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Of all the areas in collegiate mathematics, Calculus has received the most interest and investment in the use of technology. Initiatives around the world have introduced a range of innovative approaches from programming numerical algorithms in various programming languages, to use of graphic software to explore calculus concepts, to fully featured computer algebra systems such as Mathematica( (Wolfram Research, 2005), Maple (Maplesoft, 2005), Derive (Texas Instruments, 2005), Theorist (no longer available, replaced by LiveMath, 2005), and Mathcad(MathSoft, 2005). The innovations arose for a wide range of reasons–some because a traditional approach to calculus was considered fundamentally unsatisfactory for many students, others because “technology is available, so we should use it.” Most innovators had a pragmatic approach, trying out new ideas to see if they worked. Some began with a theory that formulated how the enterprise should work, others formulated their theories in the light of successive years of experience.

Technology brought with it new market-driven factors in which large companies cooperated with educators to develop new tools. The first round of materials development produced a competitive situation, often with the main objective to get the materials adopted. The early years of using technology in calculus were characterized by hopeful enthusiasm and based on little documentation about the true success of the new ideas. The system was complex, and the wider effects of the changes would take several years to become apparent. Opinions were many and informed observations few. Over recent years, evaluations of reforms and research on the learning of calculus have begun to provide some answers about the effects of using technology in teaching and learning calculus–effects that may be positive, negative, or neutral.

Our main aim is to report on what this research has to say to the community of mathematicians, educators, curriculum builders, and administrators. We include an analysis of the conceptual learning of calculus to put the research results in perspective. Our chapter addresses the wide range of students with different needs and aspirations who take calculus, the views of mathematicians, and the needs of society in this changing technological age.

In an article addressed to the mathematical community, Schoenfeld (2000) formulated some broad principles about the mathematics education research enterprise. He emphasized that there are no “theorems” in mathematics education that can be used to build up a theory in the way that is familiar to mathematicians, but there are issues of replicability, explanatory power, and predictive power that can be of value in reflecting on teaching and learning mathematics. These issues should be kept in mind when considering the results from research.
The Cultural Contexts of the Calculus

Calculus is a rich subject with a varied cultural history. It serves not only as a basis of mathematical modeling and problem solving in applications, but also as a natural pinnacle of the beauty and power of mathematics for the vast majority of calculus students who take it as their final mathematics course.

Calculus is only 350 years old. But in those three and one-half centuries it has been enriched by new perceptions and belief structures of successive generations, starting with the original conceptions of Leibniz and Newton on infinitesimals and limits. Currently we have a range of modern formal methods, from intuitive dynamic approaches to numerical, symbolic, and graphic approaches, culminating in theories ranging from formal epsilon-delta analysis, which banishes infinitesimals, to nonstandard analysis, which fully endorses them. The result is a wide range of viewpoints as to how the calculus should be conceived and taught. We therefore begin by considering some of these differing views to place our analysis in perspective.

The Views of Mathematicians

During the 1980’s there arose among many mathematicians a growing concern for the quality of student learning in the calculus (Douglas, 1986). This led to the Calculus Reform movement in the United States proposing the integration of technology as one way to make the subject more meaningful to a broad range of students. Other countries, each in its own way, worked to integrate technology into their learning programs and their cultures. For example, periodic reviews of the curriculum in France turned attention to the use of technology in the transition to university mathematics (Artigue, 1990) and, in Britain, the Mathematics Association (1992) focused on the use of computers in the classroom.

The range of aspirations for a calculus reform course is exemplified by the following list of desirable characteristics summarized from the Mathematical Association of America’s Subcommittee on Calculus Reform And the First Two Years (CRAFTY) (Roberts, 1996):

· Students should leave the course with a “sense of the role that calculus has played in developing a modern world view, the place it holds in intellectual as well as scientific history, and the role it continues to play in science.” (Roberts, 1996, p. 1)

· Students and instructors alike should find the applications real and compelling.

· Instructors should have high expectations for all students and should employ pedagogical strategies (e.g., cooperative learning, laboratory experiences) that engage students’ interest and enable most to succeed.

· Students should learn to read and write carefully reasoned arguments at a level appropriate for their stage of development—intuitive at first, with rigor coming later for those who need it.

The CRAFTY committee observed:

A calculus course cannot be modernized simply by finding a way to make use of graphing calculators or computers. Neither should a modern course omit these tools where their use contributes to the goals of the course. Spelling checkers … will not make a good writer out of a poor writer, and computer algebra systems will not make a good mathematician out of a poor one, but efficient practitioners of any art will make intelligent use of all the tools that are available. (Roberts, 1996, p. 2)

The Calculus Reform provoked a vigorous debate among mathematicians. Some (e.g., Wu, 1996; MacLane, 1997) put the case for rigor and precision in mathematical thought, while others (e.g., Mumford, 1997) downplayed the emphasis on formal proof and advocated meaningful experiences to give insight into essential ideas. A vigorous correspondence ensued in the Notices of the American Mathematical Society, advocating a range of personal opinions based on professional experience rather than empirical research. These comments often focused on different mathematical approaches to the subject: 

· “In praise of epsilon/delta” (Norwood, 1997) suggested that the students’ problem with epsilon-delta analysis lies not in the use of Greek letters but in the students’ failure to understand subtraction or absolute value.

· “Use uniform continuity to teach limits” (Lax, 1998) put forward the view that it was necessary to reduce the emphasis on quantification and keep the key concept of continuity closer to students’ experience with functions.

· “Defining uniform continuity first does not help” (Briggs, 1998) responded with the comment that the problem lies not in building a foundation for rigorous arguments, but in the need for sense-making. 

· “Use convergence to teach continuity” (Abian, 1998) suggested that the notion of convergence of sequences of function values is more intuitive than any epsilon-delta argument.

· “Teach calculus with big O” (Knuth, 1998) proposed the use of more intuitive order-of-magnitude notions, starting with an initial use of an “A-notation” for “absolutely at most.”

Pragmatic Issues

As the debate continued, students were voting with their feet and moving away from mathematics. Between 1994 and 1996, student applications to mathematics departments in the United States declined by 32% (Maxwell & Loftsgaarden, 1997). Similar crises were building in other countries. In Germany, between 1990 and 1999 there was a decrease of 20% in the number of students registering to study mathematics and a decrease of 35% enrolling in first-semester mathematics courses (Jackson, 2000).

Even among those who follow a major course in mathematics, there is evidence that students do not retain all their knowledge as time passes. Anderson, Austin, Barnard and Jagger (1998) administered a questionnaire focused on what were considered essential, simple, first-year concepts to a selection of final-year (third-year) mathematics majors from 15 British universities. Only about 20% of the responses were “substantially correct” and almost 50% of the responses did not contain anything “credit-worthy.” These data challenge the belief that an undergraduate mathematics course builds a broad conceptual understanding of the full range of mathematics in the course. It is, however, consonant with the experience of mathematics professionals who have a powerful knowledge of the mathematics that they are currently researching, but who may be less facile with other areas of mathematics, which nevertheless they may be able to reconstruct in a small amount of time (Burton, 2004).

Most students studying calculus are not mathematics majors. Kenelly and Harvey (1994) reported that 700,000 students enrolled in calculus in the United States, including about 100,000 in Advanced Placement programs in high school. In 1997, 12,820 students graduated with bachelor degrees in mathematics (National Center for Educational Statistics, 1999), less than 2% of the calculus cohort. In addition to provisions for this small—but vitally important—group, it is therefore essential to take account of the needs of the other 98%. Some of these move on to science and engineering programs, using calculus in very different ways from their peers in mathematics; for many others, calculus is their last experience of mathematics in their formal education.

The Changing Nature of the Calculus in a Technological World

Successive waves of new hardware and software have made predicting the future notoriously difficult. In the early seventies, when computers were beginning to be appear on the horizon, the Mathematical Association in the United Kingdom wrote, “It is unlikely that the majority of pupils in this age range will find [a computer] so efficient, useful and convenient a calculating aid as a slide rule or book of tables” (Mathematical Association, 1974). Such illusions were soon shattered, and slide rules and books of tables lingered for only a short time before they became obsolete. It is important therefore in analyzing calculus teaching and learning to be aware of the changing landscape.

Numerical Algorithms

The first microcomputers had the BASIC programming language built in, so the first wave of enthusiasm was to encourage students to program their own numerical methods. At that time there were too few computers available in the classroom to allow programming to become universal. Nevertheless, there was widespread belief that programming would encourage students to formulate (and perhaps formalize) mathematical ideas—in particular, they might program algorithms for limit, rate of change, Riemann sums, and solutions of differential equations. Working with highly able mathematics undergraduates at Cambridge, Harding and Johnson (1979) found very positive effects on conceptual understanding and mathematical problem solving through programming mathematical algorithms. For the broader range of students, however, there is the possibility that simultaneously programming algorithms and conceptualizing mathematics may impose a great cognitive strain.

Using True BASIC to program algorithms, Cowell and Prosser (1991) reported:

The students largely agreed that the computer assignments were well integrated with the rest of the course, and that learning the necessary programming was easy, but they disagreed that the computer enhanced their interest in the course material, they disagreed that the computer should be dropped and they were divided on whether the computer assignments were a valuable part of the course. (pp. 152-153)

In England, the Mathematical Association committee reporting on the use of computers (1992) saw the use of short programs as a definite way to improve instruction, producing 132 Short Programs for the Mathematics Classroom. But such moves failed to take root, as other languages, such as Logo, came and went, and more powerful software environments were introduced. By the new millennium, the use of programming as a part of mathematics instruction had waned (Johnson, 2000).

New languages designed to use explicit mathematical constructions in the syntax, such as ISETL (Interactive SET Language), have been developed to introduce concepts of (finite) sets, functions, and quantifiers, through programming. Dubinsky and his colleagues (Asiala, Cottrill, Dubinsky, & Schwingendorf, 1997; Cottrill, Dubinsky, Nichols, Schwingendorf, Thomas, & Vidakovic, 1996) have reported learning gains in conceptualizing calculus using a carefully constructed learning sequence, which will be considered in detail in the following section, “Understanding of the Calculus– A spectrum of approaches.” 

Graphic Visualizations

In the early 1980s, high-resolution graphics brought new graphical approaches to the teaching of calculus that were designed to help students visualize mathematical ideas. There was soon considerable evidence that a visual approach to graphs helped students to gain a wider conceptual understanding without adversely affecting their ability to cope with the corresponding symbolization (e.g., Heid, 1988; Beckmann, 1988). But on the debit side there also was evidence that the drawing of graphs involved quite subtle techniques in choosing an appropriate domain and range to give a suitable picture. Viewed in different windows with different scales on the axes, graphs could often look very different and the pictures drawn may fail to give a true and complete picture of the function of interest (Goldenberg, 1988).

Enactive control

In 1984 the “mouse” was introduced to give the computer an enactive interface. Instead of having to type in a line of symbols, the user could now select and control the display by intuitive hand-movements. This allowed a completely different approach to learning that encouraged active exploration rather than writing procedural computations. For instance, Function Probe (Confrey, 1992; Confrey and Maloney, 2005; Smith & Confrey, 1994) allows graphs to be manipulated enactively, using the mouse to transform graphs by translating, stretching, reflecting. Such an approach treats the graph as a single object to be transformed and has the potential to relate physical movement to algebraic translations. More generally, an enactive interface allows the user to conceptualize mathematics based on underlying human perception, for instance, a first-order differential equation such as dy/dx = x/y tells us the slope (dy/dx) at each point (x, y), so a computer program can be designed to show a small line-segment of a curve with the given slope (Figure 1). By ‘pointing and clicking’, the line-segments can be joined end to end to show a solution curve. This gives cognitive support for the insight that there is a unique solution through each point and that the solution as a whole is built up by following the direction given by the equation.

[Insert Figure 1 about here.]

More generally, for many mathematical concepts, an enactive interface may be designed to give a “sense” of the idea that fits with our human perception. For instance, Nemirovsky, Tierney, and Wright (1998) have developed the use of motor detection devices that capture body motion or the movement of a mechanism such as a pendulum in three dimensions and graph it in real time. In this way, the transition between physical action and mathematical representation is being bridged. More generally, software with an enactive interface can be designed that provides intuitive support for ideas that have the potential both to be used in applications of calculus and also to provide a basis for the later development of formal theory (Tall, 2001).

Computer algebra systems

The next stage introduced the power of computer algebra systems, bringing with it the possibility of removing the “drudgery” of symbol manipulation to allow students to concentrate on formulating solutions that could be carried out by computer algorithms (e.g., Davis, Porta, & Uhl, 1994b; Heid, 1988; Palmiter, 1991). The research literature will be considered later to seek evidence for this viewpoint. Essentially, we will find that well-designed approaches using computer algebra systems can produce considerable gains. On the other hand, students learn from what they do; if they press buttons in a computer algebra package without focusing on underlying conceptual ideas, they may simply learn which buttons to press (Monaghan, Sun, & Tall, 1994). In such a case, they may use the computer algebra systems to simplify an expression to a standard form. They will still need the flexibility to recognize and interpret the resulting symbolism when it is written in different ways. 

Newer technologies

Technology continues to develop at an astonishing pace, migrating from large mainframes to desktop calculators to portable calculators and portable computers that can be carried and used anywhere, anytime. The World Wide Web allows information and software to be passed around the globe. Programs in Java (Sun Microsystems, 2005), Flash (Macromedia 2005a), or Shockwave (now part of Director MX, Macromedia, 2005b) can be ported between different hardware environments, allowing a single program to run on a wide range of machines. Computer algebra systems such as Mathematica( and Maple provide the facility to write text explanations with graphical displays that can be modified and investigated experimentally. Multimedia interactive software grows ever more sophisticated, offering the learner a variety of facilities including explanatory text, spoken words, video, and interactive software to explore mathematical processes and concepts. Assessing the nature of learning with technology continues to focus on a moving target.

Understandings in the Calculus—A Spectrum of Approaches

Traditional calculus, prior to the arrival of technology, focused on building symbolic techniques for differentiation, integration, and the solution of differential equations, complementing them where appropriate by static pictures of graphs to illustrate the phenomena involved. Technology provides dynamic pictures under user control that can offer new insights into concepts not only in terms of traditional epsilon-delta analysis, but also in terms of more recent theories of non-standard analysis. For instance, by highly magnifying a graph, the resulting picture may reveal that the graph is “locally straight.” (Technically, the magnified picture will look like a straight line because of the size of the pixels. Formally, using non-standard analysis, in a precise technical sense, the “standard” part of the graph under infinite magnification (neglecting higher-order infinitesimals) is a real straight line. See Tall (2002) for details. Using a computer representation of the graph, by plotting a moving secant line through two close points on the graph, the learner may visualize the changing slope globally as a function rather than building it up point by point.
How does this affect the learning of calculus concepts? Those mathematicians who wish to build mathematics as a formal system may distrust visualization as containing hidden deceptions, and hence consider a visual approach lacking in rigor and precision. The formal approach, however, involves manipulation of a highly complex epsilon-delta definition with several nested quantifiers. Anecdotal observations from mathematics instructors are corroborated in empirical research that documents the extreme difficulty in using the formal limit as a foundation for teaching the calculus (Davis & Vinner, 1986; Williams, 1991). 
On the other hand, a dynamic visual approach to the limit concept also has built-in conceptual difficulties. Research has shown that students imagine not only the process of tending to a limit, but they have a mental concept of a variable tending to zero as “arbitrarily small (Cornu, 1991). Monaghan (1986) notes that, if a sequence, such as {1/n}, consists of a sequence of terms that tend to zero, then the mind is likely to imagine a “generic limit,” which is a limiting object having the same properties as all the terms. For instance, the generic limit of {1/n}—which might be written by the student as 1/(—may be conceived as a quantity that is infinitesimally small, but not zero. In the same way, every term of the sequence 0.9, 0.99, 0.999, … is strictly less than 1, so the limit 0.999… may be considered as a quantity that is strictly less than one.

This view of a limiting process has a long history going back at least to the law of continuity of Kepler and Cusa, which Leibniz re-expressed in a letter to Bayle of January 1687:“In any supposed transition, ending in any terminus, it is permissible to institute a general reasoning, in which the final terminus may also be included.” (Quoted in Klein, 1972, p. 385.) Lakoff and Núñez (2000) repackaged the same idea in a linguistic form as “the Basic Metaphor of Infinity” in which “processes that go on indefinitely are conceptualized as having an end and an ultimate result.” The principle also has a biological basis in which a finite brain considering an ongoing process linking always to a particular brain structure will continue to use the link for the “ultimate result.” The consequence is the mental image of variable quantities that are “arbitrarily small, but not zero” or functions that get “arbitrarily close to, but not equal to” a given limiting value. This natural product of human thought processes led to serious difficulties in the history of mathematics, requiring very subtle definitions to give satisfactory formal proofs.

Even when care is taken over the formal definitions, teaching mathematics can be subverted by the natural underlying human belief structure. Wood (1992) found that a sizeable minority of mathematics majors in their second year of analysis were able to simultaneously hold the two beliefs that “there is no least positive real number” but “there is a first positive number.” Closer analysis revealed students using not one, but (at least) two models of the real numbers. One model uses decimals and reflects the student’s dominant experience of numbers represented to a finite number of places that are naturally discrete, just as numbers on a computer are discrete. For instance, if numbers were represented to only four decimal places, then after 0.0000 comes 0.0001, then 0.0002, and so on. Likewise a computer with finite floating point arithmetic has a precise least positive number given by a single digital bit in some floating point representation. A natural extension for the human mind is to believe that after the “infinite decimal” 0.000…0 comes 0.000…1 (with an infinite number of zeros, followed by a 1, which might be written as 1 – 0.999…), which is the “first” positive number. The alternative continuous model of the real number line cannot have a “least positive” number because if a is positive, then a/2 is also positive but smaller.

Lakoff and Núñez (2000) formulate this beautifully by describing the real numbers as a “metaphorical blend” of two quite different metaphors, one a visual geometric metaphor of the “real line” that one can, in the mind’s eye, trace with a finger, and another as a numerical metaphor building up from counting and measuring number activities. There is also a third metaphor, which is different again, described formally as a complete ordered field. These different metaphors, considered to be mathematically identical are cognitively very different. For instance, numerically a point has no size, but geometrically they stand together to give an interval of non-zero length.

Faced with a conflict between formalism and visual structure, formal mathematicians, in true Bourbakian style, distrust visualization as containing subtle aspects that conspire to deceive so they rely totally on the formal theory. However, many of their students and their colleagues in other fields have a “metaphorical blend” view of numbers that includes such anomalies. There are two ways out of this dilemma. One is to take a purely formal view and deal exclusively with mathematical symbols and quantified statements; this has proved to be notoriously difficult for the majority of students. The other is to educate visual intuition so that it is sound enough to build upon. For instance, Tall (1993, 2001) proposes ways in which visual ideas are translated directly into formal definitions to give mental images of formal concepts that can later be translated into formal proofs. Both strategies have been implemented using technology, leading to quite different approaches to the calculus. Both are also widely used by professional mathematicians in their research. 

A Symbolic Approach to Calculus using a Mathematical Programming Language

An approach to constructing mathematical concepts with both symbolic and psychological underpinnings has been designed by Dubinsky, a professional mathematician and a dedicated student of the theory of Jean Piaget. Dubinsky’s approach uses the mathematical programming language ISETL in a carefully designed sequence of activities based on Piaget’s theory of reflective abstraction. He and his colleagues have formulated a theory of cognitive development with the acronym APOS (Action-Process-Object-Schema):

An action is any physical or mental transformation of objects to obtain other objects. It occurs as a reaction to stimuli which the individual perceives as external. It may be a single-step response, such as a physical reflex, or an act of recalling some fact from memory. It may also be a multi-step response, but then it has the characteristic that at each step, the next step is triggered by what has come before, rather than by the individual’s conscious control of the transformation. … When the individual reflects upon an action, he or she may begin to establish conscious control over it. We would then say that the action is interiorized, and it becomes a process …. [Then] actions, processes and objects ... are organized into structures, which we refer to as schemas. (Cottrill, et al., 1996, p. 171) 
Using this theory, Cottrill and colleagues (1996) formulated a “preliminary genetic decomposition” of the limit of a function f as the input value, x, approaches a as follows:

1. The action of evaluating the function f at a few points, each successive point closer to a than the previous point.

2. Interiorization of the action of Step 1 to a single process in which f(x) approaches L as x approaches a. [This step was modified later in the paper in the light of empirical research to refer to the coordination of two processes, as ‘x ( a’, and ‘f(x) ( L’.]

3. Encapsulate the process of Step 2 so that, for example, in talking about combination properties of limits, the limit process becomes an object to which actions (e.g., determine if a certain property holds) can be applied.

4. Reconstruct the process of Step 2 in terms of intervals and inequalities. This is done by introducing numerical estimates of the closeness of approach, in symbols, 0 < | x – a | <  and | f(x) – L | < .

5. Apply a quantification schema to connect the reconstructed process of the previous step to obtain the formal definition of limit. [… ] applying this definition is a process in which one imagines iterating through all positive numbers, and, for each one called , visiting every positive number, called  this time, considering each value, called x in the appropriate interval, and checking the inequalities. The implication and the quantification lead to a decision as to whether the definition is satisfied.

6. A completed - conception applied to specific situations.
(Cottrill et al., 1996, p. 174)

This detailed analysis allowed the researchers to study the development in great detail, leading to the recognition of the need for an extra initial step in which f(x) is evaluated at a single point near, or equal to, a, before focusing on the process of calculating numeric values as x approaches a. More significantly, the research revealed, in the context of an x-y coordinate system, that the limiting process, “as x ( a, so f(x) ( L,” can be analyzed cognitively into two separate processes, one in which x approaches a, the other in which y approaches L, with these two processes being coordinated by the application of the function f.

This patient build-up of a concept through specific actions, routinized as a process, then encapsulated as an object, has a cost. In the first version of the development, 

… there were no students who progressed to the point where we could ask questions that indicated their thinking relevant to the last two steps of the preliminary genetic decomposition. We repeat them in the revised version, although they might be dropped for the present because there is no evidence for them.
(Cottrill et al., 1996, p.187)

In other words, this approach may give a sound process conception of the limit, but the empirical evidence does not reveal examples extending this to an understanding of the epsilon-delta definition.

Other research has similarly underlined the difficulty of the formal definition. Knowing of the subtle problems found by Wood (1992) using decimal numbers and mentioned above, Li and Tall (1993) designed an approach to limits of sequences through numerical programming for a class of pre-service (primary and secondary) school teachers. This involved gaining experiences intended to be a foundation for the limit concept. For instance, to get a better approximation to the limit of a sequence, say to eight decimal places instead of four, it is (usually) necessary to go further along the sequence to find the terms stabilizing to eight decimal places. This was translated into the - N limit definition in the form “to get the limit within accuracy , you will need to find a suitable value of N for the limit to be given to that accuracy.” However, such an approach had almost no effect on the students’ belief that “nought point nine repeating” is strictly less than one. In addition, an attempt to study more general sequences had an unforeseen side effect. The students were invited to consider the sum of the series whose nth term is “1/n2 if n is prime, 1/n3 if it is not prime and even, and 1/n! if n is not prime and odd.” The complexity of calculating the sum of this series to 1,000 or 10,000 terms was such that it took considerable time on the computers being used. This phenomenon led half the class to believe that the sequence would not tend to a limit even though they could see that it is bounded above via the comparison test. They reasoned that the sum would continue to increase slowly so that any specified value might, after a long time, be exceeded. When introduced to the completeness axiom, these students refused to accept it because they did not believe that it was true. Their belief is reasonable. There is only one complete ordered field, namely the real numbers. But the students believe that their mental number line contains infinitesimals (quantities that are arbitrarily small) (Cornu, 1983; Tall, Gray, Crowley, McGowen, Pitta, Pinto, et al., 2001), and such a number system is definitely not complete.

A similar obstacle arises naturally in the second stage of Dubinsky’s genetic decomposition where f(x) approaches L as x approaches a. Calculating numerical values of f(x) for x near a evokes discrete numerical values, while continuous motion of a variable x getting “arbitrarily close” to a evokes an image of arbitrarily small infinitesimal quantities (Cornu, 1991).

While many students have difficulties with infinitesimals on the one hand and quantifiers on the other, there is a small number of students who learn to handle the formal definition. Pinto (1998) found that successful mathematics majors were able to handle the definition in at least two distinct ways (reported in Pinto & Tall, 1999). One is the evident formal way, working with the definition and deducing the properties and theorems from the definitions and previously proven theorems. However, there is an alternate route, reminiscent of the work of more visually motivated mathematicians, often including geometers and topologists. This she termed a natural approach, building up meaning for the definition by working on one’s own personal imagery. Some natural thinkers were able to build formal theory developing from their imagery, but others believed that their imagery was sufficient proof in itself and that formal proof was unnecessary. (For instance, if an gets close to a, and bn gets close to b, then clearly an + bn must get close to a + b without any further need of proof.)

One natural thinker did not wish to learn the definition by rote. He wanted a meaningful interpretation and saw the limit of a sequence in a picture in which the terms a1, a2, … were plotted in the Cartesian plane over x-values 1, 2, …, with the limit L marked as a horizontal line and the prescribed interval L –  to L +  marked as horizontal lines at distance  above and below the limit line. For this value of , he sought a value of N so that, from this point on, all the points of the sequence an for n > N lay within the horizontal lines L ± . Not only did he use the picture to “see” the definition, he also built up the definition sequentially from this imagery and used the imagery to guide his later development.
His natural approach caused him to be often in a state of excitation as he constantly wrestled with his imagery. However, the theory he developed caused him continually to update his relationships with his other ideas, giving him a rich schema of intuitions and deductions that he could use to predict and prove new theorems. He was therefore successful, first by developing visual imagery that supported the definition, then using this imagery to underpin formal proof. He therefore may be considered a natural formalist, using natural imagery for thought experiments, then modifying them to underpin formal theory.

On the other hand, another student, following a formal route, remembered the definition through repetition and use. Once he was able to write it down from memory, he was able to begin to use it to deduce properties in a formal manner. His knowledge of analysis was quite separate from his informal knowledge, which he distrusted and did not regard as an appropriate way to build up mathematical theory.

Thus, students can learn formal mathematics successfully in different ways. No single approach is suitable even for those who are successful. In addition to manipulating symbols and performing complex calculations, technology can provide a visual way to encourage natural thinking to support formal theory for those students who prefer a natural approach. For formal thinkers, even though it does not provide formal support for their axiomatic theory, it may still provide a complementary way of looking at the overall structure of ideas to solve problems.

An Embodied Visual Approach Using Local Straightness
A “natural” approach to calculus is to build on the dynamic visual idea of local straightness. This is at almost the opposite end of the spectrum from a symbolic-numeric programming approach. Whereas the ISETL approach based on APOS is designed to encapsulate a programmed process (of limit, derivative, or integral) as a mental object, a locally straight approach begins with an explicit visual image of a graph that “magnifies to look straight.” This is consonant with the theory of Lakoff and Núñez (2000) that human thought is embodied in our natural human perception and action. Embodied foundations of the calculus include not only visual aspects but also other bodily sensations such as those that come from manipulating objects onscreen using a mouse. An embodied approach builds on fundamental human senses. We will see that it provides a foundational approach to the calculus that can be an end in itself, but it may also offer a natural way of leading to a formal theoretical approach in terms of either traditional epsilon-delta analysis or nonstandard analysis using infinitesimals.

A “locally straight” approach has been followed in a range of curricula. For example, the School Mathematics 16–19 Project in Britain was designed to afford students with limited algebra resources with opportunities to look at a graph and to get the computer to sketch the graph of the changing slope of the curve. It is straightforward for students using these materials to guess that the derivative of x2 with respect to x is 2x, of x3 is 3x2, and to conjecture the general pattern. A similar experimental approach extends to “seeing” the derivative of sin x and the derivative of cos x, and even to finding the numerical value of k for which the derivative with respect to x of kx is again kx. This introduces an embodied meaning to mathematics. For instance, the derivative of cos x is the additive inverse of sin x not because an algebraic manipulation magically produces this result, but because the shape of the gradient of cos x looks the same as the graph of sin x “upside down.”

Empirical evidence from written tests requesting students to draw the derivative of a function given graphically shows that this approach enables students to visualize and sketch the changing slope as a function with far greater insight than a corresponding student who has used only a paper-and-pencil symbolic approach (Tall, 1985).

In many calculus reform programs, the notion of “local straightness” is seen to be synonymous with “local linearity” (for example, see Dick & Edwards, 2005; Hughes Hallett, et al., 1994; Smith & Moore, 1996). Although the two ideas are mathematically equivalent, they are cognitively very different. Local straightness is an embodied visual conception that involves imagining the graph highly magnified to “see” how steep it is. Symbolism is not necessary at this point; it can be introduced at an appropriate stage with, or following, familiarization with the fundamental embodied concepts. Local linearity, however, requires symbolism from the very beginning to specify the linear function that is “the best linear approximation” to the graph near a particular point. While local straightness can suggest complementary visual ideas of non-differentiability (in terms of “corners” on the graph at a point, or “wrinkles” over a range), local linearity concerns itself only with examples of functions that have a locally linear approximation at a point. The “locally straight” approach is therefore capable of far more sophisticated insights at an early stage. By magnifying wrinkled functions that remain wrinkled wherever they are magnified, it is possible to give a visual sense of a nowhere differentiable function, revealing the possibility of visualizing not only differentiability (local straightness), but also non-differentiability (lack of local straightness).

The locally straight approach may also be used in a natural manner to build on dynamic technology-related perceptions to inspire formal definitions. For instance, we may begin with the idea of “stretching” a graph horizontally in a computer window while keeping the vertical scale constant (Figure 2).

[Insert Figure 2 about here.]

In general, if we imagine the value of f(x0) onscreen is in the middle of a pixel of height f(x0) ± , then to pull the graph flat means finding an interval (x0 – x0 + , so that the graph in this range lies within the vertical range f(x0) ± , and hence within a horizontal line of pixels. This gives the formal definition of continuity: 
Given  > 0, there exists  > 0, such that
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The definition of continuity therefore arises by a natural process of stretching a graph horizontally to see if it becomes flat, rather than as a highly technical combination of three nested quantifiers. Such an approach can provide natural thinkers with mental images that can be used to lead to the formal manipulations of quantified statements to prove theorems. It can also be beneficial in giving a greater insight into sophisticated ideas that occur in mathematical analysis for those who are unlikely to be able to cope with the formal theory in its usual academic form. Tall (1993) employed a computer-based visual approach with prospective secondary mathematics teachers who were expected to struggle with formal analysis. After instruction, they were able to discuss a wide range of concepts and principles in a “natural” manner. These included the idea of a function that is nowhere differentiable (because it is a fractal that nowhere magnifies to look straight) and yet it is continuous because the graph “pulls flat.” A formal definition of continuity was developed and linked to visual ideas that
· the area under a continuous function is a differentiable function, 
· the derivative of the area function is visibly the original function, 
·  the solution of a first-order differential equation involves knowing the slope of a curve and following the direction it specifies. 
A visual approach was used to “see” that the function describing the area under a continuous function has a derivative equal to the original function. Working together in a group, the students suggested spontaneously that the area under a continuous non-differentiable function is a function that will be differentiable once but not twice. This provides an existence proof that such an approach can give insights into highly subtle formal ideas that are totally out of reach of most students following a traditional course.

The use of an embodied perceptual approach therefore offers not only the possibility of a deep-seated human meaning of subtle formal concepts, but also has the additional possibility of extending these ideas naturally towards a formal approach.

A Pragmatic Locally Linear Approach Using Graphic, Numeric, and Symbolic Software

Most of the approaches taken in the texts that implemented calculus reform (such as Hughes Hallett, et al., 1994, or Smith & Moore, 1996) use the idea of local linearity, with a pragmatic choice of numeric, symbolic, and graphic representations, using computing technology (computers and/or graphic calculators and/or computer algebra systems) to approach ideas from a range of different viewpoints. As the reforms have progressed, the role of verbal representation has been raised to an explicit level, formulated in a “rule of four” that encourages the use of verbal, numeric, symbolic, and graphic representations to give a fuller sense of the concepts involved. New ideas are often introduced via specific contextual problems, using technology, to situate the concepts in a practical context. Some approaches, such as Calculus&Mathematica® (C&M) (Davis, et al., 1994a, 1994b), use the power of a dynamic, computer-based text to explain concepts associated with numeric and graphic representations. On the other hand, Calculus Using Mathematica (Stroyan, 1993) is an approach based on student programming in Mathematica(. A major factor in many of these reforms is a new atmosphere of collaborative group work, using technology to encourage active student exploration, discussion, and commitment to personal construction of meaning. 

The Roles of Teacher and Learner

Before we analyze the research on the effects of using particular technologies in (primarily collegiate) calculus courses, we look first at research on some of the ways that teachers and students can influence those effects. Use of technology does not occur in a vacuum.

The Role of the Teacher

In approaches using technology, the teacher plays a significant role in how the technology is used in learning. Keller and Hirsch (1998) noted that students’ preferences for numeric, graphic, or symbolic representations in part reflect the instructional preference. Kendal and Stacey (1999) report the effect of teacher “privileging,” in which the use of representations in teaching differential calculus affected the types of questions students were able to answer successfully on a test, as well as the way students approached finding solutions to problems. In their research, three teachers, who agreed to teach the same syllabus to high school students in Australia with a TI-92 calculator, also helped design the materials that were used. 

Observations of the classrooms indicated that Teacher A enthusiastically used the computer algebra system at every opportunity and took primarily an algebraic (symbolic) approach. Teacher B was more reserved and underpinned the work with paper-and-pencil calculations, making some connections between concepts being discussed and graphs. Teacher C was enthusiastic about the calculator, using it more often to provide graphical insight. Their characteristics as observed by the researchers are given in Table 1.

[Insert Table 1 about here.]

Table 1 Researcher’s categorization of teaching characteristics

Table 2 shows the teachers’ expectations of their students’ work before the course began. These suggest links between the perceptions of the individual teachers and their teaching characteristics.

[Insert Table 2 about here.]

Students were given a written test to assess their understandings and were asked to record when and how they used the calculator. An item-by-item analysis of student responses is given in Table 3.

[Insert Table 3 about here.]

Although the classes had similar means on the test (24.1, 26.7, and 27.9, respectively), students from the different classes answered different questions correctly. Class A students were most successful on questions that were procedural in nature, while Class C students were more successful with questions requiring conceptual understanding. The success with conceptual problems appeared to be connected to the use of a graphical approach along with an algebraic approach. It is interesting to note that, although a number of procedural questions could have been performed (or checked) on the TI-92, there were many students in classes B and C who did not use the TI-92 to check them. According to the researchers, “there is no simplistic conclusion that greater use of CAS leads to better results” (p. 236). 

It is clear that teachers will adopt a variety of approaches to teaching, some of the decisions being based on their beliefs about their students’ abilities. These approaches will affect what students do with the technology and thus what they learn. For example, Class C students were able to use a graph to answer some questions in place of using a symbolic approach. Some teachers might be comfortable with students being able to solve a calculus problem without using symbols, while others may require symbolic work as well. This study can provide insights into how teachers (or curriculum developers) might adapt their teaching (or materials) depending on the goals for the course.
The Role of the Student 

Students learning calculus encounter not only specific difficulties (such as the limit concept) but also a range of factors that are common to many environments. The Committee on Developments in the Science of Learning of the (U.S.) National Research Council (NRC) summarized research on learning in How People Learn (Bransford, Brown, & Cocking, 1999) and in a companion handbook for bridging the divide between research and practice (Donovan, Bransford, & Pellegrino, 1999). In brief, in order for learning to take place, the handbook suggests:

· Students’ initial understandings must be engaged.

· To develop competence, students must

(a) have a deep knowledge base,

(b) understand in a conceptual framework, and

(c) organize for retrieval and application.

· Students must monitor progress toward goals.
Research on student approaches to learning (Entwistle & Ramsden, 1983; Entwistle, 1987; Ramsden, 1992; Bowden & Marton, 1998) tells us that deep learning approaches are quite different from surface learning approaches, and a given student–whatever his or her “learning style”–may exhibit different approaches simultaneously in different courses. These student-selected “coping strategies” are often determined, at least in part, by expectations set by the instructor, consciously or unconsciously. Rhem (1995) has summarized the work of Entwhistle, Ramsden, Marton, and their collaborators. He notes that surface learning is encouraged by 

•
excessive amounts of material to be covered,

•
lack of opportunity to pursue subjects in depth,

•
lack of choice over subjects and/or method of study, and

•
a threatening assessment system.

On the other hand, deep learning–the organized and conceptual learning described in the NRC study (but with specific points taken from Rhem’s summary)–is encouraged by 

•
interaction–peers working in groups,

•
a well-structured knowledge base–connecting new concepts to prior experience and knowledge,

•
a strong motivational context, with a choice of control and a sense of ownership, and

•
learner activity followed by faculty connecting the activity to the abstract concept.

These are especially important messages for those whose goals include teaching mathematics to a much broader audience than just those who intend to become mathematicians. Calculus reformers and others interested in using technology, whether aware of the learning research or not, found that their task was as much about pedagogy as about choice of tools. As will be seen in our review of empirical research, the projects that successfully demonstrated learning gains are, for the most part, the ones in which use of technology is embedded in a rich learning environment that often looks quite different from the traditional lecture-plus-homework-plus-test environment of the typical college or high school classroom. 

Analyzing Empirical Research

In a previous section, we considered a range of pedagogical approaches to the calculus using technology, from an embodied visual viewpoint to a programming approach in which students are encouraged to write algorithms for mathematical processes to be encapsulated as mathematical concepts. Other pragmatic solutions enlist technology to utilize graphic, numeric, and symbolic representations for student exploration and active construction of knowledge. We turn now to a broad review of research on the role of technology in the learning of calculus. 

Research on college-level calculus is of more recent vintage than research into teaching and learning mathematics in school. At this time, much of the research related to learning calculus in the presence of technology has been reported in dissertations and is not yet published. These empirical studies draw on both quantitative and qualitative methodologies, and both are important in addressing questions about learning mathematics. Research questions related to comparison of control and experimental groups on achievement (or other measures of performance) have been investigated using quantitative methods. When research questions addressed understandings of concepts and problem-solving approaches, researchers typically used task-based interviews with students and analysis of transcripts and written work. A number of the studies that use primarily a qualitative methodology have only small numbers of subjects. While the results of these studies may not be generalizable, one function they serve is to act as existence proofs that, under certain conditions, a certain type of learning can occur.

Students’ understandings of concepts of calculus such as limits, derivatives, and integrals have been explored in a number of studies (Bezuidenhout, 2001; Ferrini-Mundy & Lauten, 1994; Gonzalez-Martin & Camacho, 2004; Orton, 1983a, 1983b; Williams, 1991). These understandings were found to be procedural in nature, often limited to finding a symbolic derivative or evaluating an integral. Students appeared to have difficulties with problems that required them to interpret concepts or solve non-routine problems. Many of the studies summarized here examined whether technology, either situated within a reform curriculum or as an add-on to a traditional curriculum, would enable students to develop deeper understandings or become better at solving problems.

Overall Achievement

A number of studies compared overall achievement in control and experimental sections of calculus. Overall achievement was typically measured as a score on a common final exam taken by both groups. In interpreting results based on tests, it is important to keep in mind that some questions will favor students in a traditional course, others will favor those who have learned calculus in the presence of technology and/or with a change in curriculum, and still other items will be neutral. Out of 9 studies that examined overall achievement (Castillo, 1998; Connors, 1995; Fredenberg, 1994; Hawker, 1987; Judson, 1988; Melin-Conejeros, 1992; Padgett, 1994; Palmiter, 1991; Park, 1993), three reported significant differences favoring the experimental classes, five reported no significant differences between the two groups, and one reported differences favoring the control group. These mixed results indicate that students in courses that have some degree of integration of technology will do as well as students in a traditional course on a common final exam, and in some cases will outperform them. What these results do not provide is an understanding of how students’ performance may be similar or different across a variety of test items. 

Conceptual and Procedural Knowledge

Typical goals for a calculus course include mastering (mostly algorithmic) skills related to finding derivatives, integrals, and limits. The type of knowledge required to carry out these procedures can be characterized as procedural knowledge (Hiebert & Lefevre, 1986). A second type of knowledge important in the learning of mathematics is conceptual knowledge, which consists of links or webs of relationships and is the type of knowledge used in problem solving or in understanding how various representations can stand for a concept. 

In a number of studies, researchers classified certain problems as being procedural in nature and others as representative of conceptual knowledge because they require students to draw on a variety of relationships. An example of a problem that would require only procedural knowledge is finding the derivative of f(x) = sin(x2 + 1). Questions that require conceptual knowledge include graphing a function given the graph of its derivative function or to find 
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 and to graph the normal line at x = 2.5 (where x is the independent variable), given the graph of the function f and its tangent line at x = 2.5, as in Figure 3 (adapted from Hart, 1991). 
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Some of the earliest studies that examined the role of technology in learning calculus (Heid, 1984; Judson, 1988; Palmiter, 1991) involved the re-sequencing of material with the emphasis being the development of understandings of major concepts. Implicitly, traditional curricula assume that either students need to learn rules for procedures first and then use them to solve problems that may involve optimization or the finding of volume, or that there is a strong interdependence between the development of procedural and conceptual knowledge. What was unknown was whether students could learn concepts prior to the development of procedural skills, and in what ways student understandings of concepts and procedures would be different from those of students in traditional courses. 

Heid (1984) used computers and software in a business calculus course to produce graphs and symbolic manipulations for students to reason from in a problem solving setting. Data was collected from a traditional lecture class and two treatment classes. In the treatment classes the first twelve weeks were devoted to an in-depth development of meanings of concepts. Procedural skills were developed during the last three weeks of the course. In one of the treatment sections simple by-hand procedures were shown as concepts were developed, and in the other focus on by-hand procedures was delayed until the end of the course. A consequence of the delaying of development of procedural skills was that students were able to focus on the structure of functions that led to the need to use the chain rule versus the product rule, or of a technique such as u-substitution. At the end of the semester a sample of students from the various classes was interviewed. Students in the experimental sections appeared to have better understandings of the derivative and its applications, and were able to explain concepts using their own language indicating the development of meaning of these ideas (Dorfler, 2000). Mean scores from a common final for all groups were similar, and on problems that required computations the performance of the students in the experimental sections did not appear to be different from that of students in the traditional section. Common questions examining conceptual understanding were included on tests for all students and the experimental sections generally outperformed the control students on these questions. 

Studies followed that examined this same question of whether the development of concepts could precede the development of skills. Palmiter (1991) used a computer algebra system to teach techniques of integration during a five week instructional period to students in an experimental section. Performance of these students on conceptual and computational exams were compared to students in two traditional sections (who covered the same material during a ten week period). On the conceptual exam the students in the experimental section scored significantly higher than those in the control groups. The experimental group also scored significantly higher on the computational exam where students were allowed to use the computer. 

Judson (1989) focused only on the derivative and its applications and re-sequenced material in a business calculus course using Maple. The same lecture examples were used in both the control and experimental sections, and students were assigned the same homework. Students in the experimental section completed a computer assignment outside of class to motivate a topic to be covered in class. Results from a common final exam showed no significant difference in overall achievement, or in skills, concepts or applications through examination of sub-portions of the exam. These studies provide evidence that understanding of concepts and their applications can be developed prior to the acquisition of skills using technology to produce representations and examples for discussion and exploration. In two of the studies results indicated that students in the experimental sections had developed better understandings of the concepts, while in the third study this was not the case. Later studies may provide an explanation for this difference, attributing it to differences in integration of technology and changes in approaches to teaching and learning. More recent studies investigate learning in a range of settings, from those with a high degree of integration of technology along with a change in pedagogy (for example, C&M) to those in which the text and teaching approach is traditional and students are asked to complete add-on activities. Findings from those studies will next be described.
 Procedural Knowledge

The reformed curricula shift emphasis from development of procedural skills and building of theoretical foundations to building understanding of concepts in the context of technology. Because the primary focus of traditional classrooms is on the development of by-hand procedures such as finding derivatives or indefinite integrals, concern is expressed about whether students will lose these skills if students learn calculus using technology. Early studies indicate that this is not the case, and later studies provide more evidence.

We examined twelve studies for results related directly to the comparison of procedural skills between students in experimental sections and students in control sections (traditionally taught classes): Chappell & Kilpatrick (2003), Connors & Snook (2001), Cooley (1996), Crocker (1993), Cunningham (1993), Estes (1990), Galindo-Morales (1994), Keller (1993), Melin-Conejeros (1992), Park (1993), Schrock (1990), and Soto-Johnson (1998). In these studies, test or quiz questions were categorized as testing for procedural skills, and work from students in the experimental and control sections was compared. In many of the studies, technology was not allowed on the test(s) so no advantage would be given due to its use. Ten studies reported no significant difference in performance between the two groups and two studies reported that the students in the control groups performed significantly better. In one study in which the control group outperformed the experimental group, Soto-Johnson (1998), the students from a Project CALC course spent half as much time studying infinite series as students in a traditional section or from a Mathematica® lab enhanced section. The emphasis for the Project CALC students was on application of series as well as exploration and explanation of concepts, and not on computation. These students made errors on some computational problems due to reliance on their calculators (instead of the formula) to find sums of geometric series, and thought the harmonic series converged due to the slow growth in terms (seen in a graph or table of values). The change in curriculum for Project CALC resulted in much less time spent on developing computational skills and on potential difficulties related to using technology to answer some types of questions leading to the differences in performance.

In looking across the studies, in some cases the experimental groups used the same textbook as the control groups with technology as an add-on either through labs or for assignments. Sometimes the difference between the two groups consisted of only five labs per semester. Other studies involved students enrolled in courses that had a significant change in the curriculum: a “reform” curriculum such as Calculus&Mathematica® (at the University of Illinois or Ohio State University) or Project CALC (Duke University), a re-sequencing of material, or conceptually based instruction. The results from the studies indicate that generally there is no difference in development of procedural skills for students in traditional courses or those in any of the experimental courses with their wide variety of approaches to teaching and learning.

Conceptual Knowledge

The intent of changes in curriculum and inclusion of technology is to allow students to focus on development of conceptual knowledge through exploration of concepts via various representations and multiple examples, and by off-loading of procedural work. We looked at results from eight studies that examined differences in conceptual knowledge between experimental and control groups using a quantitative instrument: Chappell & Killpatrick, (2003), Connors & Snook (2001), Cooley (1997), Cunningham (1993), Estes (1990), Melin-Conejeros (1992), Park (1993), Schrock (1990). Instruments used usually consisted of tests with a subset of questions categorized as assessing conceptual understanding. Five studies reported that the experimental group performed significantly better than the control group and three studies reported no significant difference in performance (Connors & Snook, 2001; Cunningham, 1993; Melin-Conejeros, 1992). 

To make sense of these mixed results it is necessary to look at the nature of the courses. The only difference between the experimental section and the control section in the study by Melin-Conjeros (1992) was the use of Derive by students to do homework outside of class. The students in both sections completed similar homework and Derive was not used in the class during instruction. It appears that this type of use of technology may not result in differences in performance on a test. However, the researcher concluded after conducting interviews with students from both sections that students in the experimental section had a better understanding of the concepts of asymptotes, concavity, limits of functions, continuity, and increasing and decreasing functions. 

In the study by Cunningham (1993) both the experimental and control sections used the same text, completed the same homework and tests, and had instruction that emphasized the development of concepts. The computer was used for symbolic manipulation by the experimental section. The students in both groups appeared to develop similar understandings, so the use of a CAS to do computations did not result in development of a better understanding of concepts. Because there was not a control group that received traditional instruction, it is not clear if the understandings these students developed were in any way different due to having an approach to instruction that was identified as being conceptual in nature. 

In the studies in which there was a significant difference in performance on conceptual items favoring the experimental groups, the instruction of the control groups appeared to be traditional in nature. In the experimental sections a greater emphasis was placed on the development of concepts. For example, the students in Park’s (1993) study used C&M, and in Estes’s (1990) study, students completed eleven extra assignments that engaged the students in exploration, generalization of ideas, and examination of concepts across various representations. Similar changes in curriculum and integration of technology can be found in the other studies cited.

These studies provide some evidence that significant differences in development of understanding may depend both on the level of integration of the technology and the degree to which activities and instruction focus on conceptual development. Chappell & Kilpatrick (2003) compared the performance of calculus students (n = 300) in control and experimental sections in which both groups completed the same Maple-based labs, and instruction in the classrooms involved use of a graphing calculator. (No information was provided on the nature of the Maple labs.) The control sections had instruction that was “procedure-based” with the instructor providing a brief overview of material followed by introduction of definitions and procedures. The experimental section was “concepts-based” with students engaging in activities requiring explanations and problem solving via various representations. Concepts were introduced informally by the instructor, then linked to more formal conceptions, and then followed by development of skills. As in earlier studies done over the last two decades (Heid, 1984; Judson, 1988; Palmiter, 1991), the students in the concepts-based sections significantly outperformed the other sections on the instrument used to assess conceptual understandings and no significant difference in performance was reported between the two groups on procedural skills. 

Wells (1995) compared the development of conceptual understanding in three types of calculus classes. The first type consisted of traditional sections. The second type was an Honors course that combined use of graphing calculators with on-going assignments that included problems that either required or built conceptual understandings, and were writing intensive. The third type of course had a traditional lecture portion and weekly sessions during which students worked collaboratively on worksheets. After controlling for confounding variables, Wells found that there were significant differences in the conceptual understandings in favor of students in the Honors course. Her belief was that it was the “consistent emphasis on concepts and the connections between and among concepts and procedures throughout the course” (p. iii). Both in this study as well as in the Chappell & Kilpatrick (2003) study the significant differences in conceptual understandings appear linked to the approach to instruction. Combining the results of this and the Kendal and Stacey study (1999), we see that if the goal is to enhance conceptual understanding, technology use alone is not enough. Technology as an add-on to a traditionally taught class may not lead to any changes in learning. 

Results regarding the development of higher-order skills are however sometimes nuanced. Keller and Russell (1997) describe a preliminary study investigating students’ performances on three different types of problems: simple computations such as evaluating a specific integral or finding a derivative, multi-step problems such as finding a maximum, and complex problems formulated in a manner that requires information to be translated into appropriate mathematical form. In the preliminary study with a small number of students, they found that students using TI-92 calculators in a supportive group-oriented classroom context were better at all three forms of problems than students who had access to other types of calculator. However, a later large-scale study (Keller, Russell, & Thomson, 1999) showed a significant difference (p < 0.001) in performance on one-step and multi-step problems, but not in complex problems.

 Studies that used qualitative research methods such as interviews provide insights into the understandings developed by students in technology enhanced curricula. Porzio (1994) examined how different approaches to instruction affected students’ use of multiple representations of concepts in problem solving. One group used graphing calculators along with a graphing enhanced calculus textbook and the other group used the C&M curriculum. The C&M students were better able to discuss connections between various representations of a concept, and could describe how to use representations for solving a problem. These differences were attributed to the C&M students’ active engagement with problem solving situations that required them to use various representations in conjunction, and with problems that explicitly asked them to draw conclusions about connections. This was in contrast to the experiences the students using graphing calculators had listening to the instructor talk about the connections, and completing homework problems that did not require them to elaborate on or use these connections. 

Park (1993) also conducted a comparative study that involved students in a C&M curriculum. Her control group consisted of students in traditional sections. C&M students, during interviews, made more and stronger connections between many ideas including the relationships between derivative, instantaneous rate of change, slope of the curve and tangent line. They could reconstruct formulas when they forgot them; and used graphs and visual thinking in their explanations. Similar to the Heid (1984) study, Park found that C&M students were able to explain concepts using their own language and concluded that they had developed greater conceptual understanding than students in the control group.

Ellison (1994) used TI-81s and The Graphic Approach to Calculus (Tall, 1191) to develop the concept of the derivative. Interviews with ten students in this non-comparison study investigated their understandings of important characteristics of derivatives. Ellison found that students did develop connections between a number of ideas such as differentiability and local straightness of a curve, and of derivative as slope of curve, slope of tangent line and as instantaneous rate of change. Six of the ten students could produce the graph of the derivative function from a graph of a parent function, while only four could identify characteristics of a function from the graph of the derivative. A majority of the interviewees could state the formal definition of derivative but only half could connect the definition with a visualization of the slope of a curve at a point as the limiting value of the slopes of secant lines. However seven did link the tangent line to the notion of a limiting secant line. Ellison concluded that in situations where technology was used to investigate limits it was important to help students interpret the outputs which are based on discrete values and the theoretical tangent line or slope are never produced. 

Crocker (1992) interviewed students from a course in which Mathematica® was used to develop concepts and for problem solving. Students appeared to have formed an understanding of the relationship between the slope of a curve and the derivative. Crocker found that students who were characterized (by test results) as low or middle ability were more willing to use the computer to explore various solution paths than high ability students. The high ability students often used only a single strategy to try to solve a problem, and thus failed to solve it. 

Success in Subsequent Courses
Because calculus classes are often service courses for departments such as engineering, biology, and business, some of the studies already cited focused on courses designed for these majors. Other studies focused on courses whose intended audience was both mathematics and engineering majors. If the emphasis of the course is shifted away from a more theoretical foundation, will those students who go on to take more mathematics courses suffer as a consequence?

Cadena, Travis, and Norman (2003) compared final course grades of students from traditional calculus to those in a reform course Calculus (Hughes-Hallett, et al., 1994) over all grades in subsequent mathematics, engineering, and science courses taken. The researchers normalized the values to adjust for the fact that students take differing numbers of subsequent courses. They found no significant difference in the subsequent course grades between the two groups. 

The results of this study would support a “no harm” conclusion. What is the argument then for reform (typically technology-based) versus a traditional approach? This lies in the development of conceptual understandings, problem-solving abilities, and retention of knowledge and ability to apply it.

Roddick (2001) also studied student success in subsequent physics and engineering mechanics courses. The six above-average students in this comparison study enrolled in either a traditional class or a Calculus&Mathematica® course. They were interviewed after they completed the calculus sequence and had enrolled in an engineering mechanics course. Responses from task-based interviews and achievement were compared, as well as grades in subsequent courses. A significant difference was found in the grades for an Introduction to Differential Equations class that favored the traditional students. This appeared to be related to the fact that students spent less time in the C&M course calculating integrals. A significant difference was found favoring the C&M students in the first of a series of three calculus-based physics classes. And, when the top third of the C&M students (in terms of achievement level) were compared to the top third of traditional students, their achievement levels in Introductory Physics 1, Introductory Physics 2, and Introduction to Mechanics were significantly better than those of the traditional students. The results, then, are mixed for student performance in later courses. 

Because the Roddick study was conducted one to two quarters after the calculus course, and perhaps before some of these ideas and skills were revisited in subsequent courses, the results provide some indication about the retention of knowledge. Roddick found that the two groups of students reasoned differently while explaining their work on the tasks such as finding extrema of a function, determining which of two given graphs was the function and which its derivative, and finding the value of a definite integral, given the graph of a function. The C&M students typically used reasoning that could be categorized as drawing on conceptual knowledge, and the traditional students’ responses drew more on procedural knowledge. 

In looking at responses to the two questions, “What is a derivative?” and “What is an integral?”, Roddick found the traditional students to have responses that were linked to specific applications of derivatives and integrals, while the C&M students’ “responses were more general in nature and not linked to a specific example” (p. 177). In summary, she says “these responses represent each student’s overall understanding of derivative and integral, and will likely have a great impact on how they apply such understanding in future problems involving calculus” (p. 177). If knowledge is linked to specific examples, there may be difficulties that arise in applying this knowledge to new situations or in problem solving. This may account for student success (or lack thereof) in later courses.

Bookman (2000) both reports and reflects on a study conducted earlier (see Bookman & Friedman, 1998, 1999) when Bookman was the evaluator for Project CALC at Duke University. The subjects of the study were Calculus I and II students in 1990-91, 78 in Project CALC (PC) and 182 in traditional calculus (TC). (Initially, the incoming students were assigned to sections randomly, but University policy allows students to switch sections and courses during the first two weeks of classes.) Technology plays an important role in the Project CALC course, but it is only one of many ways in which the course differs from the traditional one, including goals, pedagogy, and emphases in subject matter. In 1993 and 1994–the students’ junior and senior years–Bookman collected data on the PC and TC subjects that included their grades in all courses with a calculus prerequisite or corequisite or that normally follow one or two semesters of calculus: mathematics (beyond Calculus III), physics, engineering, economics, and computer science, as well as specific courses in Introductory Biology, Organic Chemistry, and Public Policy Analysis. 
After controlling for SAT scores and performance in Calculus I and II, Bookman found that the traditionally taught students had better grade-point averages in these courses (in both their junior and senior years) by an average of 0.2 on a 4-point scale, a statistically significant difference. However, when the specific courses in biology, chemistry, and public policy were excluded, this difference disappeared. Also, there was no significant difference in upper-level mathematics courses alone. In addition, 23% of the PC students took more than two mathematics courses beyond Calculus III, as opposed to 13% of the TC students, a statistically significant difference. There are reasons local to Duke that can account for the slightly surprising performance of the TC students in biology, chemistry, and public policy, such as large numbers of the more conservative, risk-averse students (disproportionally premedical students) leaving the PC sections during the drop-add period. Bookman notes on reflection–and based on his follow-up interviews with seven matched pairs of the students–that course grades are a relatively poor proxy for understanding performance in subsequent courses. However, course grades appear to be the only large-scale measure we have, and the inadequacy of these as measures reinforces the importance of focused interviews as a means of getting better information about student performance.

The effects on performance in later courses of various approaches have been researched in a major study involving over two thousand students. Armstrong and Hendrix (1999) compared students on courses following three different approaches to Calculus I and II: a traditional approach (Ellis & Gulick, 1991), Calculus Using Mathematica (Stroyan, 1993), and the Harvard Calculus Consortium (Hughes Hallett, et al., 1994). 

Calculus Using Mathematica is a computer-intensive, project-based course for honors students, quite different from the traditional courses that currently follow it, and also involving students in more programming than does Calculus&Mathematica®. It attracted students with marginally better ACT scores, and its students performed marginally better in subsequent courses. Students who switched from this course in Calculus I to a different course in Calculus II performed significantly worse in later courses. The researchers attribute this in part to the fact that those students switching to other courses were already having difficulty and continued to have difficulty in their new courses. There was no significant difference in the later performance of students who switched from Calculus I to Calculus II in either direction between the traditional approach and the Harvard approach. For the majority of students who stayed with the same approach in both calculus courses, there was no statistically significant difference in performance on subsequent courses regardless of which approach they followed in Calculus I and II. The authors concluded that this justifies the teaching of traditional and reform courses concurrently as alternatives. In particular, they refute the opinion of critics who blame reformed calculus when their students “can’t differentiate” or “never learned to integrate”’ (Armstrong & Hendrix, 1999, p. 98).

A word of caution should be expressed here. The research does not say there is no difference between the two approaches, only that there is no statistically significant difference in the marks attained on subsequent examinations. Wells (1996), in a broad review of calculus research, noted that procedural items can give the impression that “most” students can be successful in the material covered, whereas more conceptually based items will reveal a broader range of success in understanding. If there is a qualitative difference, this may not be apparent statistically in the marks awarded for performance on traditional examinations. Mathematicians, in their desire to set examinations on which students can perform satisfactorily after following traditional courses, may therefore set questions that place more emphasis on procedural competence than on deeper mathematical understanding.

Although there is a broad consensus that students using technology do not score significantly differently from traditional students in pure mathematics exams, there is other evidence that those who use technology and go on to courses requiring problem-solving skills have better conceptual tools to formulate and solve problems (Meel, 1996; Roddick, 1998).
Non-Routine Problem Solving
Meel (1996) compared students from honors sections in third semester calculus, traditional versus Calculus&Mathematica®. Students engaged in task-based interviews designed to examine their understanding of definitions and approaches to solving non-routine problems. They also completed questions, on which technology was not allowed, that required them to differentiate, integrate, and find limits. Producing explanations of limits and derivatives was difficult for both groups. The C&M students scored significantly lower on questions related to definitions (not unexpected, since this is not emphasized in the C&M curriculum), and on conceptual problems. They were, however, more flexible in their ability to solve problems. They used technology to explore a problem and then used the results to plan a way to approach the problem. “The C&M students’ greater adaptability [afforded by the technology] created opportunities to re-examine their own thinking, to question if the line of thinking being used made sense in light of the resultant evidence, and to proceed further toward the solution” (p. 189). This was in contrast to the students from the traditional section who did not examine their assumptions and did not change problem-solving strategies even when an answer was obviously incorrect. 

The C&M students scored significantly lower on problems that were presented with text only versus those that were presented with text and a pictorial component. The traditional students did just as well on either presentation. As in other studies, the C&M students performed as well as the traditional students on procedural problems. However, on conceptual problems they scored significantly lower. Meel comments that this discrepancy may be due to the scoring rubric for these particular problems, which favored answers that were “consistent with formalized conceptualizations of limit, differentiation, and integration” (p. 184). Since C&M does not take a formal approach, that would disadvantage this group of students. Their explanations were often specific to certain cases or had errors, while the traditional students could provide more general, formal explanations. This result is in contrast to what Roddick (1998) found. This may be due to an instructor placing an emphasis on more formal definitions at Roddick’s institution, or perhaps the continuing use and exposure to the concepts in later courses, or the use of a less rigorous rubric. 
How Students Use Technology in Learning or Problem Solving 

Girard (2002) looked at how college students used a graphing calculator to solve problems involving limits and derivatives. The course she designed and taught drew on notions developed by Tall (1991) in A Graphic Approach to the Calculus on local linearity, and it incorporated visualization in learning of mathematics. Students completed five researcher-designed labs that were add-ons to a course using a traditional text. These labs were designed to develop intuitive approaches to concepts and to encourage students to make connections across representation types and to make interpretations. 

Girard found that students used the technology in a variety of ways while solving problems. In a limit problem that was unfamiliar to the students, they used it as a tool for exploration, and they became stuck if they tried to stay with only the algebraic representation. It appeared that students were more willing to try to solve an unfamiliar problem due to the opportunities afforded by the technology (e.g., providing a graph or numerical data to examine. For familiar problems, if students chose to use the calculator, it was as a tool for verification and confirmation. In general, students who were successful on tasks usually used two representations together, algebraic and either graphical or numerical. One of Girard’s recommendations is that “the curriculum must promote the use of numerical and graphical representation by having teachers model the use of those representations; and additionally students need to be regularly assigned tasks to include more discovery when using graphing calculators” (p. 179). 

A similar question was examined by Forster and Mueller (2001) through responses on the Tertiary Entrance Exam of Calculus in Australia, a large-scale public exam. Students could use graphing calculators, including the HP38G, which has limited symbolic capabilities. Some items on the test required students to show by-hand steps, and none specifically required the use of a calculator. Six of nineteen questions were identified as ones on which students might choose to use a calculator that had graphing capability and student responses on those questions were examined. Subsequent interviews with students elaborated on how the calculator was used and what errors were made. 

The researchers observed a number of difficulties encountered by the students: “Analysis … indicates that interpretation and transcription of graphs are major areas of difficulty for many students” (p. 47), including recognizing asymptotic behavior (both vertical and horizontal) from the graph produced by a calculator, noting points of discontinuity, and correctly copying graphs from the calculator screen. Many students chose to use a symbolic approach to problems, even when those problems might be more quickly solved by producing a graph with the calculator. It was not clear that the students used the calculator even for checking answers, as incorrect answers often went uncorrected, although the error could have been found by examining a graph or numerical data. 

These students were found to under-utilize the technology and to have difficulty correctly interpreting graphical information. The researchers predict that, with time and increasing familiarity with when and how technology can be used to solve problems, the technology will be used more for verification and exploration. 

Kidron and Zehavi (2002) report on the use of animation with Mathematica( to provide visualization of the process of convergence of Taylor polynomials to a function. The students in the study were high school students (ages 16 to 17), “studying at the highest level” (p. 207). They used the software first to develop the definition of a Taylor polynomial of degree n for f at x = 0. Then the software was used to examine errors in values of the approximating polynomial for values of x close to 0 by plotting the remainder 
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 as a function of x. Animation was then used to visualize “the dynamic process of the different polynomials approaching a given function”, for changing values of n (p. 211). 

The research question was “to what extent did the use of dynamic graphics help the students develop a formal understanding of the limit concept?” (p. 216). Students were asked to describe and interpret animations and to build new animations. They used the animations for visual confirmations of the notion of a limit and were encouraged to develop ways of reasoning about expected and unexpected results. The objective was to relate the visual behavior of the error term 
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 as n increased to the formal limit concept relating error ( to the corresponding value of n. On a written test, some students, but not all, were able to develop a formal definition related to limits. It appeared that “remembering the dynamic graphics was a source of trouble” (p. 225) and, while they recognized that there was a relationship between an epsilon and a delta in the definition, this process was reversed for some of them who gave a value in the domain of the function (a delta) and asked to find an epsilon (the error). 
Studies of Technology-Based Reform Courses

 To an increasingly greater extent, research studies on the use of technology in the calculus cover a wide range of considerations–to such an extent that attempting to summarize them would lose much of the subtle detail that makes them so distinctive. Most focus on implementations of a specific approach, often compared with a traditional course. A few focus on more general aspects, such as the effects of taking particular calculus courses on success in subsequent courses. Some papers make useful distinctions between various aspects of reform, in the curriculum (change in content of the syllabus) as opposed to the pedagogy (change in teaching strategies) (Lefton & Steinbart, 1995). In addition, we would place a high premium on the changes that occur in the learner. Here there is a wide spectrum of aspects, including the balance of learners’ conceptual and procedural understandings, their abilities to communicate mathematical ideas, their abilities to use technology productively, their development of problem-solving strategies, and their flexibility in coping with new situations. In this section we review a number of these more general aspects, referring the reader to the original papers for finer subtleties.

Two different studies concerning Calculus&Mathematica( (Lefton and Steinbart, 1995; Park and Travers, 1996) yield similar conclusions. The philosophy of the course (using technology as a toolbox for measurement, both exact and approximate) gives the opportunity for a new curriculum that emphasizes the underlying meaning by building on prototypical examples, at the same time eliminating the epsilon-delta definition from the curriculum and de-emphasizing formal proof. The pedagogy eliminates lectures and introduces the exploration of concepts through Mathematica( notebooks and discussion of ideas. Park and Travers (1996) suggest that “the C&M course allows the students to spend less time on computation and better direct their efforts to conceptual understanding” (p. 175). The comparison of the performance of students in these courses with that of students following a traditional approach consistently reveals a higher conceptual understanding and problem-solving ability, together with more positive attitudes towards technology and mathematics. The changes in the learner arise through a combination of both new curriculum and new pedagogy. Lefton and Steinbart (1995, pp. 93-94) found that client departments were “overwhelmingly supportive,” reflecting “the way our colleagues actually used the calculus.” The response of the mathematics department was “lukewarm,” a view that may reflect a response to changing the emphasis to inductive reasoning rather than proof, plus the perception of the increased effort involved in changing to the use of new technology.

A modification of the course using Maple instead of Mathematica( showed some differences in perceived outcome. Aldis, Sidhu, and Joiner (1999) used Calculus & Maple in two classes studying differential equations at the Australian Defense Academy over a seven-week period. Both classes experienced difficulty with Maple syntax in the time available but were appreciative of the groupwork and small class aspects. The authors hypothesized that a longer exposure to Maple could reduce the difficulties with syntax. Based on their explicit experience, they suggested:

… key concepts in a course should be introduced through a CAS. This would allow students to explore ideas without the hindrance of specific notation or technical terms and to develop a memorable, visual impression. Once introduced, the mathematical concepts could be followed up in small-group lectures and non-computer activities.
(Aldis, et al., 1999, p. 186)

Such a conclusion is consistent with an embodied approach to the calculus that was discussed earlier in this article, using multi-media tools to enable students to begin by gaining insights into the concepts before tackling the detail of the more powerful symbolism. Indeed, the approach of Calculus&Mathematica® has a deep underlying philosophy that builds concepts in a manner that is meaningful to the students in their own terms.

Similar conclusions arise with the Project CALC materials using Mathcad (Bookman & Friedman, 1998). Again there is a commitment to both new curriculum and new pedagogy using computer laboratories for cooperative learning. The Project CALC students performed significantly better than traditional students on problems that could be solved by pencil, paper, and scientific calculator. Some of the test items, such as word problems that required translation into mathematical form, were more appropriate for the Project CALC students than for those following the traditional course because the Project CALC students encountered such problems on a daily basis. However, the manner in which the students in the Project CALC group responded shows the ability of the reform course to raise awareness and success in achieving higher order learning goals.

Using Mathcad as an environment for computer-aided learning, Vlachos and Kehagias (2000) report positive effects of the reform course that led to their decision to implement the approach in all sections of their business calculus. Mathcad offers a combination of text, graphics, numeric, and symbolic facilities in a free-form environment within which the authors found it particularly easy to design their course. The improvement in student performance on standard tests was shown by comparison with a standard approach on those tests. The researchers noted their subjective experiences of improvement in attitudes, enthusiasm, systematic study, flexibility in using the representations, and personal ”empowerment,” by which weak students could “survive” and strong students have the opportunity to excel. They also noted several potentially negative factors, including the possible “overhead” in teaching specific computer skills, the possibility of the study degenerating into “computer gaming,” the possible effects on later courses with very different traditional content, and the disorientation that may occur for both students and instructors caused by the radical change in approach.

Drawing Conclusions

As we stated at the outset, a review of the research does not, and cannot, give definitive answers to whether reform courses using technology are “better” in general. There are no “theorems” in mathematics education as there are in mathematics. However, our journey through the research literature has produced some consistent themes that may be of benefit for those designing curricula and more generally for those seeking a deeper understanding of the issues.

First, a single opinion based purely on a particular philosophical viewpoint, be it from formal mathematics, crusading reformers, practical users, or anyone else, needs to be seen not only in its own context, in which it may have considerable substance, but also in a wider framework where other views have their own validity.

In this chapter we have aimed at presenting a broader framework under the following headings:

•
Cultural contexts of the calculus. Our purpose here was to generate a sense of the wider range of viewpoints.

•
The changing nature of the calculus in a technological world. By reviewing the changes over recent years, we gave a perspective to show how the situation continues to change, so that our analysis continues to consider a moving target.

•
Understanding the calculus–a spectrum of approaches. Different approaches are possible in the calculus, and they lead to different cognitive issues. A spectrum of approaches to the calculus was formulated, from a human embodied approach through to a formal mathematical viewpoint, with technology being used for dynamic enactive visualization, conceptual programming, and the pragmatic use of a variety of technological resources involving symbolic, numeric, and graphic representations.

•
The roles of teacher and learner, in which we considered ways in which the teacher can affect the learning, including teacher behaviors that encourage students to pursue surface rather than deep learning. 
•
Analyzing empirical research, in which we conducted a broad review of research studies and related them to the other themes of the chapter. 

In this journey, a number of themes arise. The most important is the role not just of the technology, but the manner in which the technology is used. Clearly the skill of using software such as Mathematica( or Maple is a valuable resource in its own right. However, the way in which technology is introduced and the purposes for doing so are both extremely important. Research studies to date–both on learning in general and on learning mathematics with or without technology–lead us to several conclusions: 
1. The development of the understanding of major concepts of calculus can precede procedural skill development by using technology and an appropriate pedagogical approach. Procedural skills can develop quickly, and focus can shift to aspects of functions that lead to different procedures. 
2. Results from quantitative comparison studies indicate that students in the experimental sections, in general, did as well as students in traditional sections on questions examining procedural skills. More time spent on development of understanding of concepts, whether through re-sequencing of material or not, does not affect typical procedural skill development and indicates that less time could be spent on skill development.
3. Concepts such as convergence of infinite series and interpretations of results from technology should be discussed and compared to results from procedures. 
4. Results from quantitative comparison studies that examined conceptual understanding were mixed, with experimental sections either performing the same as or better than control sections. Since it would seem that more time spent on concept development should result in better conceptual understandings, it is important to look at the studies in which there were no significant differences. Results from the Melin-Conjeros (1992) study point to difficulties with using only test items to make statements about student understanding. Other studies had treatments that involved the use of technology as an add-on without a significant change in pedagogy, which may result in no significant difference in learning.

5. In comparison studies that examined differences in pedagogy between sections that all integrated technology, differences in performance appeared linked to an approach that focused on concept development. The addition of technology without a corresponding change in curriculum does not appear to harm students, but may not lead to any significant gains in learning.
6. Results from qualitative studies indicate that students in experimental sections developed more and better connections related to major concepts such as derivative and integral. Students were better able to explain ideas, especially using their own language, and could often solve problems by drawing on conceptual knowledge and could also use procedural methods. 

Here are our observations about the implications of the available research – supplemented by our personal experiences and professional judgments – for continued renewal of calculus instruction.

1. Curricula need to be rethought periodically from the ground up, taking into consideration the tools that are available. It is not enough to think of clever ways to present calculus as the content was understood in the mid-20th century, when the available tool set was quite different, as was the intended audience. 
2. Much of the effort that goes into design of a technology-based curriculum can be squandered if one does not at the same time rethink the design of the pedagogy in the light of research showing the effectiveness of active-learning strategies and distinguishing between effective and ineffective ways to stimulate deep learning approaches. It is not enough to adopt a new book or even a new book-plus-software package.

3. Our tools for assessing student learning–whether for purposes of assigning grades or for evaluating effectiveness of our curricula–need to be consistent with stated goals for each course and with the learning environments in which we expect students to function. It is not enough to continue giving timed, memory-based, multiple-choice, no-technology examinations.

4. If we are serious about calculus understanding for everyone with a “need to know”–not just the potential replacements for the mathematics faculty–then we need to plan our curricula, pedagogy, and assessments for effective learning of the skill sets and mental disciplines that will be needed by a technology-literate public in the 21st century. It is not enough to keep using ourselves as “model learners.”

5. Revision of curricula, pedagogy, assessment tools, and technology tools means nothing without concurrent professional development, both pre-service and in-service, to keep faculty up to date with the required skills, knowledge, attitudes, and beliefs. It is not enough to continue acting as though an advanced degree is evidence of adequate preparation to teach. 
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