Math 31L Lab Quiz #4

Blake, Fall 1997

Name: ____

Consider the differential equation, $W'(t) = \mu W(t) - E$, which models the net worth of a company.

- 1. (5 points) What does μ represent? [Pick one answer below.]
 - (a) The growth rate of the economy.
 - (b) The initial value of W.
 - (c) The interest the company must pay on borrowed funds.
 - (d) The steady state value of W.
- 2. (5 points) What does the *E* represent? [Pick one answer below.]
 - (a) The initial capital required to insure that the net worth will approach an Equilibrium.
 - (b) The annual *Expenses*.
 - (c) The amount of *Energy* required to achieve a positive rate of growth.
 - (d) The annual *E*arned income of the company.
 - (5) Extraneous capital.

3. (5 points) In the case that μ and E are constant, what is the significance of the number $\frac{E}{\mu}$?

[Pick one answer below.]

- (a) It is the number of years required for the company to break even on its initial investment.
- (b) The value of W'(t) will always be between $-\frac{E}{\mu}$ and $\frac{E}{\mu}$.
- (c) The initial capitalization must be at least $\frac{E}{\mu}$ to ensure continued growth.
- (d) It is the scientific representation of the emu.

4. (6 points) To create the approximations below, the same value was used for E in each graph, and the same value was used for W(0) in each graph. Match each choice of μ below with the appropriate Euler's method plot of W(t).

(a)
$$\mu = .04$$
 (b) $\mu = .04 + (.03)sin(\frac{t\pi}{2})$ (c) $\mu = .04 + (.03)sin(\frac{t\pi}{2} + \pi)$

5. (9 points) Consider the differential equation

$$W'(t) = \mu(t)W(t) - 300, \quad W(0) = 8000.$$

Assume that $\mu(t) = .04 + (.03) \cos(\frac{t\pi}{2} + \pi)$. Suppose we use Euler's method with $\Delta t = .2$ to generate approximate values of W(t). Compute the approximation for W(.4). You must show each step of your work clearly.