise: µ(vcruise) = 60 mi/hr,
σ(vcruise) = 5 mi/hr. By equating the values of µ/σ for the simulation and
observation we obtain:

p√
p(1− p)

=
60
5
−→

p = 144/145

For given values of µ(vcruise) and σ(vcruise), we have:

p√
p(1− p)

=
µ

σ
−→

p =
1

1 +
(

σ
µ

)2

By equating the mean values of cruise velocity, we also obtain a relationship
between the length of a cell and the time step: p cells per time cycle is
equivalent to 88 ft/sec, so the length of a cell is 88 ft/sec, multiplied by the
length of a time cycle, multiplied by p:

L = µtp

Assuming L equals one car length (10 ft), p equals 144/145, and µ=88 ft/sec,
we obtain a time step of 0.113 sec.

We now use the model to predict how fast (on average) a car will move,
as a function of the occupancy of traffic. This assumes that there is only
one lane of traffic; we expand this model to multiple lanes in the next sec-
tion. To do this, we consider the ”relative velocity”, vrel, which is defined
as the average velocity of a car in traffic divided by the (mean) cruise veloc-
ity. The average velocity is given by the one-dimensional cellular automata
equation, and the cruise velocity is p cells per time cycle, so this gives us:

vrel =
vavg

vcruise

=
1−

√
1− 4n(1− n)p

2pn
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Using the value of p = 144/145 obtained above, we now calculate vrel as a
function of occupancy. We also use this value to calculate vavg in feet per
second (see table)

n vrel vavg

0.1 .9991 87.92
0.2 .9977 87.80
0.3 .9949 87.55
0.4 .9869 86.85
0.5 .9233 81.25
0.6 .6579 57.90
0.7 .4264 37.52
0.8 .2494 21.95
0.9 .1110 9.77

Table 2: Average and relative velocities as a function of occupancy

Thus the model predicts that, for low occupancy, the average velocity will
be near the cruise velocity, but for occupancies greater than 0.5, the aver-
age velocity will be significantly lower than the cruise velocity. It should
be noted that the cellular automata model does not take following distance
into account; thus it tends to overestimate vavg for high speeds, and is most
accurate when the occupancy is high and velocity low.

Next we calculate the flow rate q = nvavg/L, in cars per second, as a func-
tion of the occupancy (see table).

It is interesting to note that the flow rate has a maximum at n = 0.5, and
is symmetric about this line. This follows from the symmetry of the simula-
tion: each car movement can be thought of as switching a car with an empty
space, so the movement of cars to the right is equivalent to the movement
of holes to the left with equal probabilities.

This model fails, however, to give a reasonable value for the maximum flow
rate: a flow rate of 4.063 cars per second equates to 14600 cars/hr, approx-
imately seven times a reasonable maximum rate (CITE SOURCE!). The
reason for this discrepancy is the use of a cell size equal to the car length,
which is a correct approximation of reality only as the car velocities approach
zero and the occupancy approaches 1. In order to correctly approximate the
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n q

0.1 .8792
0.2 1.756
0.3 2.626
0.4 3.474
0.5 4.063
0.6 3.474
0.7 2.626
0.8 1.756
0.9 .8792

Table 3: Flow rate as a function of occupancy

maximum flow rate at occupancy=0.5, we must assume a larger value of the
cell size, one which takes following distance into account. Reasonable as-
sumptions are that the cell size is equal to car length plus following distance,
and following distance is proportional to the velocity. Assuming a 1 second
following distance (more precise values could be determined empirically), we
obtain the following expression for cell size:

C = L + vavg(1 s)

However, we do not know the value of the velocity vavg until we use the
cell size to obtain it. For n large, however, we can assume that vavg is
approximately equal to vcruise, and find an upper bound on the necessary
cell size:

C = L + vcruise(1 s)
= 98 ft

We then divide the flow rate (originally computed) by the increase in cell
size to obtain a more reasonable flow rate:

q =
4.063 cars/second

98 ft/10 ft
= .415 cars/second

This gives us a flow rate of approximately 1500 cars/hr, a much more rea-
sonable figure. However, this is likely to be an underestimate of the actual
flow rate: to compute the flow rate more precisely, we must find a method
of computing the correct cell size before finding the velocity. We address
this problem further in the combined model.
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8 Cellular automata simulation: two lane model

Our next step was to expand the one dimensional cellular automata model
into a simulation of a two lane traffic flow. The simulation (simcell2.cc, see
appendix for source code) consists of a two-dimensional (1000x2) array of
bits, with a ”1” representing a car and a ”0” representing an empty space.
As in the one lane model, the array is initialized randomly: each element
is intialized to ”1” with probability n and ”0” otherwise. The array is then
iterated over 1000 time cycles: on each cycle, a car will move forward with
probability p if the square in front of it is empty, or perform a ”lane switch”
with probability p if the following conditions hold:

1. Cell in front of car is occupied (thus it cannot move forward)
2. Cell beside car is unoccupied
3. Cell diagonally forward from car is unoccupied

A car performing a ”lane switch” moves one square forward and changes
lanes. For example, consider the following arrangment of cars:

12350
00400

In the next time step, cars 4 and 5 will each move forward with probability
p. Car 1 will perform a lane switch with probability p. Cars 2 and 3 are
blocked and cannot move. Assuming that all of the unblocked cars choose
to move forward, we obtain the following configuration:

02305
01040

As in the one-lane simulation, the flow q is calculated to be the number of
cars N passing the end of the array divided by the number of time cycles.
Another similarity to the one lane model is the presence of symmetry: the
simulation is unchanged if we consider the holes as cars (moving left) and
the cars as holes (moving right). As a result of this symmetry, the flow rate
q(n) is maximized at n = 0.5, and q(n) = q(1− n) for all n. This condition
does not necessarily hold when parameters for the model are changed: for
example, if different cars were assigned different values of p as in the follow-
ing section.
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The two-lane simulation suffers from the same flaw as the one-lane simu-
lation: it uses a cell size equal to the car length, which is only correct for
cars at very high densities and low velocities. As a result, we do not use
the two lane simulation to compute maximum flow rate. However, since the
choice of cell size affects the flow rate by a constant factor, we can compare
the flow rates obtained when varying parameters of the simulation. In par-
ticular, we can use this model to examine how the flow rate changes with
the variance of speeds, as discussed in the next section.

9 ”But I want to bring my boat”: velocity vari-
ance and the restriction of vehicle types

We now use our two cellular automata models in order to examine the ef-
fects of variance in velocities. There are two main types of variance we
must consider: variance of traveling velocity (the random fluctuations in
the velocity of a single vehicle over time), and variance of mean velocity
(the variation in the mean velocities of all vehicles). We denote these as σ2

t

(traveling variance) and σ2
m (mean variance) respectively. For example, in

our original one lane simulation, we assumed that all vehicles travel at the
same mean velocity, vcruise=60 mi/hr, so σm = 0. This is clearly an oversim-
plification: in real life, vehicles’ mean velocities may vary significantly. We
also assumed that each vehicle’s speed fluctuates randomly with standard
deviation 5 mi/hr, so σt = 5 mi/hr. This was reflected in the calculation of
the probability p, since p = 1/(1+(σt/µ)2). When we take σm into account,
a different value of the probability p is assigned to each car. We determine
this value of p using the following method:

1. Choose a value of the car’s mean velocity µ randomly from the nor-
mal distribution with mean vcruise and standard deviation σm.
2. Thus the car’s traveling velocity will be normally distributed with a mean
of µ and a standard deviation of σt.
3. The car’s transition probability p is calculated as:

p =
µ

vcruise + λσm


 1

1 +
(

σt
µ

)2




where λ is a constant best determined empirically. We use λ = 0 for our
simulations, thus presenting a conservative estimate of the change in flow
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rate as a function of σm.

Now we consider what effect σt and σm are likely to have on the velocity
at a given occupancy. As Militzer (1998) states, ”small perturbations that
increase the density locally lead to a decrease in the flow, which then ampli-
fies the initial perturbation. The variance in car velocities is what triggers
this process, leading to the formation of traffic jams.” (CITE SOURCE!)
Considering the cars’ movement as a directed random walk, it is clear that
increasing σt increases the amount of randomness in the system. This will
cause the cars to interact with each other (and hence, block each other’s
movement) more often, decreasing the average velocity in traffic. The ef-
fects of σm are even more dramatic: cars with low mean velocities will tend
to impede the progress of the faster cars behind them. In the one lane model,
it is impossible to pass a slow car, so cars will queue up behind it, and their
progress will be reduced significantly. In the two lane model, faster cars are
able to pass slower cars, reducing the impact of σm.

To more precisely examine the effects of these variables, we ran simulations
with a number of different values of σm, σt, and the occupancy n. In par-
ticular, we first fixed n = 0.5, and varied both σm and σt from 0 to 15 mi/hr.

For each pair of values, we calculated an average flow rate (in cars/1000
time steps) for the one and two lane simulations. The one lane flow rate was
doubled for comparison purposes: this is equivalent to a two lane flow with
no lane switching allowed.

σt = 0 σt = 5 σt = 10 σt = 15
σm = 0 979/976 923/908 856/830 805/776
σm = 5 822/757 817/746 790/729 753/683
σm = 10 699/537 691/518 659/485 642/469
σm = 15 588/393 569/366 540/319 518/292

Table 4: Two lane avg. flow / Twice one lane avg. flow

As can be seen from this table, the maximum flow for the two lane model is
more than twice the maximum flow for the one lane model. For low values
of σt and σm, the difference is negligible: allowing cars to switch lanes does
not significantly increase the flow rate. For high values of variance, the two
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lane model has a significantly higher flow rate than the one lane model; this
is as expected, since lane switching reduces the problem of queueing behind
slow vehicles by allowing faster vehicles to pass them. For both the one
lane and two lane models, the average flow rate decreases with increasing σt

and with increasing σm. Each 5 mi/hr increase in σm resulted in an 11-16%
decrease in flow rate (two lane model, σt = 0), while each 5 mi/hr increase
in σt resulted in a 5-7% decrease in flow rate (two lane model, σm = 0).
Thus the effects of both traveling variance and mean variance dramatically
affect flow rate, and the effects of σm on flow rate are more significant than
the effects of σt.

9.1 ”So, can I bring my boat?”

We now consider how variations in vehicle type affect the values of σm and
σt, and how this affects flow rate. It is clear that most large vehicles (such
as boats, campers, semis, and motor homes) will travel at a slower rate than
most normal cars. Thus, if a significant proportion of people bring large
vehicles, this results in an increased σm and hence a lower flow rate. As
a simplified approximation to this, assume there are two types of vehicles:
fast cars (µ = µ1) and slow trucks (µ = µ2). If the proportion of slow trucks
is given by ℵ, then we can calculate:

σ2
m = ℵ(µ2 − µ̄)2 + (1− ℵ)(µ1 − µ̄)2

= ℵ(µ2 − (µ1 − (µ1 − µ2)ℵ))2 + (1− ℵ)(µ1 − (µ1 − µ2)ℵ))2

= (µ1 − µ2)2(ℵ2(1− ℵ) + ℵ(1− ℵ)2)
= (µ1 − µ2)2(ℵ)(1− ℵ)

Thus σm = (µ1 − µ2)
√

(ℵ)(1− ℵ). We now assume that fast cars travel
at µ1 = 70 mi/hr, and slow trucks travel at µ2 = 50 mi/hr, and find σm

as a function of ℵ. The random fluctuations in vehicle speed are likely to
depend more on the psychology of the driver than on the type of vehicle
under consideration, so we assume a constant value of σt = 5 mi/hr. This
allows us to linearly interpolate from the values given in the table, enabling
us to find the flow rate (cars/1000 time cycles) for the two lane and one lane
models as a function of the proportion of slow vehicles ℵ:

Thus the flow rate is decreased significantly by the presence of slow vehicles:
if even 1% of vehicles are slow, the flow rate decreases by 5%, and if 10%
of vehicles are slow, the flow rate decreases by 15%. The effects of σm are

Page 22 of 47



Team 185

ℵ σt flow rate % reduction in flow
0 0 923/908 0/0

.01 1.99 881/844 4.6/7.0

.02 2.80 864/817 6.4/10.0

.05 4.36 831/767 10.0/15.5
.1 6.00 792/700 14.1/22.9
.2 8.00 741/609 19.7/32.9
.5 10.0 691/518 25.1/43.0

Table 5: Flow rate as a function of proportion of slow vehicles

magnified if vehicles are unable to pass slower vehicles, so if the highway
went down to one lane at any point (due to construction or accidents, for
example) this would reduce the flow rate even further. Thus we recommend
restricting the allowed types of evcuation vehicles as follows: no large ve-
hicles (vehicles which may potentially block multiple lanes), and no slow
vehicles (vehicles with a significantly lower mean cruising velocity). Excep-
tions to the “no slow vehicles” rule may be made in two cases:

1. If a family has no other alternative but to drive a slow vehicle (ie. the
family owns no fast vehicle), they are still allowed to evacuate.
2. Vehicles which are carrying a large number of people (such as buses) are
allowed, since these may significantly reduce the number of vehicles to be
evacuated.

Also, slow-moving vehicles should be required to stay in the right lane,
allowing faster vehicles to pass by. This will help to reduce the impact of
the slow vehicles on the flow rate of traffic. Additionally, families should be
encouraged to take as few vehicles as possible in order to minimize the total
number of cars to be evacuated; this will help to further reduce evacuation
time.

10 The Space-Velocity Curve

In order to determine optimal traffic flow rates we need a good estimate of
the relationship between velocity (v) and space per car (s) (or equivalently,
velocity and occupancy (n)). We acheive this by combining two of the
models previously discussed: the one-dimensional cellular automata model
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and the steady state model.
The space-velocity function will be denoted by F (s), where s denotes

space per car (s = 1/K) and F (s) is given in miles per hour. We define
F (s) in sections:

s ≤ 15 ft:

When spacing is less than 15 feet there is essentially no traffic flow:
F (s) = 0.

15 ft ≤ s ≤ 30 ft:

When spacing is between 15 feet and 30 feet, traffic travels at speeds
between 0 and 12 miles per hour, and the one-dimensional cellular automata
model is appropriate. We have previously obtained the following formula
for the one-dimensional cellular automata model:

v =
(

15 ft
0.5 s

)
1−

√
1− 4d(1− d)0.85

2d
.

Thus,

F (s) = (10.2 mph)
1−

√
1− 4d(s)(1− d(s))0.85

d(s)

where d(s) = (15 ft)/s.

30 ft ≤ s ≤ 140 ft:

Between 30- and 140-foot spacing, traffic travels between 12 mph and
55 mph, and the steady state model is appropriate. By the steady state
equation,

s =
1

2D
F (s)2 + βF (s) + L,

thus

F (s) =
−β +

√
β2 − 4(L− s)

(
1

2D

)

2 1
2D

.

L = 10 ft (the length of a car); β = 1 s (reaction time); and we take the
conservative estimate D = 21 ft/s2 for the deceleration rate.

140 ft ≤ s:

Above 140-foot spacing traffic velocity will be equal to the speed limit.

F (s) is graphed below (in miles per hour) at two different scales.
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graph 2

Page 25 of 47



Team 185

11 Incoming Traffic Rates

As discussed earlier, the optimal flow of traffic through a route is determined
only by the optimal flow through the smallest bottleneck along the route.
However the time of travel (which is a more important measure for our
purposes) is affected by other factors, including the rate of incoming traffic.
If incoming traffic is heavy, congestion occurs at the beginning of the route,
thus causing a decrease in velocity and an overall increase in travel time for
each car.

How does congestion occur, and how much does it influence travel time?
Consider the one-dimensional cellular automata model with p = 1/2. Rep-
resent the road by the real line, and let F (x, t) denote the density of cars at
point x on the road at time t. (For our purposes right now the cells and cars
are infinitesimal in length.) Suppose that the initial configuration F (x, 0) is
given by the step function,

F (x, 0) =
{

1 if x < 0
0 if x ≥ 0

This is analogous to a traffic scenario where a dense line of cars is about to
move onto an uncongested road.

We will omit units (ft, s, etc.) for the time being. By the formulas
from “The One Dimensional Cellular Model” section, the velocity v(x0, t0)
at position x0, time t0 is given by

v(x0, t0) =
1−

√
1− 2F (x0, t0)(1− F (x0, t0))

2F (x0, t0)

while velocity must also be equal to the rate at which the number of cars
past point x is increasing; that is,

v(x0, t0) =
d

dt

(∫ ∞

x
F (x, t)dx

)
(t0) .

Thus,
dF

dt
= −dv

dx
= − d

dx

(
1−

√
1− 2F (1− F )

2F

)

This is a partial differential equation whose unique solution is given by:

F (x, t) =





1 if x/t < −1
2

1
2 − (x/t)√

2−4((x/t))2
if − 1

2 ≤ x/t ≤ 1
2

0 if 1
2 < x/t
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Thus, after a steady influx of cars for a period of ∆t, the graph of the
resulting congestion is given by

1
2

+
x
∆t√

2− 4
(

x
∆t

)2
,

and the congestion ends at position x = ∆t/2.
This derivation has many possible uses. For our purposes we are only

interested in the fact that the size of the the traffic pattern is linear with
respect to ∆t. In a real-world scenario, this means that if there is an influx
of N cars onto a highway, the size of the resulting congestion is directly
proportional to the number N . Likewise, the amount of time it takes for
the congestion to dissipate is proportional to N .

This allows us to evaluate one of the proposals–staggering evacuation
times for different counties. Suppose that there are n counties with popula-
tions P1, P2, . . . , Pn. If all counties evacuate at the same time, the effect of
the resulting traffic jam on total travel time is proportional to the product
of the size of the jam and the amount of time before it dissipates:

∆Ttravel time = c1 · c2 (P1 + . . . + Pn) · c3 (P1 + . . . + Pn)
= c1c2c3 (P1 + . . . + Pn)2

for some constants c1, c2, c3. If the evacuations are staggered, the effect of
the jam is

∆Ttravel time = c1c2c3P
2
1 + . . . + c1c2c3P

2
n = c1c2c3

(
P 2

1 + . . . + P 2
n

)

Now, certainly
P 2

1 + . . . + P 2
n <

(
P 2

1 + . . . + P 2
n

)
;

and unless one of the counties has a much larger population than the rest,
the difference between these two values is highly significant. We therefore
recommend the proposal for staggering counties.

12 The effects of merges and diverges on traffic
flow

While the steady state model is a reasonably accurate predictor of traffic
behavior on long homogeneous stretches of highway, we must also consider
how to deal with the effects of road inhomogeneities: “merges” of two lanes
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into a single lane, and “diverges” of one lane into two lanes. To do so, we
apply the principle of conservation of traffic flow as discussed in Kuhne and
Michalopolous (“Continuum Flow Models”). Assuming that there are no
sources or sinks in a region, this principle states that:

∂q

∂x
+

∂k

∂t
= 0

where q is flow rate (cars/sec), and k is density (cars/ft), x is location (ft),
and t is time (sec). Assuming that the merge or diverge occurs at a specific
point x, we now consider how this junction behaves in the steady state: that
is, for ∂D(t)

∂t = 0. Given ∂k
∂t = 0, this implies that ∂q

∂x = 0. In other words,
flow rate is conserved at a junction in the steady state. This implies that
the sum of flow rates going into a junction is equal to the sum of flow rates
going out of a junction. For a flow qs diverging into flows q1 and q2, we know
that qs = q1 + q2, and this result also applies for flows q1 and q2 merging
into a single flow qs. If we are given the proportion P (0 < P < 1) of the
flow qs going to (or coming from) q1, and given either density (ks or k1), we
can use the steady state model to solve for the other density as follows:

q1 = Pqs

k1v1 = Pksvs

k1v(k1) = Pksv(ks)

From the steady state model, and using the given values of all constants, we
know:

v(k) = 88 ft/sec (k < .0056)

v(k) = 21.7(

√
.08 +

.092
k

− 1) (.0056 < k < .1)

Assuming both densities are greater than the free-travel density k = .0056,
we can set:

k1(
√

.08 +
.092
k1

− 1) = Pks(
√

.08 +
.092
ks

− 1)

Given either ks or k1, we can solve numerically for the other with relative
ease. Then we can find the velocities associated with each density using the
above expression for v(k). There are several subtleties involved: solving the
above equation gives two potential values of density, so we make the rea-
sonable assumption that the density is greater on the single lane side of the

Page 28 of 47



Team 185

junction (ie. density increases at a merge and decreases at a diverge). Also,
it is possible that solving the above equation produces a velocity v1 which is
larger than vcruise. This problem can be solved by setting v1 = vcruise, and
calculating n1 = q1/v1.

However, the above discussion does not consider a crucial component of
the problem: how is the steady state flow rate determined on a path with
merges and diverges? Following the discussion of Daganzo (1997), we con-
sider a “bottleneck” to be defined as an inhomogeneous location (such as a
merge or diverge) where queues can form and persist with free flow down-
stream. The “bottleneck capacity” is the maximum flow rate through the
bottleneck; we assume for that bottleneck capacity is constant rather than
time-varying, an assumption which Daganzo also makes. If the flow rate
on one side of a bottleneck exceeds this capacity, then a queue will form,
dissipating predictably when the flow rate decreases. This has interesting
results for the steady state model: assume that a steady state flow greater
than the bottleneck capacity attempts to enter the bottleneck. This will re-
sult in a queue size which continually increases, until it eventually stretches
all the way back to its origin. At this point, the steady state flow is blocked
by the queue of cars, and decreases to the bottleneck capacity. As a result,
we can conclude that the maximum steady state flow rate from point A to
point B along a given path is equal to the minimum bottleneck capacity of
all bottlenecks along that route.

12.1 Parallel paths, and applications to evacuation strategy

We now consider the case when there are multiple parallel paths p1 . . . pm

from point A to point B. Each path pi has a given bottleneck capacity ci

equal to the minimum of all bottleneck capacities on that route. The maxi-
mum steady state flow rate from point A to point B is equal to the minimum
of three quantities: the bottleneck capacity of the diverge at point A, the
bottleneck capacity of the merge at point B, and the sum of the bottleneck
capacities of all paths pi. If a given path has no bottlenecks, its capacity
is equal to the maximum flow rate predicted by the steady state model for
that path.

This general framework can be applied to many of the strategies consid-
ered by the state officials of South Carolina. We focus here on maximizing
flow rate rather than minimizing evacuation time: this is a reasonable as-
sumption since, when the number of cars to be evacuated is very large,

Page 29 of 47



Team 185

maximizing flow gives us an evacuation time near the minimum. We first
express a general formula for the maximum flow rate qmax from Charleston
to Columbia:

qmax = min((
∑

i

qi), c0, cf )

where qi is the maximum flow rate of the ith path, c0 is the bottleneck
capacity of Charleston, and cf is the bottleneck capacity of Columbia. The
flow rates qi are defined by the following equation:

qi = min(b1 . . . bn, qi,ss)

where b1 . . . bn are the capacities of any bottlenecks along the given route,
and qi,ss is the maximum flow along that route predicted by the steady state
model.

We first consider the evacuation situation with no strategies implemented,
and assume no bottlenecks along I-26. Denoting the steady state value
qI−26,ss by qI , this gives us qmax = min(qI , c0, cf ). The important ques-
tion, now, is which of these factors limits qmax. We have determined that
qI ≈ 2000 cars/hr, but we will not be able to achieve this rate if either
c0 < 2000 (traffic jam in Charleston) or cf < 2000 (traffic jam in Columbia).
It is a reasonable assumption that, since the traffic in Columbia is split into
three different roads, this will result in less congestion than everyone merg-
ing onto I-26 in Charleston. Hence we assume c0 < cf . This implies that c0

is the limiting factor if c0 < 2000, and qI is the limiting factor if c0 > 2000.
The value of c0 is best determined empirically, perhaps by extrapolation
from Charleston rush hour traffic data, or by careful examination of traffic
data from the last hurricane. We now consider the effects of implementing
each strategy.

First, the plan for turning the two coastal-bound lanes of I-26 into two lanes
of Columbia-bound traffic clearly doubles qI to 4000 cars/hr. It is likely to
increase c0 as well, since cars can be directed to two different paths onto I-26
and are thus less likely to interfere with the merging of cars going on the
other set of lanes. On the other hand, this implies that twice as many cars
will be entering the Columbia area simultaneously, and since the capacity
cf is unchanged, it is possible that this capacity may become the limiting
factor. It may be possible to increase cf by rerouting some the extra traffic
to avoid Columbia, or even turning around traffic on some of the highways
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leading out of Columbia. Thus this strategy is likely to improve evacuation
traffic flow, but the extent of success will be affected by the relative values
of qI , c0, and cf . If c0 and cf are larger than twice qI , the maximum flow
rate will be doubled. If c0 is the limiting factor, maximum flow will also
increase, though possibly to a lesser extent than double. If cf is the limit-
ing factor, maximum flow may not increase at all, unless the extra traffic
is rerouted. Nevertheless, it is likely that (since, as we argued, cf was not
likely to be the limiting factor before) a significant improvement will result,
and the strategy should be implemented.

A similar argument applies to turning around the traffic on the smaller
highways extending inland from the coast. Each highway will add some ca-
pacity to the total

∑
i qi, increasing this term. It is likely, however, that each

highway’s capacity will be significantly less than qI . Increasing the number
of usable highways has unclear effects on c0. If residents’ evacuation pat-
terns are carefully directed it may increase this capacity by spreading out
the residents of Charleston to different roads. If not, the lack of organi-
zation may lead to people choosing their evacuation routes arbitrarily, and
crossing evacuation routes may lead to traffic jams. As for the reversal of
I-26, the reversal of smaller highways does not affect the value of cf (unless
crossing evacuation routes becomes a problem in Columbia). More impor-
tantly, the interactions between highways (merges, diverges, etc.) may lead
to bottlenecks on each highway, further reducing the highway’s capacity. In
fact, interactions between these highways and I-26 could cause bottlenecks
which slow the flow rate of I-26, offsetting the extra capacity of the smaller
highways or even causing a significant problem. Thus it is safer not to turn
around traffic on the secondary highways, or to encourage using these as
evacuation routes. Selected highways might be used as evacuation routes,
and the traffic on these turned around, assuming that the following condi-
tions are met:

1. High capacity (ie. using the highway is worthwhile)
2. Low potential for traffic conflicts with other highways (especially with
I-26)
3. Careful direction of Charleston traffic to the secondary highway, and
Columbia traffic from the secondary highway, to minimize crossing of evac-
uation routes and other potential bottlenecks.
4. Multiple (at least two) adjacent lanes, since otherwise queues will form
behind slow moving vehicles.
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We now consider the strategy of establishing temporary shelters in
Columbia, to reduce the traffic leaving Columbia. This strategy could be
useful if only some of the cars are directed into Columbia: thus the flow of
traffic in the Columbia area would be split into four streams rather than
three, possibly increasing the value of cf . Nevertheless, we hesitate to rec-
ommend this strategy, since the actual effects are likely to be the opposite.
Evacuees entering Columbia (already a bustling city of 500,000 people) are
likely to create a large amount of traffic within the city. This traffic conges-
tion will make it difficult for traffic to enter the city, resulting in a major
traffic bottleneck. If careful regulation of traffic is not performed, more peo-
ple will attempt to stay in Columbia than the amount of available housing,
and the frantic attempts of individuals to procure housing will exacerbate the
traffic bottleneck. Hence it is most likely that cf will decrease significantly,
probably becoming the limiting factor on maximum flow rate. Unless ex-
treme care is taken to regulate the number of cars entering Columbia, and to
reduce the extent to which Columbian traffic impairs the influx of refugees,
this strategy is likely to result in disaster.

Next, we briefly consider the question of staggering traffic flows. As we
showed in a previous section, staggering the evacuation is likely to reduce
the time it takes an average car to travel from Charleston to Columbia,
while leaving the value of the steady state flow rate qI unchanged. Thus
we concluded that staggering the evacuation will decrease total evacuation
time; we show here that staggering may also increase the maximum flow
rate. This follows since staggering the evacuation decreases the number of
cars that are traveling the city toward I-26 at any one time, reducing the
size of the co bottleneck. Increasing the capacity co, however, will only in-
crease flow rate if co is the limiting factor. If the steady state flow rate qI

is the limiting factor, then flow rate will be unchanged. Nevertheless, the
reduction in evacuation time makes a staggering strategy worthwhile.

Lastly, we consider the impact of evacuees from Florida and Georgia, and
their potential to compund traffic problems. The out-of-state evacuees
clearly add to the number of cars to be evacuated, and since evacuation
time is proportional to number of cars over flow rate, these evacuees will
add to the total evacuation time unless they take a route which does not
intersect the paths of the South Carolina evacuees. However, it is very hard
to constrain the routes of the out-of-state evacuees, since they may come
from a variety of paths, and are unlikely to be informed of the state’s evac-
uation procedures. In particular, two major bottlenecks are likely to occur:
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at the intersection of I-26 and I-95, and at the intersection of I-95 with I-20
and U.S. 501. If a large number of cars from I-95 attempt to go northwest
on I-26 toward Columbia, this merge is likely to become a bottleneck. As
a result, qI−26 will no longer be equal to qI−26,ss = 2000 cars/hr, but will
instead be equal to the capacity of the I-26/I-95 bottleneck. This is likely
to significantly reduce qI−26, and makes it extremely likely that qI−26 will
be the limiting factor of maximum traffic flow. A similar argument suggests
that I-95 traffic will impede the flow of traffic west from Myrtle Beach, by
causing a bottleneck at the I-95/I-20 junction. Traffic flow from Myrtle
Beach is less than from Charleston, and many of the cars from I-95 may
have already exited at I-26, so the bottleneck at the I-20 junction is likely
to be less severe than at I-26. Nevertheless, it is clear that the flow of evac-
uees from Florida and Georgia has the potential to dramatically reduce the
success of the evacuation. This problem may be reduced by careful regula-
tion of the interactions between highway traffic flows, but is difficult to fully
solve.
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13 Newspaper Article and Conclusion

Hurricanes pose a serious threat to citizens on the South Carolina coastline,
as well as other beach dwellers in Florida, Georgia, and other neighboring
states. In 1999, the evacuation effort preceeding the expected landfall of
Hurricane Floyd led to a monumental traffic jam that posed other, also
serious, problems to the more than 500,000 commuters who fled the coastline
and headed for the safe haven of Columbia. Several strategies have been
proposed to avoid a future repeat of this traffic disaster.

First, it has been suggested that the two coastal bound lanes of I-26
be turned into two lanes of Columbia bound traffic. A second strategy
would involve staggering the evacuation of the coastal counties over some
time period consistent with how hurricanes affect the coast, instead of all
at once. Third, the state might turn around traffic flow on several of the
smaller highways besides I-26 that extend inland from the coast. The fourth
strategy under consideration is a plan to establish more temporary shelters
in Columbia. Finally, the state is considering placing restrictions on the
type and number of vehicles that can be brought to the coast.

In the interest of the public, we have developed and tested several math-
ematical models of traffic flow to determine the efficacy of each proposal.
On balance, they suggest that the first strategy is sound, and should be im-
plemented. Although doubling the number of lanes will not necessarily cut
the evacuation time in half, or even double the flow rate on I-26 away from
the coast, it will significantly improve the evacuation time under almost any
weather conditions.

Our models suggest that staggering the evacuation of different counties
is also, on balance, a good idea. Taking such action, on one hand, will
reduce the severity of the bottleneck that occurs when the masse of evacuees
reaches Columbia, and on the other hand, could potentially increase average
traffic speed without significantly increasing traffic density. The net effect
of implementing this strategy will likely be an overall decrease in coastal
evacuation time.

The next strategy, which suggests turning traffic around on several
smaller highways, is not so easy to recommend. The main reason for this is
that the unorganized evacuation attempts of many people on frequently in-
tersecting secondary roads is a recipe for inefficiency. In places where these
roads intersect I-26, the merging of a heightened volume of secondary road
traffic is sure to cause bottlenecks on the interstate that could significantly
impede flow. To make a strategy of turning around traffic on secondary
roads workable, the state would have to use only roads that have a high
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capacity, at least two lanes, and a low potential for traffic conflicts with
other highways. This would require competent traffic management directed
at avoiding bottlenecks and moving Charleston traffic to Columbia with as
few evacuation route conflicts as possible.

The fourth proposal, of establishing more temporary shelters in
Columbia, is a poor idea. Because it is assumed that travellers are rela-
tively safe once they reach Columbia, the main objective of the evacuation
effort should be minimizing the transit time to Columbia and the surround-
ing area. It is fairly clear that increasing the number of temporary shelters
in Columbia would (A) lead to an increased volume of traffic to the city by
raising expectations that there will be free beds there, and (B) exacerbate
the traffic problem in the city itself due to an increased demand for parking.
Together, these two factors are sure to worsen the bottleneck caused by I-26
traffic entering Columbia, and would probably increase the total evacuation
time by decreasing the traffic flow on the interstate.

The final proposal of placing limitations on the number and types of
vehicles that can be brought to the beach is reasonable. Families with several
cars should be discouraged from bringing all of their vehicles, and perhaps
required to register with the state if the latter is their intention. Large,
cumbersome vehicles such as motor homes should be discouraged, unless
they are a family’s only option. Although buses slow down traffic, they are
beneficial because they appreciably decrease the overall number of drivers.
In all cases, slow moving vehicles should be required to travel in the right
lane during the evacuation attempt.

In addition to the strategies mentioned above, commuters in the 1999
evacuation were acutely aware of the effect on traffic flow produced by
coastal residents of Georgia and Florida travelling up I-95. We have con-
cluded that, when high volume traffic flows such as these compete for the
same traffic pipeline, the nearly inevitable result is a bottleneck. A rea-
sonable solution to this problem would be to bar I-95 traffic from merging
onto I-26, and instead encourage and assist drivers on I-95 to use the more
prominent, inland bound secondary roads connected to that interstate.

To conclude, we think that combining the more successful strategies
suggested could lead to a substantial reduction in evacuation time, which,
in our view, is the primary measure of evacuation success. Minimizing the
number of accidents that occur in en route is also important, but our models
directed at the former goal do not make compromises with respect to the
latter objective. In fact, the problem of minimizing accidents is chiefly taken
care of by ensuring that traffic flow is as orderly, and efficient, as possble.
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14 Appendix 1

This appendix contains definitions and proofs for the section “THE ONE-
DIMENSIONAL CELLULAR AUTOMATA MODEL.”

Definition 14.1. A binary process X is a probability distribution on binary
sequences

F : Z→ {0, 1} .

Equivalently, X is a sequence of random variables X(i) on the same proba-
bility space with range {0, 1}.
Definition 14.2. A binary process X is of density d if

limn→∞

∑n
k=1 X(k)

n
= d = limn→∞

∑−1
k=−n X(k)

n

where lim denotes convergence in probability.

Definition 14.3. Let J (X,Y ) denote the set of joint measures of X and
Y .

Definition 14.4. Suppose X and Y are binary processes and Z ∈ J (X,Y ).
Define

dZ (X, Y ) = lim supn→∞EZ

(∑n
i=−n |Xi − Yi|

2n + 1

)

Essentially, dZ (X, Y ) measures the frequency with which the terms of
X and Y disagree under the joint measure Z. This allows us to define a
pseudometric on binary processes:

Definition 14.5.

d (X,Y ) := minZ∈J (X,Y )dZ (X, Y )

Since d is a pseudometric (d(X, Y ) = d(Y, X) and d(X,Y ) + d(Y,Z) ≥
d(X,Z)), so we may speak of convergence under d.

Theorem 2. Suppose X is a binary process of density d. Then In
p (X)

converges to Mp,d under the d psuedometric as n →∞.

Proof. Proving this theorem will require some lemmas. First we must show
that Mp,d is indeed of density d and that it is invariant under Ip.

Lemma 14.6. Mp,d is of density d.
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Proof. The frequencies of 0’s and 1’s in the Markov chain Mp,d are given
by the eigenvector of the transition matrix

M =


 1− 1−

√
1−4d(1−d)p

2p(1−d)

1−
√

1−4d(1−d)p

2pd

1−
√

1−4d(1−d)p

2p(1−d) 1− 1−
√

1−4d(1−d)p

2pd


 .

corresponding to the eigenvalue 1. Let

x =
1−

√
1− 4d(1− d)p

2pd(1− d)

then

M

[
1− d

d

]
=

[
1− xd x(1− d)

xd 1− x(1− d)

] [
1− d

d

]

=
[

(1− xd)(1− d) + xd(1− d)
xd(1− d) + (1− x(1− d))d

]

=
[

1− d
d

]
.

Thus
[

1− d
d

]
is the frequency vector forMp,d, and the density ofMp,d

(the frequency of 1’s) is indeed d.

Lemma 14.7. The distributions Mp,d and Ip(Mp,d) are identical.

Proof. The first observation is that if X is an n-state Markov chain, then
Ip(X) is an (n + 1)-state Markov chain. This is clear intuitively, since the
functional Ip only introduces dependences between adjacent terms. There-
fore Ip(Mp,d) is a 2-state Markov chain. To prove the lemma it will suffice
to show that the 2-state transition probabilities for Ip(Mp,d) are the same
as those for Mp,d.

Let [
d0

d1

]
=

[
1− d

d

]

[
m00 m01

m10 m11

]
= M =

[
1− xd x(1− d)

xd 1− x(1− d)

]
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The following algebraic relations hold:

m11m00

m10m01
= 1− p d0 + d1 = 1

m00 + m01 = 1 m10 + m11 = 1

d0m01 = d1m10

Let (b1, b2, . . . , bn) denote a binary sequence. From the Markov chain
property we have

P ((Mp,d(1),Mp,d(2), . . . ,Mp,d(n)) = (b1, b2, . . . , bn)) = db1mb1b2mb2b3 . . .mbn−1bn

We will use this formula to determine the 2-state transition probabilities for
I(Mp,d). For convenience we omit commas and parantheses when writing
subsequences and also abbreviate Mp,d(i) as Mi, I(Mp,d)(i) as I(M)i.

P (I(M)1I(M)2I(M)3 = 111) = P (M1M2M3M4 = 1111) +
P (M1M2M3M4 = 1110) (1− p) +
P (M0M1M2M3M4 = 10111) p +
P (M0M1M2M3M4 = 10110) p(1− p).

To see why this is true, observe that there are four disjoint cases in which
I(M)1I(M)2I(M)3 = 111: one, that M1M2M3M4 = 1111; two, that
M1M2M3M4 = 1110 and switching does not occur at the pair (M3,M4);
three, that M0M1M2M3M4 = 10111 and switching occurs at the pair
(M0,M1); and four, that M0M1M2M3M4 = 10110 and switching occurs
at the pair (M0,M1) and not at the pair (M2,M3).
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Thus, applying the algebraic relations mentioned above,

P (I(M)1I(M)2I(M)3 = 111) = d1m11m11m11 + d1m11m11m10(1− p) +
d1m10m01m11m11p + d1m10m01m11m10p(1− p)

= d1m11(m11m11 + m11m10(1− p) +
m10m01m11p + m10m01m10p(1− p))

= d1m11(m11m11 + m11m10(1− p) +
m10m01m11p + m11m00m10p)

= d0m
2
11(m11 + m10(1− p) + m10(m01 + m00)p)

= d0m
2
11(m11 + m10(1− p) + m10p)

= d0m
2
00(m00 + m01) = d0m

2
00

= P (M1M2M3 = 000) ,

as desired.
Derivations for the other 7 probabilities are similar.

We have seen that the distribution Mp,d is stable under the traffic flow
functional. To prove convergence we will need the following.

Lemma 14.8. Suppose X and Y are binary processes. Then

d (Ip(X), Ip(Y )) ≤ d (X, Y )

Proof. Take a joint measure Z such that

d (X, Y ) = dZ (X,Y ) .

Our method is to demonstrate a joint measure I ′p(Z) of Ip(X) and Ip(Y ) such
that dI′p(Z) (Ip(X), Ip(Y )) ≤ dZ (X,Y ). Essentially this involves “binding”
together the switching processes X 7→ Ip(X) and Y 7→ Ip(Y ).

Z is a distribution on pairs of binary sequences (F, G). Represent adja-
cent terms of these pairs in matrices like so:

(
F (k) F (k + 1) F (k + 2)
G(k) G(k + 1) G(k + 2)

)
=

(
0 0 1
1 0 1

)

Note that dZ(X,Y ) is equal to the frequency with which vertical pairs dis-
agree in this matrix representation. We will thus define I ′(Z) with an eye
toward minimizing the number of such pairs.

Page 39 of 47



Team 185

Define I ′p(Z) from Z as follows:

(
1 0
1 0

)
7→





(
0 1
0 1

)
w/ prob. p

(
1 0
1 0

)
w/ prob. 1− p

(
1 0
a b

)
7→





(
0 1
∗ ∗

)
w/ prob. p

(
1 0
∗ ∗

)
w/ prob. 1− p

when (a, b) 6= (1, 0);

(
a b
1 0

)
7→





( ∗ ∗
0 1

)
w/ prob. p

( ∗ ∗
1 0

)
w/ prob. 1− p

when (a, b) 6= (1, 0).
As before, all of these choices are made independently.
I ′p(Z) as defined above is a joint measure for Ip(X) and Ip(Y ). This is

clear if one simply ignores one of the rows: the rules for the top row are
equivalent to those defining Ip(X) in terms of X, and likewise for Y 7→ Ip(Y )
on the bottom row. The effect of these rules is that when (Xi, Xi+1) =
(Yi, Yi+1) = (1, 0), the switching decisions at (Xi, Xi+1) and (Yi, Yi+1) are
coupled together; all other switching decisions are made independently.

The key assertion is that the density of unalike vertical pairs does not
increase with the application of I ′p. To verify this claim simply involves
checking each possible 2× 3 binary matrix to see that the expected number
of unalike terms remains the same or decreases; we omit this part of the
proof.

So applying I ′p does not increase the value:

lim supn→∞EZ

(∑n
i=−n |Xi − Yi|

2n + 1

)
.

Thus,

d (Ip(X), Ip(Y )) ≤ dI′p(Z) (X,Y ) ≤ dZ (Ip(X), Ip(Y ))

= d (X,Y )

as desired.

Page 40 of 47



Team 185

Therefore
(
d

(
In
p (X), In

p (Y )
))

n
is a monotone decreasing sequence for

any binary processes X and Y . In particular,

d
(
In
p (X), In

p (Mp,d)
)

= d
(
In
p (X),Mp,d

)

is monotone decreasing.
The final lemma is weak but necessary: we need to rule out the case

where
(
d

(
In
p (X),Mp,d

))
is bounded below by a positive value.

Lemma 14.9. There exists a continuous function f : R≥0 → R≥0 with
f(x) < x such that for any binary processes X and Y with the same density,
if

d (X, Y ) < ε

then
d

(
IN
p (X), IN

p (Y )
)

< f(ε)

for some sufficiently large N .

Proof. Omitted.

Now we can complete the proof of the theorem. Let X be a binary
process of density d. Then d

(
In
p (X),Mp,d

)
is monotone decreasing with

respect to n, so it must approach some limit δ. Suppose for the sake of
contradiction that δ > 0. f(δ) < δ, so by continuity there exists λ > 0 such
that f(δ + λ) < δ. Choose n large enough that

d
(
In
p (X),Mp,d

)
< δ + λ.

Apply the lemma above to ε = δ + λ to obtain a value N such that

d
(
In+N
p (X),Mp,d

)
< f(δ + λ) < δ.

This is a contradiction.
Thus

lim supn→∞d
(
In
p (X),Mp,d

)
= 0,

as desired.
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15 Appendix 2

// simcell1.cc
// one lane cellular automata simulation

#include <iostream.h>
#include <math.h>
#include <stdlib.h>

bool randprob(float p)
{
float r=float(rand()+0.5)/32768;
return (p>r);

}

int main()
{
bool carmoved=false;
int k;
cin >> k;
float chunks[10000];
float newchunks[10000];
int i,t,last;
for (i=0;i<10000;i++)

if (rand()<k) chunks[i]=1;
int car_to_watch=0;
while (chunks[car_to_watch]==0) car_to_watch++;
cout << car_to_watch << endl;
for (t=0;t<5000;t++)
{

for (i=9999;i>=0;i--)
{

if (i==0) last=9999; else last=i-1;
if (!(carmoved) && (chunks[i]==0) && (chunks[last]==1) &&

(randprob(144.0/145)))
{

chunks[i]=1;
chunks[last]=0;
carmoved=true;
if (last==car_to_watch) car_to_watch=i;
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}
else carmoved=false;

}
if (t%100==99) cout << car_to_watch << endl;

}
}

16 Appendix 3

// simcell2.cc
// Two lane cellular automata simulation
// includes characteristic velocity differences and random fluctuations

#include <iostream.h>
#include <math.h>
#include <stdlib.h>

#define PI 3.14159265359
#define MAX_LENGTH 1000
#define PRINT_LENGTH 50
#define MAX_TIME 1000
#define OUTPUT false
#define PREVENT_SWITCH false // set to true to prevent switching lanes

float sigma_v; float sigma2;

float phi(float x)
{

// Abramowitz & Stegun 26.2.19
float

d1 = 0.0498673470,
d2 = 0.0211410061,
d3 = 0.0032776263,
d4 = 0.0000380036,
d5 = 0.0000488906,
d6 = 0.0000053830;

float a = fabs(x);
float t = 1.0 + a*(d1+a*(d2+a*(d3+a*(d4+a*(d5+a*d6)))));
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// to 16th power
t *= t; t *= t; t *= t; t *= t;
t = 1.0 / (t+t); // the MINUS 16th

if (x >= 0) t = 1 - t;
return t;

}

float phiinv(float p)
{

// Odeh & Evans. 1974. AS 70. Applied Statistics. 23: 96-97
float

p0 = -0.322232431088,
p1 = -1.0,
p2 = -0.342242088547,
p3 = -0.0204231210245,
p4 = -0.453642210148E-4,
q0 = 0.0993484626060,
q1 = 0.588581570495,
q2 = 0.531103462366,
q3 = 0.103537752850,
q4 = 0.38560700634E-2,
pp, y, xp;

if (p < 0.5) pp = p; else pp = 1 - p;

if (pp < 1E-12)
xp = 99;

else {
y = sqrt(log(1/(pp*pp)));
xp = y + ((((y * p4 + p3) * y + p2) * y + p1) * y + p0) /

((((y * q4 + q3) * y + q2) * y + q1) * y + q0);
}

if (p < 0.5) return -xp;
else return xp;

}
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float getrand(float mu,float sigma)
{
float r=rand()+0.5;
return mu+phiinv(r/32768)*sigma;

}

bool randprob(float p)
{
float r=float(rand()+0.5)/32768;
return (p>r);

}

float getprob()
{
float mu=getrand(88,sigma_v);
return (mu/88)/(1+(sigma2/mu)*(sigma2/mu));

}

int main()
{
int count=0;
bool * carmoved=new bool[2];
bool * canmove=new bool[2];
carmoved[0]=false; canmove[0]=true;
carmoved[1]=false; canmove[1]=true;
int k;
cin >> k;
cin >> sigma_v;
cin >> sigma2;
float chunks[MAX_LENGTH][2];
int i,j,t,last;
for (i=0;i<MAX_LENGTH;i++)

for (j=0;j<2;j++)
if (rand()<k) chunks[i][j]=getprob(); else chunks[i][j]=0;

for (t=0;t<MAX_TIME;t++)
{

for (i=MAX_LENGTH-1;i>=0;i--)
{

if (i==0) last=MAX_LENGTH-1; else last=i-1;
for (j=0;j<2;j++)
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{
canmove[j]=((chunks[i][j]==0) && (!carmoved[j]));
carmoved[j]=false;

}
if ((canmove[0]) && (canmove[1]))
{

for (j=0;j<2;j++)
{

if ((chunks[last][j]!=0) && (randprob(chunks[last][j])))
{

if (OUTPUT) cout << "Moving ahead " << last << " " << j << endl;
chunks[i][j]=chunks[last][j];
chunks[last][j]=0;
carmoved[j]=true;
if (last==MAX_LENGTH-1) count++;

}
}

}
else if (canmove[0])
{

if ((chunks[last][0]!=0) && (randprob(chunks[last][0])))
{

if (OUTPUT) cout << "Moving forward " << last << " " << 0 << endl;
chunks[i][0]=chunks[last][0];
chunks[last][0]=0;
carmoved[0]=true;
if (last==MAX_LENGTH-1) count++;

}
else if ((chunks[last][0]==0) && (chunks[last][1]!=0) &&

(randprob(chunks[last][1])) && (!(PREVENT_SWITCH)))
{

if (OUTPUT) cout << "Switching lanes " << last << " " << 1 << endl;
chunks[i][0]=chunks[last][1];
chunks[last][1]=0;
carmoved[1]=true;
if (last==MAX_LENGTH-1) count++;

}
}
else if (canmove[1])
{
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if ((chunks[last][1]!=0) && (randprob(chunks[last][1])))
{

if (OUTPUT) cout << "Moving forward " << last << " " << 1 << endl;
chunks[i][1]=chunks[last][1];
chunks[last][1]=0;
carmoved[1]=true;
if (last==MAX_LENGTH-1) count++;

}
else if ((chunks[last][1]==0) && (chunks[last][0]!=0) &&

(randprob(chunks[last][0])) && (!(PREVENT_SWITCH)))
{

if (OUTPUT) cout << "Switching lanes " << last << " " << 0 << endl;
chunks[i][1]=chunks[last][0];
chunks[last][0]=0;
carmoved[0]=true;
if (last==MAX_LENGTH-1) count++;

}
}

}
if (OUTPUT) cout << "TIME " << t << ": count = " << count << endl;
if (OUTPUT)
{

for (i=0;i<PRINT_LENGTH;i++)
if (chunks[(0+i)%MAX_LENGTH][0]>0)

cout << 1;
else cout << 0;

cout << endl;
for (i=0;i<PRINT_LENGTH;i++)
if (chunks[(0+i)%MAX_LENGTH][1]>0)

cout << 1;
else cout << 0;

cout << endl << endl;
}

}
cout << count << endl;

}
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