Oscillations

We saw that there were several ways we can approach the $\mathrm{DE} \frac{d^{2} y}{d t^{2}}=-y$.

- We might guess an answer by thinking about derivatives we know.
- Realizing what this DE says about acceleration (i.e., it's in the opposite direction of the current position), we deduce it's describing an oscillation.
- Although we didn't pursue this approach in this course, one might use complex numbers; e.g., if $y=\mathrm{A} e^{i t}$, then $\frac{d y}{d t}=i y$, and $\frac{d^{2} y}{d t^{2}}=-y$. The connection between this approach and oscillations is given by Euler's formula: $e^{i \theta}=\cos$ $\theta+i \sin \theta$.
- We could use series to solve this DE, just as we did a similar initial value problem in lab.

Here's the general result:

If $\frac{d^{2} y}{d t^{2}}=-\omega^{2} y$ [where ω is a constant], then the general solution is

$$
y(t)=A \cos (\omega t)+B \sin (\omega t)
$$

Example: In an L-C electrical circuit, we get the following DE:

$$
L \frac{d^{2} Q}{d t^{2}}+\frac{1}{C} Q=0
$$

In this problem, L and C are constants (giving inductance and capacitance), and $Q(t)$ is the electrical charge at time t. We can put this DE in the form above, and then write the general solution.

$$
\frac{d^{2} Q}{d t^{2}}=-\frac{1}{L C} Q
$$

The general solution is $Q(t)=A \cos \left(\frac{1}{\sqrt{L C}} t\right)+B \sin \left(\frac{1}{\sqrt{L C}} t\right)$.
If we had a value for $Q(0)$, we could determine the value of the constant A.
If we had a value for $Q^{\prime}(0)$, we could determine the value of the constant B (by differentiating $Q(t)$ and plugging in 0 for t.)

