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Series #1: Limits of Partial Sums

Before beginning our study of infinite sums we first need to discuss briefly the
convergence of sequences of real numbers. A sequence is just a list of numbers in
a given order. Here are three examples:

2, 4, 6, 8, 10, 12, . . .

1, −1, 1, −1, 1, −1, . . .

1, 11
2
, 13

4
, 17

8
, 115

16
, . . .

Sometimes we give names to the terms in a sequence by letting c1 denote the first
term, c2 denote the second term, and so forth. We represent the entire sequence
by {cn}

∞

n=1, where n is the index which runs from 1 to ∞, indicating that the
successive terms of the sequence are c1, c2, c3, . . .. In the case of the first sequence
above, cn = 2n.

Definition. We say that a sequence {cn}
∞

n=1 converges to a limit L if we can
make cn as close to L as we like by choosing n large. We shall sometimes use the
notation

lim
n→∞

cn = L

to indicate that the sequence {cn}
∞

n=1 converges to a limit L.

Let’s see which of the sequences given above converge. The first sequence can’t
get close to any one number because each term is larger by 2 than the preceeding
term. The second sequence can’t get close to any one number because the terms
oscillating between +1 and −1. The third sequence is

cn = 2 −
(

1
2

)n−1

Since (1
2
)n gets smaller and smaller as n get larger, we see that cn approaches the

limit L = 2.

Example 1. Here are some more examples of convergent sequences.

(a) The sequence cn = 1
n

converges to 0.

(b) The sequence cn = 5 − 42−n + 6
n

converges to 5.

(c) The sequence

cn =

(

2 +
1

n

) (

7 −
1

n2

)

−

(

5 − 2−n +
6

n

)2
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converges to −11.

(d) The sequence

cn =
4 + 7n

2 + 3n
is a little more difficult. Divide numerator and denominator by n to obtain

cn =
4
n

+ 7
2
n

+ 3

Now we can see that as n gets large this sequence approaches 7
3
.

Now we are ready to turn our attention to series. A series is an infinite sum

a1 + a2 + a3 + a4 + a5 + . . .(1)

We have already seen examples of such sums in our study of probability. Since
it is awkward to write out sums (whether finite or infinite), we shall use the sum-
mation notation

m
∑

j=n

aj = an + an+1 + . . . + am−1 + am.

Using this notation, the infinite sum in (1) would be written

∞
∑

j=1

aj.

There is a practical and theoretical problem with infinite sums: we cannot compute
a sum by adding one term after another if there are infinitely many terms. We
need another way to make sense of and to compute infinite sums. For this reason,

we introduce partial sums and limits. We define the nth partial sum of this series
to be the sum of the first n terms

Sn =
n

∑

j=1

aj

of the series. Now we can say what we mean by the infinite sum (1).

Definition. We say that the infinite sum (1) converges if the sequence of partial
sums {Sn} converges to a finite limit S as n gets larger. In this case, we define

∞
∑

j=1

aj = S.
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If the sequence of partial sums does not converge to a limit, we say that the series
diverges.

This definition makes sense because it says that, as we add more and more terms
to the sum, if we get closer and closer to a number S, then we define this number
S to be the sum of the series.

Example 2. Let r 6= 1 and define aj = rj. This is the geometric series which

we studied in the probability laboratory. The nth partial sum is

Sn = 1 + r + r2 + . . . + rn−1 =
1 − rn

1 − r

If |r| < 1, we can see that the sequence of partial sums Sn converges to 1
1−r

.
Therefore, by definition, if |r| < 1, the series converges and

1 + r + r2 + . . . + rn−1 + . . . =
1

1 − r

If r = 1, the nth partial sum is

Sn = 1 + 1 + 12 + . . . + 1n−1 = n

so the sequence of partial sums does not converge. Thus the geometric series does
not converge if r = 1. If fact, the geometric series does not converge for any r

satisfying |r| ≥ 1 (see problem 2).

Example 3. Consider the series

∞
∑

j=1

1

j(j + 1)
=

1

2
+

1

6
+

1

12
+

1

20
+ . . . .(2)

Since
1

j(j + 1)
=

1

j
−

1

j + 1
,

we can compute the nth partial sum explicity.

Sn =

(

1

1
−

1

2

)

+

(

1

2
−

1

3

)

+

(

1

3
−

1

4

)

+ . . . +

(

1

n
−

1

n + 1

)

= 1 −
1

n + 1
.
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Since Sn = 1− 1
n+1

we see that the sequence of partial sums converges to 1. Thus,
the series (2) converges and

∞
∑

j=1

1

j(j + 1)
= 1.

Example 4. In Example 3 you may have been tempted to perform an infinite
cancellation on the series ( 1

1
− 1

2
) + (1

2
− 1

3
) . . .. The following example shows that

such cancellation can give incorrect results. Consider the series

(5 − 5
1

2 ) + (5
1

2 − 5
1

3 ) + (5
1

3 − 5
1

4 ) + . . . + (5
1

j − 5
1

j+1 ) + . . .

The nth partial sum is

Sn = 5 − 5
1

n+1

which converges to 4 as n gets larger and larger. The infinite cancellation gives 5,
which is incorrect.

The series in Examples 2, 3, and 4 are very special. Unfortunately, for most

series there is no way to calculate a simple formula for the nth partial sum, Sn.
If we can’t calculate Sn, how are we ever going to be able to tell whether Sn

converges? Good question! If we can somehow determine that a series converges,
we can approximate the sum by a partial sum with high n. We shall see in the next
lecture that there are some tests which one can apply to a series which guarantee
that it converges if the test comes out positive. For the moment, we raise the
question of how large the terms aj can be if the sum is finite. We will see that
“most of the terms ” must be small in the following sense: if

∑

∞

j=1 aj, then the
sequence a1, a2, a3, . . . must converge to zero. For any positive integer m, we can
write

am = Sm − Sm−1

= (S − Sm−1) − (S − Sm).

As m gets larger and larger, both terms on the right get smaller and smaller (since,
for a convergent series, the partial sums converge to the sum). Thus am gets smaller
and smaller as m gets larger and larger.

The nth Term Test for Convergence. If a series
∑

∞

j=1 aj converges, then the

sequence of terms, {aj}, must converge to 0.
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Example 5. This condition can sometimes be used to show that series do not
converge. Consider the series

∞
∑

j=1

(−1)j

The jth term is aj = (−1)j. Since the sequence {aj} does not converge to 0 (it
oscillates between +1 and −1), the series can not converge.

The condition that {aj} converges to 0 is a necessary condition for a series to
converge. That is, if the series converges, it must be true. However, it is not a
sufficient condition for convergence. That is, just because {aj} converges to 0 does
not prove that the series converges. Here is an example.

Example 6 (The harmonic series). Consider the series
∞

∑

j=1

1

j
.

Notice that aj = 1
j
, so it is certainly true that the sequence {aj} converges to 0.

However, we shall see that the series does not converge. We cleverly group the
terms of the series in the following way:

1 + 1
2

+ 1
3

+ 1
4

+ 1
5

+ 1
6

+ 1
7

+ 1
8

+ 1
9

+ 1
10

+ 1
11

+ 1
12

+ 1
13

+ 1
14

+ 1
15

+ 1
16

+ . . .

= 1 + 1
2

+ {1
3

+ 1
4
} + {1

5
+ 1

6
+ 1

7
+ 1

8
} + {1

9
+ 1

10
+ 1

11
+ 1

12
+ 1

13
+ 1

14
+ 1

15
+ 1

16
} + . . .

≥ 1 + 1
2

+ 1
2

+ 1
2

+ 1
2

+ . . .

This shows that the sequence partial sums increases without bound, so the series

does not converge. Note that the series diverges even though the sequence of
terms approaches zero.

A Note on Notation. We have been using the the letter j for the index in sums:
m

∑

j=n

aj = an + an+1 + . . . + am−1 + am.

If we used the letter k for the index, the sum
m

∑

k=n

ak = an + an+1 + . . . + am−1 + am

would still be the same. Thus, there is no difference between the series
∑

∞

j=1
1

j(j+1)

and the series
∑

∞

k=1
1

k(k+1)
except for the name given to the index.
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Problems.

(1) For each of the following sequences, say whether it converges and if it does say
what the limit is.
(a) cn = (3 − 2

n
).

(b) cn = (3 − 2
n
)2.

(c) cn = 3n.

(d) cn = 3n 2
n
.

(e) cn = 2 + (−1)n.

(f) cn = 2 + (−1)n

n
.

(g) cn = (2 − (−1)n

n
)(5 + 17

n
) − 4.

(h) cn = 6−n
2+3n

.

(i) cn = 6−n+3n2

2+3n+15n2 .

(2) By looking at each of the cases, r = 1, r = −1, r > 1, r < −1, show that the
geometric series does not converge if |r| ≥ 1.

(3) Find the sum of the series

∞
∑

k=1

(

3

4

)k

.

(4) Find the sum of the series

∞
∑

k=1

(

7
1

k − 7
1

k+1

)

.

(5) By using the idea in Example 3, show that

∞
∑

k=2

1

k2 − 1
=

3

4
.

(6) We shall show later in the course that the series
∑

∞

j=1
1
j2 converges. Use your

calculator to approximate the sum accurate to two decimal places. Explain how
you decide when you have the required accuracy.

(7) Compute S10, S80, and S700 for the series

4 −
4

3
+

4

5
−

4

7
+ . . .

Do you think that this series has a sum? If so, what do you think it is?
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(8) We showed in Example 6 that the harmonic series
∑

∞

j=1
1
j

diverges. Use your

hand calculator to compute S100 and S200. Using the inequality from the di-
vergence argument in Example 6, determine how large n would have to be so
that Sn is greater than 10. What does this tell you about using a calculator to
determine whether a series converges or diverges?

(9) Suppose that we change every other sign in the harmonic series to a minus sign
obtaining the series

1 −
1

2
+

1

3
−

1

4
+ . . .

We shall prove later in the course that this new series converges. Use partial
sums to approximate the sum. How many terms do you think you need to get
2 decimal place accuracy? Why do you think that the behavior of these partial
sums is so different from the partial sums of the harmonic series?

(10) Use the necessary condition to prove that the following series do not converge:

(a)
∑

∞

j=1 2j .

(b)
∑

∞

j=1 sin (π
4 j).

(c)
∑

∞

k=1(1 + 1
k
).

Answers to Selected Problems.

1. (g) converges to 6; (h) converges to − 1
3 ; (i) converges to 1

5 .

3. 3.

7. S10 = 3.041, S80 = 3.129, S700 = 3.140.


