
Duke University Calculus Laboratory 127

Fourier Analysis of a Musical Sound

Purpose
 In this lab you will learn why the same note played on different musical instruments
sounds different.  The key to this understanding is the use of Fourier series to analyze
musical sounds.

Preview
 This lab is divided into four parts.  Part one deals with the physical nature of a sound
wave and with its perception.  Part two deals with the distinguishing characteristics of
musical sounds.   In parts three and four you will use discrete Fourier analysis to find
the harmonic structure of a musical sound.

Part 1
 .  Sounds are variations in pressure which propagateThe Physical Origin of Sound
through the air (or other media such as water).  We will illustrate how such variations
arise by thinking about the motion of a plucked guitar string.  As the string moves up
(Figure 1), it pushes air molecules in front of it, thereby making the air more dense
above the string and less dense below the string.  Higher density means higher air
pressure, so the air pressure will be a little higher than average above the string and a
little lower below.  As the string comes back down (Figure 2), it compresses the air
molecules beneath it that have rushed in to fill the low pressure area (pictured in
Figure 1) and creates a new low pressure area above the string.

 Figure 1 Figure 2
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  As the string continues to vibrate, alternate high and low pressure areas propagate
away from the string (Figure 3).

Figure 3

 If one measured the pressure,  as a function of time, , at some point near theT ß >
string, one would expect    to be a periodic function (since the guitar string isT Ð>Ñ
vibrating periodically) which oscillates above and below normal pressure.  Thus, we
could write the function as

T Ð>Ñ œ + � Z Ð>Ñ!

where  is the deviation from the normal pressure .  Sounds produced by otherZ Ð>Ñ +!
means (e.g., speech or thunderclaps) would usually produce very complicated
functions,  and , which would not necessarily be periodic.T Ð>Ñ Z Ð>Ñ

 The Perception of Sound.  When the variations in pressure arrive at the ear, they
propagate down the ear canal and set the tympanic membrane (the ear drum) in
motion.  This motion causes the three bones of the middle ear to oscillate.  The
vibrations of the third bone cause fluid movement in the cochlea (inner ear), and this
fluid movement causes regions of a membrane (called the basilar membrane) to
vibrate.  Neurons (nerve cells) all along the basilar membrane send electrical signals to
the brain in proportion to the local movement of the membrane.  Different pressure
deviation  functions, , at the tympanic membrane cause different patterns ofZ Ð>Ñ
vibration on the basilar membrane, and therefore different patterns of electrical signals
to the brain.  Thus, different sounds (that is, pressure functions) are perceived
differently.

Part 2:  Musical Sounds
 Most musical instruments produce sounds that are periodic in time.  That is, there is
a number, , called the of the sound so that  for all .  Put: Z Ð> � :Ñ œ Z Ð>Ñ >period 
differently, after  units of time the pressure function repeats itself.  For typical:
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musical sounds,  is a very small fraction of a second.  The number of repetitions per:
second, , is called the  of the sound, and you can see that0 frequency

0 œ
"
:

One repetition per second is called a , named after Heinrich Hertz (1857-1894),hertz
the physicist who first broadcast and received radio waves.  Human beings can hear
sounds at frequencies ranging from approximately 20 hertz to 18,000 hertz.
  If the physical action that produces the sound becomes stronger (like plucking a
string harder), then the pressure deviation function  will have larger values.Z Ð>Ñ
These larger variations in pressure cause the vibrations of the three bones in the
middle ear and the vibrations of the basilar membrane to be larger, which in turn cause
the neurons sending signals to the brain to fire at a higher rate.  This process is how we
perceive the size of the pressure changes as the  of the sound.loudness
 The  of a musical sound is defined as its frequency, and by tradition, certainpitch
frequencies are given names and called .  The most widely accepted tuningnotes
system, in place since the mid-nineteenth century, uses the following method to assign
note names to specific frequencies.  The A note (above middle C) is assigned the
frequency 440 hertz.  This is the note you hear from the oboe when an orchestra is
tuning up.   The range of frequencies that either doubles or halves the frequency of a
given note is divided up into 12 steps, and the frequencies at each step are given the
note names A, A#, B, C, C#, D, D#, E, F, F#, G, G#, A,  #  where the symbol  is read
“sharp.”  These steps are chosen so that the ratios of frequencies of adjacent notes are
equal .1

 If you start at any key on a piano and count 12 different keys (black and white) in
either direction,  the twelfth key will have the same note name as the one you started
with, and it will have either half or twice the frequency of the original note.  A note
whose period is half another is said to be one “octave”  above the other.  When you
sing the  scale, the  at the beginning and the  at the end are one octavedo-re-mi do do
apart.  A full-size piano has 88 keys.  (The black keys are the sharps.)  Thus, the

1In practice we choose to make slight deviations from this formula because of the ear's perception of the
different frequencies.
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frequency span of a piano is a little more than 7 octaves.  The highest A note on the
piano (3 white key from the right end)  has a<.  frequency of  3520 hertz.

 1.  The first note on the left end of the piano keyboard is also an A note.  Find its
frequency.
 2.  Using the fact that the ratio of the frequencies between any two successive notes
is constant, find the frequency of the C Anote above the middle .

 It is a common observation that the same note played on different instruments
sounds different.  The reason for this is that the perception of the sound depends not
only on the pitch (that is, the frequency which is determined by the period) but also on
the details of the pressure variation function  as  goes through the period.  NoticeZ Ð>Ñ >
how different the functions  look for flutes, clarinets, bassoons, and trumpets (seeZ Ð>Ñ
page 508 of your textbook).
 Let us suppose that our sound has period .  If the pressure deviation function has:
the simple form of a sine wave of period ,:

Z Ð>Ñ œ , =38 > ß
#
:"  ˆ ‰1

then the sound is called a .  (Musical instruments do not give pure tones, butpure tone
pure tones can be produced electronically.)  To simplify the notation, we will use the
symbol  for the expression = #

:
1 à i.e.,

=
1

´ Þ
#
:

Notice that

Z Ð>Ñ œ + -9=Ð >Ñ � , =38Ð >Ñ" " "= =

is also a (phase shifted) pure tone, since it can be rewritten as    forE =38Ð > � Ñ= 9
appropriate  and  (page 585 of the textbook).  Using the same  as above, we seeE 9 =
that the following function is another simple pressure deviation function with period ::

Z Ð>Ñ œ + -9=Ð# >Ñ � , =38Ð# >Ñ# # #= =  .
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This function repeats a pure tone twice in the same period ; i.e.   is a pure tone: Z Ð>Ñ#
of period  and frequency .  (Note that a function can have many periods; e.g., :

# :
# =38 >

can be view as having period 4  or 6 , as well as the fundamental period 2 .)  In1 1 1
general, for any positive integer, , the pressure deviation function8

Z Ð>Ñ œ + -9=Ð8 >Ñ � , =38Ð8 >Ñ8 8 8= =

repeats a pure tone  times in the same period ;  i.e.,  has period  (and period8 : Z Ð>Ñ :8
:
8 :

8) and  frequency .
 It was the spectacular discovery of Joseph Fourier that  function, , ofevery T Ð>Ñ
period   can be written:

T Ð>Ñ œ + � + -9=Ð8 >Ñ � , =38Ð8 >Ñ! 8 8
8œ"

_"ˆ ‰= =  .

In our musical context,  is the normal pressure, and the sum is , the pressure+ Z Ð>Ñ!
deviation.  Notice that this result shows that  pressure deviation function ofany Z Ð>Ñ
period  can be written as a pure tone of frequency    (corresponding to 1 in the: 8 œ"

:
sum) plus a sum of pure tones whose frequencies are integral multiples of this basic
frequency (the terms with  in the sum).  In music, these pure tones which are8   #
integer multiples of the basic frequency are called  or .  Differentovertones harmonics
musical instruments have different combinations of these overtones in their pressure
deviation functions; hence, they sound different.

Part 3:  Calculations with Fourier Series
 As in your text, we will simplify the notation by assuming that ; that is, we= œ "
assume that the period of the sound is .  From the point of view of Fourier analysis,#1
it is the values of the determine the “timbre” (or “quality”) of aa  b  's and 's which 
musical sound.  Their values represent the relative strength of the individual
harmonics.   For example, the vibrating reed in a clarinet produces relatively weak
even harmonics—that is, etc., are relatively small.+ ß , ß + ß , ß# # % %

 1.  Use your calculator to graph the Fourier polynomial with + œ !ß + œ Þ&ß! "
, œ "ß + œ , œ !ß + œ Þ$ß , œ Þ%ß + œ Þ!$ß , œ Þ!*ß + œ Þ& , œ Þ"'" # # $ $ % % & &      and  .
Make sure your calculator is in radian mode, and use horizontal and vertical graphing
ranges  [0,12] and  [ 1.7, 1.7] respectively.  Notice the relative strength of the�
harmonics, and compare your graph to the graph of the sound of the clarinet pictured
in the textbook on page 464.
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 2.  Use your calculator to graph the Fourier polynomial with + œ �Þ#&ß + œ Þ$#ß! "
, œ Þ!%ß + œ Þ'ß , œ Þ#ß + œ , œ "ß + œ Þ#ß , œ Þ$ß + œ Þ#ß , œ Þ"Þ" # # $ $ % % & &     and  
Change the horizontal and vertical ranges to [0, 24] and [ 2.5, 2.5] respectively.�
Which of the graphs in the section on Fourier series in the textbook does it resemble?

Part 4:  Constructing the Fourier Series from Sound
 As you saw in Part 3, it is a rather easy task to construct the pressure function when
we are given the amplitudes of the individual harmonics.  On the other hand the
reverse problem of coming up with the harmonic structure of a musical sound, when
we know only experimental values of its pressure function, is a more challenging and
more interesting problem.
 Suppose that we measure the values of the pressure function of a musical instrument
playing a particular note.  (We again assume for simplicity that the period of this note
is 2 .)  Below is a graph of the pressure function and a table containing some 1 C
values, measured from the graph at thirteen different times.

 

> �
T > �!Þ � Þ � � � �

1 1� � �$ � �5 4 2 2 3 4 5
6 6 6 6 6 6 6 6 6 6

1 1 1 1 1 1 1 1 1 10
( ) 6 1 5 1.133 2.2 1.367 1.1 4.4 2 2.233 2.8 0.267 0.6 0.6

 Your goal in this part is to find a Fourier polynomial that approximates the given
pressure function—and hence the harmonic structure of the sound.  We will compute
the coefficients for the first four harmonics of .  The table above shows values ofT Ð>Ñ
T Ð>Ñ taken  units apart.1

'

 1.  Write down an integral to show how to compute symbolically.  Now write out+2
the expression for the left-hand sum approximation of the integral, and compute the
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value of this expression by hand.  Your computed value should be about 0.3 .  You�
now have one of the nine numbers we are seeking.

 2.  Explain why using the left-hand sum, or the right-hand sum, or the trapezoid rule
to make the approximation in the last step would all produce the same result in this
case.
 3.  Now use the advanced features of your calculator to do the same computation
again; i.e., enter the values for  and  in a convenient format, such as in “lists,”> T Ð>Ñ
and then use your calculator's list features to compute the left-hand sum without
having to write down the value of each term in the sum.  You should, of course, get the
same value you computed in step 1.

 4.  Repeat the process you used in step 3 to compute the constant term and all the
other coefficients through the fourth harmonic.  (Thus, you will have computed 9
numbers.)  After you compute the coefficients,  graph your Fourier polynomial and
compare it to the original graph.

 5.  In the last step you probably noticed a small descrepancy between your graph and
the orginal graph.  To improve our representation one might try computing more
Fourier coefficients.  Compute the coefficients for the fifth, sixth, and seventh
harmonics, and then make a new graph.  Does your representation match the original
graph now?  If not, try replacing the value you computed for  with 0, and graph the+&
Fourier representation again.  Does it match the original function now?

 6.  You have just seen that our numerical approximation of the value of  was not a+&
good one.  Explain why continued approximations of coefficients for higher harmonics
will not be reliable based on these data.

 7.  In this last step you will explore the effects that the different harmonic vibrations
have on the fundamental.  For this exercise it is highly recommended that you use the
following web site:
  http://webphysics.ph.msstate.edu/javamirror/ntnujava/sound/sound.html
Although this exercise can be done with your calculator, it would be tedious to do so.
On the other hand you will likely find the web site fun.  It will allow you easily to
produce the required graphs, and if you use a computer with speakers, you can actually
listen to the sound which corresponds to the pressure function.
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 After your computer loads the above web page, you will see a graph and two sets of
sliders.  The blue sliders control the 's and the green sliders the 's in the Fourierb  a
polynomial.  (There is one exception:  the first blue slider, , applies a vertical,!
stretching factor to the function.  Thus, you can ignore the first blue slider.)  Use the
mouse to move the sliders and watch the changes in the graph.  The values of the
coefficients can be seen in a window above the graph.  If you right click on a slider, it
will return to 0 or slide to 1.  The play button (above the graph) will allow you to hear
the sound.

 8.  After you've experimented for a while, return all sliders to 0.  Consider the
function    As  ranges from 1 to 1,  describe0Ð>Ñ œ =38Ð>Ñ � =38Ð$>Ñ � , =38Ð&>ÑÞ , �"

$ & &

the changes in the pressure function.  You should include some graphs in your
description. (Note that the  blue slider is .sixth , Ñ5

 9.  Repeat the experiment in step 4 with the function   0Ð>Ñ œ -9=Ð>Ñ � + -9=Ð"!>ÑÞ"!

Report
 Your report should include your responses to all the questions and sketches of all the
graphs.  Be sure to show all your calculations and clearly label all of your graphs.

Joseph Fourier (1768-1830) was a French mathematician who was also involved in
politics and conducted research on antiquities.  He invented Fourier series when trying
to understand and predict the flow of heat in metal bars.  His work was rejected by the
French Academy in 1807 and was eventually published as Théorie Analytic de la
Chaleur in 1822.  Often mathematics invented for one purpose is extremely useful in
other contexts, just as Fourier's work on heat flow led to an understanding of musical
sounds.  Fourier's calculations, ideas, and questions, were the foundation of the branch
of mathematics now called harmonic analysis.


