
Power Round

1 Dependence and Independence

Definition 1. A vector v in Rn is a collection of real numbers (v1, . . . , vn). The sum of two vectors
v = (v1, . . . , vn) and w = (w1, . . . , wn) is

v + w = (v1 + w1, . . . , vn + wn).

For any constant c ∈ R, we can multiply a vector v by the constant c to get

cv = (cv1, . . . , cvn).

Definition 2. We say that a collection of vectors x1, x2, . . . , xk is linearly dependent if there exist constants
c1, . . . , ck not all zero such that

c1x1 + c2x2 + . . . + ckxk = 0.

Definition 3. We say that a collection of vectors x1, . . . , xk is linearly independent if such constants do not
exist, i.e. whenever

c1x1 + c2x2 + . . . + ckxk = 0,

we must have c1 = c2 = . . . = ck = 0.

Problem 1.

(a) (2 points) Prove that the vectors (1, 2, 0), (1,−1, 1), and (3, 0, 2) are linearly dependent.

(b) (2 points) Prove that the vectors (1, 0, 0), (0, 1, 1), (1, 0, 1) are linearly independent.

(c) (2 points) Find a set of n linearly independent vectors x1, . . . , xn ∈ Rn for every n.

Definition 4. We say that a collection of vectors x1, . . . , xk are affinely dependent if there exist constants
c1, . . . , cn not all zero such that

c1x1 + c2x2 + . . . + ckxk = 0 and c1 + c2 + . . . + ck = 0.

Definition 5. We say that a collection of vectors x1, . . . , xk are affinely independent if such constants do
not exist.

Problem 2.

(a) (2 points) Prove that the vectors (1, 2, 1), (1,−1, 1), (1, 0, 1) are affinely dependent.

(b) (2 points) Prove that the vectors (1, 2, 0), (1,−1, 1), and (3, 0, 2) are affinely independent.

Problem 3. (2 points) Prove that if x1, . . . , xk are linearly independent, then they are affinely independent.

You may assume the fact that for vectors in Rn, the maximum number of linearly independent vectors
is n. Therefore if we have n + 1 vectors x1, . . . , xn+1 ∈ Rn these must be linearly dependent.

Problem 4. (2 points) Find an example where equality is reached, i.e. find n linearly independent vectors
x1, . . . , xn in Rn.

Problem 5.

(a) (2 points) Find n + 1 affinely independent vectors in Rn.

(b) (4 points) Prove that the maximum number of affinely independent vectors in Rn is n + 1.
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2 Convexity
Definition 6. The convex hull of a set of vectors S is the set of all vectors that can be written as

c1x1 + . . . + ckxk

for some x1, . . . , xk ∈ S, and some c1, . . . , ck ≥ 0 such that c1 + . . . + ck = 1.

Definition 7. A set of vectors S is called convex if it is equal to its own convex hull.

Theorem 1 (Radon’s Theorem). Let S = {x1, . . . , xn+2} be any set of n + 2 points in Rn. Then S can be
decomposed into two nonempty disjoint subsets A and B such that the convex hulls of A and B intersect.

Problem 6. (2 points) Verify Radon’s Theorem for the points (0, 0), (1, 0), (0, 1), (1, 1) by finding disjoint
sets A and B and a point p such that p is in the convex hulls of both A and B.

Problem 7. Prove Radon’s Theorem by completing the following steps where notation is as in Theorem 1:

(a) (1 point) Prove that there exist constants c1, . . . , cn+2, not all zero, such that
∑

i cixi = 0 and
∑

i ci = 0.

(b) (2 points) Let I be the set of all indices i such that ci > 0. Show that I is nonempty.

(c) (2 points) Let J be the set of all indices j such that cj ≤ 0. Show that∑
i∈I

ci =
∑
j∈J

−cj

and show that this common sum is not zero.

(d) (4 points) Show that ∑
i∈I

cixi =
∑
j∈J

−cjxj

and use this to show that the convex hulls of A = {xi : i ∈ I} and B = {xj : j ∈ J} intersect.

Theorem 2 (Helly’s Theorem). Let X1, . . . , Xk be a collection of convex sets in Rn with k > n + 1. If the
intersection of any n + 1 of these is nonempty, the whole collection has a nonempty intersection.

Problem 8 (Proof of Helly’s Theorem).

(a) (5 points) Let k = n+2 and assume the setup for Helly’s Theorem. Let xj be a point in the intersection
of all Xi aside from Xj for j = 1, . . . , n+ 2 (which exists by the Theorem’s assumptions). Use Radon’s
Theorem to prove Helly’s Theorem, i.e. to find a point p ∈

⋂
i Xi.

(b) (4 points) Use induction on k to prove Helly’s Theorem for k ≥ n + 2 (HINT: Try to collapse two
sets by replacing them with their intersection, and show that the hypothesis of Helly’s Theorem is still
satisfied. You will have to use part (a) both for the base case and the inductive step).

3 Applications of Helly’s Theorem
For the following problems you may assume Helly’s Theorem as stated above.

Problem 9. (2 points) Given k points in the plane such that every three are contained in a disk of radius
1, prove that all k points are contained in a disk of radius 1 (You may assume that disks are convex).

Problem 10. (2 points) Use the above problem to show that given k points in the plane such that the
distance between any two points is at most 1, there is a disk of radius 1√

3
that contains all k points.
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Problem 11. (3 points) Let S ⊂ R3 be the unit sphere in 3 dimensions, i.e. the surface of the unit ball, and
let s1, . . . , sk be closed hemispheres (i.e. a hemisphere that includes their equator, note that hemispheres
need not be parallel to any of the axes). Prove that if

k⋃
i=1

si = S

i.e. that the si cover S, then there exist 4 hemispheres si1 , si2 , si3 , si4 that cover S, i.e.

4⋃
j=1

sij = S

Problem 12 (Generalization of Helly’s Theorem). (3 points) For a set of vectors S and a vector p, let
p + S = {p + s : s ∈ S} denote the set S translated by the vector p (e.g. if S is a circle centered at
the origin, then p + S is a circle centered at p with the same radius). Let K ⊂ Rn be a set and let
S = {X1, . . . , Xk}, Xi ⊂ Rn be a collection of convex sets with k > n + 1. Prove that if the intersection of
any n + 1 sets of S contains a translated copy of K, i.e. for every Xi1 , . . . , Xin+1

there exists a point p such
that

p + K ⊂
n+1⋂
j=1

Xij

then the intersection of all k sets contains a translated copy of K, i.e. there exists a point p such that

p + K ⊂
k⋂

i=1

Xi.

Note that the original Helly’s Theorem can be recovered by letting K be a point.
HINT: You do not need to copy the proof of Helly’s Theorem. Try to transform the problem so that you
can directly apply Helly’s Theorem as stated above.
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