Math 31L Quiz \#2 (Lab 4, part 1)

Blake, Fall 1996
Name \qquad

1. (6 points) In applying Euler's method we use the formula $y_{k}=y_{k-1}+s l o p e_{k-1} \Delta t$.
(a) [Multiple Choice] The term, slope $_{k-1} \Delta t$, measures...
(i) the running slope of the curve.
(ii) the y-value at step k.
(iii) the y-value at step $k-1$.
(iv) the vertical rise from step $k-1$ to step k.
(v) the horizontal change from step $k-1$ to step k.
(b) In part (a) you picked the description of what the expression, slope $_{k-1} \Delta t$, measures. Show mathematically why your answer to (a) must be true.
2. (8 points) Assume that $\frac{d y}{d t}=y^{2}+y$ and $y_{0}=y(0)=3$. Suppose that we use Euler's method with $\Delta t=\frac{1}{2}$ to approximate the graph of $y(t)$. Compute the coordinattes of the approximating points $\left(t_{1}, y_{1}\right)$ and $\left(t_{2}, y_{2}\right)$. Be sure to show all your work.

$$
\begin{array}{rlrl}
\text { Answers: } & & \left(t_{1}, y_{1}\right) & =(\quad, \quad) \\
& \left(t_{2}, y_{2}\right) & =(\quad, \quad)
\end{array}
$$

3. (6 points) The diagram on the right shows the graph of $y=f(t)$. Suppose that instead of having the graph, we knew the starting point, $\left(t_{0}, y_{0}\right)=(2,1)$, and the value of $\frac{d y}{d t}$ at any point. Show on the diagram the points $\left(t_{1}, y_{1}\right)$ and $\left(t_{2}, y_{2}\right)$ that Euler's method would produce. Leave some evidence as to why you chose the points that you indicate.

