## Problems 1-2

Time Limit: 10 minutes

Name $\qquad$
Team $\qquad$

Problem 1. Compute the value of $N$, where

$$
N=818^{3}-6 \cdot 818^{2} \cdot 209+12 \cdot 818 \cdot 209^{2}-8 \cdot 209^{3}
$$

Problem 2. Suppose $x \leq 2019$ is a positive integer that is divisible by 2 and 5 , but not 3. If 7 is one of the digits in $x$, how many possible values of $x$ are there?

Problems 3-4
Time Limit: 10 minutes

Name $\qquad$
Team $\qquad$

Problem 3. Find all non-negative integer solutions $(a, b)$ to the equation

$$
b^{2}+b+1=a^{2} .
$$

Problem 4. Compute the remainder when $\sum_{n=1}^{2019} n^{4}$ is divided by 53 .

## Problems 5-6

Time Limit: 10 minutes

Name $\qquad$
Team $\qquad$

Problem 5. Let $A B C$ be an equilateral triangle and $C D E F$ a square such that $E$ lies on segment $A B$ and $F$ on segment $B C$. If the perimeter of the square is equal to 4 , what is the area of triangle $A B C$ ?


## Problem 6.

$$
S=\frac{4}{1 \times 2 \times 3}+\frac{5}{2 \times 3 \times 4}+\frac{6}{3 \times 4 \times 5}+\cdots+\frac{101}{98 \times 99 \times 100},
$$

Let $T=\frac{5}{4}-S$. If $T=\frac{m}{n}$, where $m$ and $n$ are relatively prime integers, find the value of $m+n$.

ANSWER TO PROBLEM 5
ANSWER TO PROBLEM 6


## Problems 7-8

Time Limit: 10 minutes

Name $\qquad$
Team $\qquad$

Problem 7. Find the sum of

$$
\sum_{i=0}^{2019} \frac{2^{i}}{2^{i}+2^{2019-i}}
$$

Problem 8. Let $A$ and $B$ be two points in the Cartesian plane such that $A$ lies on the line $y=12$, and $B$ lies on the line $y=3$. Let $C_{1}, C_{2}$ be two distinct circles that intersect both $A$ and $B$ and are tangent to the $x$-axis at $P$ and $Q$, respectively. If $P Q=420$, determine the length of $A B$.

Problems 9-10
Time Limit: 10 minutes

Name $\qquad$
Team $\qquad$

Problem 9. Zion has an average 2 out of 3 hit rate for 2-pointers and 1 out of 3 hit rate for 3 -pointers. In a recent basketball match, Zion scored 18 points without missing a shot, and all the points came from 2 or 3 -pointers. What is the probability that all his shots were 3 -pointers?

Problem 10. Let $S=\{1,2,3, \ldots, 2019\}$. Find the number of non-constant functions $f: S \rightarrow S$ such that

$$
f(k)=f(f(k+1)) \leq f(k+1) \quad \text { for all } 1 \leq k \leq 2018
$$

Express your answer in the form $\binom{m}{n}$, where $m$ and $n$ are integers.


