Math 31L Lab Quiz \#3

Blake Fall 1998
Name: \qquad

1. (22 points) Consider the differential equations below, with the indicated initial conditions.

$$
\frac{d y}{d t}=-2 y+5 w ; \quad \frac{d w}{d t}=2 y-5 w ; \quad y(0)=8 \text { and } w(0)=13
$$

(a) Show that $y(t)+w(t)$ must be constant. Find the constant.
(b) Find $y(t)$. Be sure to show all of your work. Unsupported answers will receive no credit.
(c) Find $w(t)$.
2. (8 points) Here is the same system of differential equations as in problem 1:

$$
\begin{aligned}
& \frac{d y}{d t}=-2 y+5 w ; \quad \frac{d w}{d t}=2 y-5 w \\
& y(0)=8 \text { and } w(0)=13 .
\end{aligned}
$$

(a) Eventually, $y(t)$ and $w(t)$ approach equilibrium. Show how you can find the equilibrium values without solving the differential equations for $y(t)$ and $w(t)$.
(b) Now use your solutions for $y(t)$ and $w(t)$ from part 1 to find the equilibrium values of $y(t)$ and $w(t)$.

