Math 32L Lab Quiz #3 (Limited Immunity)

Blake, Spring 2002

	Name:						
1. (21 points differential ed		R-S model for t	he spread of a	n infectious dis	sease, we constructed the following		
	$rac{ds}{dt}$	$= -\beta s(t)i(t)$	$)+\mu(1-s(t$)-i(t))			
	$rac{di}{dt}$	$= \beta s(t)i(t) -$	- $\lambda i(t)$				
(a) Which or answer.]	f the constants	s is determined	by the rate at	which people r	ecover from the disease? [Circle or	ne	
·····	β	λ	μ	1	none of these		
(b) Which o	of the constants	s could be affec	eted by a publi	ic awareness ca	ampaign? [Circle one answer.]		
	β	λ	μ	1	none of these		
(c) Circle all	the nullclines	for these difference	ential equation	ıs.			
s = 0	i = 0	$i = \frac{\mu(1-s)}{\beta s + \mu}$	$s = \frac{\lambda}{\beta}$	$i = \frac{\beta}{\lambda}$	s = i $s = 1 - i$		
	-	mited Immunity y did we introd			rm, μ R, which did not exist in the nswer.]		
	We assumed	d that some peopl	e will never reco	over from this dis	sease.		
	We assumed that some people who are susceptible will move directly into the "recovered" group, thereby bypassing the "infected" group.						
	Math proble	Math problems are easier to work with if they contain at least three Greek letters.					
	We assumed	d that a fraction o	f the "recovered	d" group would b	ecome susceptible again.		
(e) Suppose	that the equili	brium point in t	the (s,i) phas	e plane is (0.6,	0.1), and that we have modeled a	diseas	

(e) Suppose that the equilibrium point in the (s,i) phase plane is (0.6,0.1), and that we have modeled a disease for a city of 10 million people. What is the implication of this equilibrium? [Use specific numbers, and state your answer clearly with complete sentences.]

2. (24 points) Above each of the phase planes below write the letter corresponding to the system of differential equations represented by the phase plane. On each phase plane pictured, <u>indicate all the null clines</u> (please make them **dark** enough to see easily), and in each region draw directional arrows to indicate the direction of the flow.

[Pictures of phase planes are missing.]