Notes on Simpson's Rule

Background

The idea of Simpson's Rule is to approximate a definite integral $\int_{a}^{b} f(x) d x$ as follows:

1. Subdivide the interval $[\mathrm{a}, \mathrm{b}]$ into n subintervals. Make sure n is even.
2. Corresponding to the usual $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$ notation for the endpoints of the subintervals of $[a, b]$ (i.e., $x_{k}=a+k \Delta x$, for $k=0,1,2, \ldots$), we introduce y_{0} for $f\left(x_{0}\right), y_{1}$ for $f\left(x_{1}\right)$, etc.
3. Construct a parabolic arc over each consecutive pair of subintervals. Use the Fundamental Theorem of Calculus to compute the area under each parabolic arc separately, then sum these $\frac{n}{2}$ areas to approximate $\int_{a}^{b} f(x) d x$.
4. The result of step (3), after simplification, is the following approximation, S_{n}, of $\int_{a}^{b} f(x) d x$ given by Simpson's Rule using n (where n is even) subintervals:

$$
\mathbf{S}_{n}=\frac{\Delta x}{3}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+2 y_{4}+4 y_{5}+\ldots+2 y_{n-2}+4 y_{n-1}+y_{n}\right)
$$

Note the 1-4-2-4-2-4...-2-4-1 pattern of the coefficients. In the special case of using only two subintervals, we have $\mathrm{S}_{2}=\frac{\Delta x}{3}\left(y_{0}+4 y_{1}+y_{2}\right)$.

Example: We'll use Simpson's Rule with $\mathrm{n}=4$ to approximate $\ln 2=\int_{1}^{2} \frac{1}{x} d x$.
$\Delta x=\frac{2-1}{4}=\frac{1}{4} . \quad x_{0}=1, x_{1}=\frac{5}{4}, x_{2}=\frac{6}{4}, x_{3}=\frac{7}{4}, x_{4}=\frac{8}{4}=2$.
And because $f(x)=\frac{1}{x}$, we get: $y_{0}=1, y_{1}=\frac{4}{5}, y_{2}=\frac{4}{6}, y_{3}=\frac{4}{7}, y_{4}=\frac{1}{2}$.
Thus, $\mathrm{S}_{4}=\frac{\frac{1}{4}}{3}\left(1+4\left(\frac{4}{5}\right)+2\left(\frac{4}{6}\right)+4\left(\frac{4}{7}\right)+\frac{1}{2}\right) \approx 0.69325$.
When we check $\ln 2$ on the calculator, we see that $\ln 2 \approx 0.69314$; i.e., Simpson's Rule with only 4 subintervals was quite a good approximation in this case.

Note on the presentation in the textbook
In you look in the textbook you'll see that Simpson's Rule is given as a weighted average of the Midpoint Rule (MR) and the Trapezoid Rule (TR). In particular, if we divide [a, b] into N subintervals, then

$$
\mathrm{S}_{\mathrm{N}}=\frac{2 \mathrm{MR}+\mathrm{TR}}{3} .
$$

To reconcile the results of the formula I gave you in class with the results of the formula given in the textbook, you have to take $\mathrm{n}=2 \mathrm{~N}$. In other words, the amount of arithmetic required is about the same either way. I presented the S_{n} formula in class, because that's the one Simpson derived, and the associated argument seems more motivated to me.

