Math 31L Lab Quiz \#2
 Chemical Rates Lab

Blake, Fall 2001
Name: \qquad

1. (15 points) (a) Solve the following differential equations for $y(t)$ and $w(t)$. You must show all of your work clearly. Unsupported answers will receive no credit.

$$
\frac{d y}{d t}=3 w, y(0)=5 ; \quad \frac{d w}{d t}=-3 w, w(0)=10
$$

(b) What is the equilibrium value of y ? You must show work to support your answer.
2. (15 points) Consider the differential equations below, with the indicated initial conditions.

$$
\frac{d y}{d t}=-5 y+7 w ; \quad \frac{d w}{d t}=5 y-7 w ; \quad y(0)=20 \text { and } w(0)=16
$$

(a) Explain clearly why $y(t)+w(t)$ must be constant. What is the constant?
(b) To find $y(t)$ in terms of t, the first step would be to find a differential equation involving $\frac{d y}{d t}$ which we can solve easily with "z-substitution." Do that now; i.e., produce an expression for $\frac{d y}{d t}$ which we can solve easily. Be sure to show all of your work. Do not solve the differential equation that you give as the answer to this problem.
(c) The function, $y(t)$, that is part of the solution to the system above is $y(t)=21-e^{-12 t}$. Find $w(t)$ in terms of t.
(d) Compute the equilibrium value of y two different ways.

Without using the solution given in part (c) above:

Another way:

