2019 DUKE MATH MEET RELAY ROUND PROBLEM 1

Position 1. We can write 2019 as

$$
2019=a^{4}+b^{4}+c^{4}+d^{4}+e^{4}
$$

where a, b, c, d, and e are integers. Find the minimum value of $|a+b+c+d+e|$, where $|x|$ is the absolute value function.

2019 DUKE MATH MEET RELAY ROUND PROBLEM 1

Position 2. Let $\mathrm{T}=\mathrm{TNYWR}$, and let $A B C D E F G H$ be a regular octagon centered at O with $A O=4 T$. Determine the area of the incircle of $A C E G$.

2019 DUKE MATH MEET RELAY ROUND PROBLEM 1

Position 3. Let $\mathrm{T}=$ TNYWR, and let $N=\frac{T}{\pi}$. Suppose a bag of 15 apples has N rotten apples. What is the probability that if I randomly pick apples from the bag without replacement, the $11^{\text {th }}$ apple I draw is the last rotten one? Express your answer as a common fraction.

2019 DUKE MATH MEET RELAY ROUND PROBLEM 2

Position 1. A cafeteria has 4 entrees and 5 desserts. How many different meals can Jung eat if he eats either 1 or 2 entrees and either 1 or 2 desserts?

2019 DUKE MATH MEET RELAY ROUND PROBLEM 2

Position 2. Let $\mathrm{T}=$ TNYWR. Find the total number of positive integers $n \leq T$ such that $n^{4}+5 n^{2}+9$ is not divisible by 5 .

2019 DUKE MATH MEET RELAY ROUND PROBLEM 2

Position 3. Let $\mathrm{T}=$ TNYWR. In the diagram below, let $A B=B C=\frac{T}{2}$, and $B D=\frac{T}{3}$. Find the length of DE.

