Math 31L Quiz #2 (Lab 4, part 1)

Blake, Fall 1996

- 1. (6 points) In applying Euler's method we use the formula $y_k = y_{k-1} + slope_{k-1} \Delta t$.
 - (a) [Multiple Choice] The term, $slope_{k-1}\Delta t$, measures...
 - (i) the running slope of the curve.
 - (ii) the y-value at step k.
 - (iii) the y-value at step k-1.
 - (iv) the vertical rise from step k-1 to step k.
 - (v) the horizontal change from step k-1 to step k.
 - (b) In part (a) you picked the description of what the expression, $slope_{k-1}\Delta t$, measures. Show mathematically why your answer to (a) must be true.

2. (8 points) Assume that $\frac{dy}{dt} = y^2 + y$ and $y_0 = y(0) = 3$. Suppose that we use Euler's method with $\Delta t = \frac{1}{2}$ to approximate the graph of y(t). Compute the coordinates of the approximating points (t_1, y_1) and (t_2, y_2) . Be sure to show all your work.

Answers:
$$(t_1, y_1) = ($$
, ,)

$$(t_2, y_2) = (\qquad , \qquad)$$

3. (6 points) The diagram on the right shows the graph of y=f(t). Suppose that instead of having the graph, we knew the starting point, $(t_0,y_0)=(2,1)$, and the value of $\frac{dy}{dt}$ at any point. Show on the diagram the points (t_1,y_1) and (t_2,y_2) that Euler's method would produce. Leave some evidence as to why you chose the points that you indicate.

