
Power Round

1 Dependence and Independence

Definition 1. A vector v in Rd is a collection of real numbers (v1, . . . , vn). The sum of two vectors
v = (v1, . . . , vn) and w = (w1, . . . , wn) is

v + w = (v1 + w1, . . . , vn + wn).

For any constant c ∈ R, we can multiply a vector v by the constant c to get

cv = (cv1, . . . , cvn).

Definition 2. We say that a collection of vectors x1, x2, . . . , xk is linearly dependent if there exist constants
c1, . . . , ck not all zero such that

c1x1 + c2x2 + . . . + ckxk = 0.

Definition 3. We say that a collection of vectors x1, . . . , xk is linearly independent if such constants do not
exist, i.e. whenever

c1x1 + c2x2 + . . . + ckxk = 0,

we must have c1 = c2 = . . . = ck = 0.

Problem 1.

(a) (2 points) Prove that the vectors (1, 2, 0), (1,−1, 1), and (3, 0, 2) are linearly dependent.

Solution: We have that

1 · (1, 2, 0) + 2 · (1,−1, 1)− 1 · (3, 0, 2) = 0

so they are linearly dependent.

(b) (2 points) Prove that the vectors (1, 0, 0), (0, 1, 1), (1, 0, 1) are linearly independent.

Solution: Assume that
c1(1, 0, 0) + c2(0, 1, 1) + c3(1, 0, 1) = 0.

Then c1 + c3 = 0, c2 = 0, and c2 + c3 = 0. From the second and third equations we get that
c2 = c3 = 0 and plugging this into the first equation we get that c1 = c2 = c3 = 0. Therefore these
vectors are linearly independent.

Definition 4. We say that a collection of vectors x1, . . . , xk are affinely dependent if there exist constants
c1, . . . , cn not all zero such that

c1x1 + c2x2 + . . . + ckxk = 0 and c1 + c2 + . . . + ck = 0.

Definition 5. We say that a collection of vectors x1, . . . , xk are affinely independent if such constants do
not exist.

Problem 2.

(a) (2 points) Prove that the vectors (1, 2, 1), (1,−1, 1), (1, 0, 1) are affinely dependent.
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Solution: Note that
1 · (1, 2, 1) + 2 · (1,−1, 1)− 3 · (1, 0, 1) = 0

and 1 + 2− 3 = 0 so these are affinely dependent.

(b) (2 points) Prove that the vectors (1, 2, 0), (1,−1, 1), and (3, 0, 2) are affinely independent.

Solution: Assume that
c1(1, 2, 0) + c2(1,−1, 1) + c3(3, 0, 2) = 0

and c1 + c2 + c3 = 0. Then we get that c1 + c2 + 3c3 = 0, c1 − c2 = 0 and c1 + c + 2 + 2c + 3 = 0.
Substituting c1 + c2 + c3 = 0 into either the first or third equations gives that c3 = 0. Therefore
c1 + c2 = 0 and c1 − c2 = 0. Adding these gives c1 = 0 and subtracting gives c2 = 0 so
c1 = c2 = c3 = 0.

Problem 3. (2 points) Prove that if x1, . . . , xk are linearly independent, then they are affinely independent.

Solution: Assume that x1, . . . , xk are linearly independent. Now assume that we have constants
c1, . . . , ck such that

c1x1 + . . . + ckxk = 0

and c1+. . .+ck = 0. Then by linear independence the above equality implies that c1 = c2 = . . . = ck = 0
so these are affinely independent.
**(Maybe remove as a problem? Seems kind of trivial/just testing proof writing)**

It is known that for vectors in Rn, the maximum number of linearly independent vectors is n. Therefore
if we have n + 1 vectors x1, . . . , xn+1 ∈ Rn these must be linearly dependent.

Problem 4. (2 points) Find an example where equality is reached, i.e. find n linearly independent vectors
x1, . . . , xn in Rn.

Problem 5.

(a) (2 points) Find n + 1 affinely independent vectors in Rn.

(b) (4 points) Prove that the maximum number of affinely independent vectors in Rn is n + 1.

2 Convexity
Definition 6. The convex hull of a set of vectors S is the set of all vectors that can be written as

c1x1 + . . . + ckxk

for some x1, . . . , xk ∈ S, and some ci ≥ 0 such that c1 + . . . + ck = 1.

Definition 7. A set of vectors S is called convex if it is equal to its own convex hull.

Theorem 1 (Radon’s Theorem). Let S = {x1, . . . , xn+2} be any set of n + 2 points in Rn. Then S can be
decomposed into two disjoint subsets A and B such that the convex hulls of A and B intersect.

Problem 6. (2 points) Verify Radon’s theorem for the points (0, 0), (1, 0), (0, 1), (1, 1) by finding sets A
and B and a point p such that p is in the convex hulls of both A and B.
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Solution: Let A = {(0, 0), (1, 1)} and B = {(0, 1), (1, 0)}. Then the convex hull of A is the segment
connecting (0, 0) and (1, 1) and the convex hull of B is the segment connecting (0, 1) and (1, 0). These
intersect at the point (1/2, 1/2) so we can let p = (1/2, 1/2) and we are done.

Problem 7. Prove Radon’s theorem by completing the following steps:

(a) (1 point) Prove that there exist constants c1, . . . , cn+2, not all zero, such that
∑

i cixi = 0 and
∑

i ci = 0.

Solution: By problem 5, c1, . . . , cn+2 are affinely dependent so such constants must exist.

(b) (2 points) Let I be the set of all indices i such that ci > 0. Show that I is non-empty.

Solution: Assume that no such i exists. Then if there were an i such that ci < 0, the total sum∑
i ci would be strictly negative contradicting the assumption that

∑
i ci = 0. Therefore all of the

ci would have to be 0, contradicting that the constants are not all zero. Therefore we have reached
a contradiction and such an i must exist so I is nonempty.

(c) (2 points) Let J be the set of all indices j such that cj ≤ 0. Show that∑
i∈I

ci =
∑
j∈J
−cj

and show that this common sum is not zero.

Solution: We can rearrange the identity as∑
i∈I

ci +
∑
j∈J

cj = 0

which follows because I and J form a partition of {1, . . . , n + 2}. Because I is nonempty and for
all i ∈ I, ci > 0 we must have that the first sum is nonzero, and since the two sums are equal,
neither sum can be zero.

(d) (4 points) Show that ∑
i∈I

cixi =
∑
j∈J
−cjxj

and use this to show that the convex hulls of A = {xi : i ∈ I} and B = {xj : j ∈ J} intersect.

Solution: This again follows from rearranging this as∑
i∈I

cixi +
∑
j∈J

cjxj = 0
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which follows from the definition of the ci and the fact that I, J form a partition of {1, . . . , n+ 2}.
Let the common sum in the previous part be s. Because s 6= 0 we can divide this equality by s to
get ∑

i∈I

ci
s
xi =

∑
j∈J

−cj
s

xj

Let this common value be p. Then
∑

i∈I
ci
s = 1 and

∑
j∈J

−cj
s = 1, and all of these coefficients

are non-negative. Therefore p is in the convex hull of both {xi : i ∈ I} and {xj : j ∈ J} so we are
done.

Theorem 2 (Helly’s Theorem). Let X1, . . . , Xk be a collection of convex sets in Rn with k > n + 1. If the
intersection of any n + 1 of these is non-empty, the whole collection has a nonempty intersection.

Problem 8 (Proof of Helly’s Theorem).

(a) (5 points) Let k = n+2 and assume the setup for Helly’s Theorem. Let xj be a point in the intersection
of all Xi aside from Xj for j = 1, . . . , n+ 2. (which exists by the theorem’s assumptions). Use Radon’s
Theorem to prove Helly’s theorem, i.e. to find a point p ∈

⋂
i Xi.

Solution: By Radon’s Theorem, there exists a partition I, J of {1, . . . , n + 2} and a point p such
that p is in the convex hulls of both {xi : i ∈ I} and {xj : j ∈ J}. I claim that p ∈

⋂
i Xi. Fix an i.

Then either i ∈ I or i ∈ J . If i ∈ I, then p is in the convex hull of {xj : j ∈ J}. Note that xj ∈ Xi

for j ∈ J because i 6∈ J . Therefore p can be written as a convex combination of points {xj}j∈J
each of which is in xi. Since Xi is convex, this implies that p is an element of Xi. Therefore p is
an element of each Xi so p is an element of their intersection, so we are done.

(b) (4 points) Use induction on k to prove Helly’s Theorem for k ≥ n + 2 (HINT: Try to collapse two
sets by replacing them with their intersection, and show that the hypothesis of Helly’s Theorem is still
satisfied. You will have to use part (a) both for the base case and the inductive step).

Solution: The base case for k = n+2 is proved above, so let us assume that the statement is true
for some k ≥ n+ 2. Then assume that we have sets X1, . . . , Xk+1 such that the intersection of any
n+ 1 is non-empty. Then consider the sets X1, . . . , Xk−1, Xk ∩Xk+1. I claim that the intersection
of any n + 1 of these is nonempty. The collections that do not include Xk ∩Xk+1 automatically
satisfy this due to the problem’s hypothesis. Therefore it suffices to show that it is true for sets
of the form {Xi1 , . . . , Xin , Xk ∩ Xk+1}. Consider the set {Xi1 , . . . , Xin , Xk, Xk+1}. By Helly’s
Theorem, this has a nonempty intersection, i.e. there is a point p in their intersection. Then this
point p will also lie in the intersection of {Xi1 , . . . , Xin , Xk ∩ Xk+1}, so these sets must have a
nonempty intersection. Therefore by the inductive step, there exists a point p in the intersection
of X1, . . . , Xk−1, Xk∩Xk+1, and this point p is therefore in each of the Xi, so p ∈

⋂
i Xi as desired.

This completes the induction.

3 Applications of Helly’s Theorem
For the following problems you may assume Helly’s Theorem as stated above.

Problem 9. (2 points) Given k points in the plane such that every three are contained in a disk of radius
1, prove that all k points are contained in a disk of radius 1 (You may assume that disks are convex).
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Solution: Let the points be x1, . . . , xk and associate with each point xi a unit disk Di centered at xi.
Then the statement that any three are contained in a disk of radius 1 implies that for any three disks,
Di, Dj , Dk their intersection is nonempty. Since disks are convex, Helly’s Theorem tells us that the
intersection of all of the disks is non-empty. Let p be this common intersection point. Then the distance
between p and xi for any i is at most 1, so all of the xi lie in a circle of radius 1 centered around p.

Problem 10. (3 points) Use the above problem to show that given k points in the plane such that the
distance between any two points is at most 1, there is a disk of radius 1√

3
that contains all k.

Solution: Consider three points x1, x2, x3. I claim that their circumradius is at most 1√
3

which would

imply the desired statement since we could simply apply the above problem scaled down by a factor
of 1√

3
. First we can scale the triangle x1, x2, x3 up until at least one of the sides is exactly equal to 1.

It suffices to show that this new triangle has circumradius at most 1√
3
. Assume that x2x3 has length

1. Then fix x2, x3 and vary the x1 around the circumcircle of x2, x3. We can continue to move it until
x1 is equidistant from x2, x3 and makes x1, x2, x3 an isosceles acute triangle. Since this process doesn’t
change the circumradius, it suffices to to show that all isosceles acute triangles where the base has length
1 has the desired property. If x1x2 and x2x3 are less than 1, shift x1 away from x2x3 until x1, x2, x3

is equilateral. Since for an acute triangle the circumcircle is the smallest circle that covers the triangle,
this can only increase the circumradius. Therefore it suffices to show that an equilateral triangle with
side length 1 has circumradius at most 1√

3
, and this is in fact an equality so we are done.

**NOTE: Is there a faster way to show this inequality?**

Problem 11. (3 points) Let S ⊂ R3 be the unit sphere in 3 dimensions and let s1, . . . , sk be closed
hemispheres (i.e. a hemisphere that includes the equator). Prove that if

k⋃
i=1

si = S

i.e. that the si cover S, then there exist 4 hemispheres si1 , si2 , si3 , si4 that cover S, i.e.

4⋃
j=1

sij = S

Solution: Let Xi be the convex hull of S \ si. I claim that for a subset I ⊂ {1, . . . , k},
⋂

i∈I Xi is
non-empty if and only if

⋃
i∈I si is not all of S. If⋃

i∈I
si 6= S

there is a point p ∈ S such that p ∈ S \ si for i ∈ I, so p ∈
⋂

i∈I Xi. On the other hand, if p ∈
⋂

i∈I Xi,
then if we project p onto the surface of the hemisphere, it will still not be an element of S \ si for i ∈ I
because Xi is conical. Therefore p 6∈

⋃
i∈I si so these do not cover S.

Now assume that no 4 hemispheres cover S. Then the intersection of any four of the Xi is non-empty.
Therefore by Helly’s Theorem, the intersection of all of the Xi is nonempty, so the si do not all cover
S, contradicting the assumption in the problem statement that they do cover S. Therefore some set of
4 hemispheres must cover S.
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Problem 12 (Generalization of Helly’s Theorem). (4 points) For a set of vectors S and a vector p, let
p + S = {p + s : s ∈ S} denote the set S translated by the vector p (e.g. if S is a circle centered at
the origin, then p + S is a circle centered at p with the same radius). Let K ⊂ Rn be a set and let
S = {X1, . . . , Xk}, Xi ⊂ Rn be a collection of convex sets with k > n + 1. Prove that if the intersection of
any n + 1 sets of S contains a translated copy of K, i.e. for every Xi1 , . . . , Xin+1

there exists a point p such
that

p + K ⊂
n+1⋂
j=1

Xij

then the intersection of all k sets contains a translated copy of K, i.e. there exists a point p such that

p + K ⊂
k⋂

i=1

Xi.

Note that the original Helly’s theorem can be recovered by letting K be a point.
HINT: You do not need to copy the proof of Helly’s Theorem. Try to transform the problem so that you
can directly apply Helly’s theorem as stated above.

Solution: Let Yi = {x ∈ Rn : x + K ⊂ Xi}. I claim that the Yi are convex. Let y1, . . . , yk ∈ Yi and let
c1, . . . , ck be non-negative numbers summing to 1. Then I claim that c1y1 + . . .+ ckyk ∈ Yi. We need to
show that

c1y1 + . . . + ckyk + K ⊂ Xi

This is equivalent to showing that for every k ∈ K, we have

c1y1 + . . . + ckyk + k ∈ Xi

however this is equivalent to
c1(y1 + k) + . . . + ck(yk + k) ∈ Xi

since
∑

i ci = 1. Since yj + k ∈ Xi and Xi is convex, this statement is true.
Now the problem statement is equivalent to the fact that the intersection of any n + 1 of the Yi is
nonempty. By Helly’s Theorem, this implies that the intersection of all of the Yi is nonempty. Let a
point in this intersection be p. Then p + K is a subset of Xi for every i, so p + K ⊂

⋂k
i=1 Xi.
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