Math 31L Homework Assignment Linear Approximations

1. Let $f(x)=\frac{1}{x}$.
(a) Compute the value of $f^{\prime}(1)$ from the definition of the derivative of f at 1 .
(b) Find the tangent line approximation to $f(x)$ near $x=1$.
2. Let $f(x)=\sqrt{1+x}$.
(a) Compute the value of $f^{\prime}(0)$ from the definition of the derivative of f at 0 . [Hint: use multiplication by the conjugate to rationalize the numerator of the difference quotient.]
(b) Find the local linearization of $f(x)$ near $x=0$.
(c) Use your local linearization to approximate $\sqrt{1.01}$.
(d) Would you expect your approximation in part (c) to be too large or too small? Explain your answer. Also, use your calculator to estimate the actual error and draw a picture to explain the situation.
3. (a) Show that $1-x$ is the local linearization of $\frac{1}{1+x}$ near $x=0$.
(b) Use your answer in part (a) to show that, for values of x near $0, \frac{1}{1+x^{2}} \approx 1-x^{2}$
4. Suppose that f is concave up for all x, and Δx is a small positive number. Which is larger, $f(1+\Delta x)$, or $f(1)+f^{\prime}(1) \Delta x$? Explain your answer with the help of a picture.
5. Suppose f is concave down for all x, and Δx is a small positive number. In each of the following pairs, which number is the larger? Give a reason for your answer.
(a) $f^{\prime}(5)$ and $f^{\prime}(6)$
(b) $f(5+\Delta x)$ and $f(5)+f^{\prime}(5) \Delta x$
6. Suppose that f is the curve pictured at the right. The number a is constant. Draw the graph of the function
$L(x)=f(a)+f^{\prime}(a)(x-a)$ on the same diagram.

7. (a) Why would you expect the following equation to have a solution near 0 ?

$$
x+\sin (x)-.01=0
$$

(b) Replace $\sin (x)$ with its local linearization at $(0,0)$, and then use this new equation to approximate a solution to the first equation.
(c) Now use your calculator to find a solution to of the original equation accurate to 8 decimal places. How much error was in your approximation done in part (b)?

