Properties of Logarithms

Assume that b is a constant greater than 1 . Let $y=\log _{b}(x)$. This logarithm function is by definition the inverse of the function $y=b^{x}$. The domain of $y=\log _{b}(x)$ is $(0, \infty)$. The range is \mathbb{R}.

In the statements below, assume that x and y are arbitrary positive numbers.

1. $\log _{b} b=1$
2. $\log _{b} 1=0$
3. If $0<x<1$, then $\log _{b} x<0$.
4. If $x>1$, then $\log _{b} x>0$.
5. $\log _{b}(x y)=\log _{b} x+\log _{b} y$

Notes:

1. In the case the base, b, is the number e, we write $\ln x$ for $\log _{e} x$. A logarithm with base e is called the "natural logarithm" for reasons we'll see later in the course.
2. The base of a logarithm is usually chosen to be greater than 1 ; however, any positive constant other than 1 can be used. If the base b is between 0 and 1 , then the graph of $y=\log _{b}(x)$ will look 10. $b^{\log _{b} x}=x$, for all $x>0$. like the one shown to the right.
