Applied Math Seminar
Monday, October 18, 1999, 4:00pm, 120 Physics
Ken Golden (University of Utah)
Mathematics of Sea Ice
Abstract:
Sea ice undergoes a marked transition in its transport properties at a critical temperature of around -5 C. Above this temperature, the sea ice is porous, allowing percolation of brine, sea water, nutrients, biomass, and heat through the ice. In the Antarctic, this critical behavior plays a particularly important role in air-sea-ice interactions, mixing in the upper ocean, in the life cycles of algae living in the sea ice, and in the interpretation of remote sensing data on the sea ice pack. Recently we have applied percolation theory to model the transition in the transport properties of sea ice. We give an overview of these results, and how they explain data we have taken in the Antarctic. We will also describe recent work in developing inverse algorithms for recovering the physical properties of sea ice remotely through electromagnetic means, and how percolation processes come into play. At the conclusion of the talk, we will show a short video on a recent winter expedition into the Antarctic sea ice pack.

Generated at 1:10pm Friday, April 19, 2024 by Mcal.   Top * Reload * Login