Math 31L Quiz \#4

Blake, Fall 1996
Name

1. (6 points) The graph to the right is the graph of $f^{\prime}(t)$. Among the graphs below are the graphs of $f(t)$ and $f^{\prime \prime}(t)$. [All of the ranges on the axes are the same from graph to graph.] Indicate which graph is $f(t)$ and which is $f^{\prime \prime}(t)$.
[The graphs were physically pasted on this page.]
2. (4 points) Suppose g is a differentiable function and that its derivative, g^{\prime}, has exactly two zeros. What are all of the possibilities for the number of zeros that g could have? Draw an example for each case.
3. (3 points) Suppose that a function f is differentiable and that f has exactly two zeros. What are all of the possibilities for the number of zeros that f^{\prime} could have? Draw an example for the least and most.
4. (3 points) Suppose that h is a differentiable function of t and that its derivative, h^{\prime}, has a zero at $t=4$ and no other zeros. How many zeros could f have to the right of $t=4$? Explain your answer.
5. (4 points) Suppose that f, f^{\prime}, and $f^{\prime \prime}$ exist at all values of x. Suppose, also, that f^{\prime} has a local maximum at $x=1$. Circle every statement below which must be true.
f has a maximum at $x=1$.
f has a minimum at $x=1$.
f has a zero at $x=1$.
f^{\prime} has a zero at $x=1$.
$f^{\prime \prime}$ has a zero at $x=1$.
f has an inflection point at $x=1$.
f^{\prime} has an inflection point at $x=1$.
$f^{\prime \prime}$ has an inflection point at $x=1$.
f is steeper at $x=1$ than at nearby points.
f is flatter at $x=1$ than at nearby points.
