Math 31L Lab Quiz \#4

Blake, Fall 1999

Name: \qquad

1. (15 points) Suppose we use the differential equation $\frac{d W}{d t}=0.05 W-6000$ to model the growth of a company, where $W(t)$ represents the company's net worth at year t.
(a) What does the factor 0.05 represent? [Pick one answer.]
\qquad The prime interest rate.
____ The interest charged by the bank on loans made to the company.
____ The instantaneous rate of change of the company's net worth.
\qquad The average growth rate of the economy during the time in which we use the model.
(b) What does the factor 6000 represent? [Pick one answer.]
\qquad The company's fixed annual expenses. \qquad The equilibrium value of W.
\qquad The initial investment. \qquad None of these.
(c) How large must the initial value of W be to ensure that the company will grow over time? You must justify your answer.
(d) Circle every expression for $W(t)$ below which is a solution to this differential equation.

$$
\begin{array}{ll}
W(t)=120,000+e^{-0.05 t} & W(t)=120,000+e^{-0.05 t} \\
W(t)=120,000-10,000 e^{0.05 t} & W(t)=120,000+10,000 e^{0.05 t} \\
W(t)=6,000+e^{0.05 t} & W(t)=6,000+e^{-0.05 t} \\
W(t)=120,000 & W(t)=e^{0.05 t}
\end{array}
$$

2. (5 points) Suppose now that $\frac{d W}{d t}=\mu W-6000, \mu(t)=0.05+.03 \sin \left(\frac{\pi}{2} t+\frac{\pi}{4}\right)$, and $W(0)=140,000$. Use Euler's method with $\Delta t=0.3$ to estimate $W(0.3)$. For credit you must show your computations and any formulas that you use.
