Chem Lab Follow-up

Here is the model for the reversible reaction:

$$
\begin{aligned}
& \frac{d[\mathrm{~A}]}{d t}=-k_{1}[\mathrm{~A}]+k_{2}[\mathrm{~B}] \\
& \frac{d[\mathrm{~B}]}{d t}=k_{1}[\mathrm{~A}]-k_{2}[\mathrm{~B}] \quad \text { with the conditions that }[\mathrm{A}](0)=\mathrm{A}_{0} \text { and }[\mathrm{B}](0)=\mathrm{B}_{0}
\end{aligned}
$$

Notes: $[\mathrm{A}](0)$ represents the value of the function $[\mathrm{A}](t)$ at time $t=0$.
The symbol A_{0} represents a "known" constant (not an "arbitrary constant").
If we use the same method we used in lab to solve the problems in Part II and Practice Problem \#2, we can show that the following are the general solutions.

$$
\begin{aligned}
& {[\mathrm{A}](t)=\frac{k_{1} \mathrm{~A}_{0}-k_{2} \mathrm{~B}_{0}}{k_{1}+k_{2}} e^{-\left(k_{1}+k_{2}\right) t}+\frac{k_{2}}{k_{1}+k_{2}}\left(\mathrm{~A}_{0}+\mathrm{B}_{0}\right)} \\
& {[\mathrm{B}](t)=\frac{k_{2} B_{0}-k_{1} \mathrm{~A}_{0}}{k_{1}+k_{2}} e^{-\left(k_{1}+k_{2}\right) t}+\frac{k_{1}}{k_{1}+k_{2}}\left(\mathrm{~A}_{0}+\mathrm{B}_{0}\right)}
\end{aligned}
$$

Part 3

Steps (a) and (b): Let $\bar{a}=\lim _{t \rightarrow \infty}[\mathrm{~A}](\mathrm{t})$ and let $\overline{\mathrm{b}}=\lim _{t \rightarrow \infty}[\mathrm{~B}](\mathrm{t})$. Compute \bar{a} and $\overline{\mathrm{b}}$.

Step (c): In the DEs at the top of the page, substitute the values you computed for \bar{a} and \bar{b} in place of $[\mathrm{A}](t)$ and $[\mathrm{B}](t)$. What do you get for the values of $\frac{d[\mathrm{~A}]}{d t}$ and $\frac{d[\mathrm{~B}]}{d t}$? Why does this make sense?

Step (d): Using your values for \bar{a} and $\overline{\mathrm{b}}$ compute $\bar{a}+\overline{\mathrm{b}}$. Why does this make sense?

Step (e): Show how to find the values of \bar{a} and \bar{b} without solving the DEs.

Step (f): Compare the graphs on the handouts.

