Individual Round

Duke Math Meet 2018

November 2018

Problem 1. Let $f(x) = \frac{3x^3 + 7x^2 - 12x + 2}{x^2 + 2x - 3}$. Find all integers n such that f(n) is an integer.

Problem 2. How many ways are there to arrange 10 trees in a line where every tree is either a yew or an oak and no two oak trees are adjacent?

Problem 3. 20 students sit in a circle in a math class. The teacher randomly selects three students to give a presentation. What is the probability that none of these three students sit next to each other?

Problem 4. Let $f_0(x) = x + |x - 10| - |x + 10|$, and for $n \ge 1$, let $f_n(x) = |f_{n-1}(x)| - 1$. For how many values of x is $f_{10}(x) = 0$?

Problem 5. 2 red balls, 2 blue balls, and 6 yellow balls are in a jar. Zion picks 4 balls from the jar at random. What is the probability that Zion picks at least 1 red ball and 1 blue ball?

Problem 6. Let $\triangle ABC$ be a right-angled triangle with $\angle ABC = 90^{\circ}$ and AB = 4. Let D on \overline{AB} such that AD = 3DB and $\sin \angle ACD = \frac{3}{5}$. What is the length of BC?

Problem 7. Find the value of

$$\frac{1}{1 + \frac{1}{2 + \frac{1}{1 + \frac{1}{2 + \frac{1}{1 + \dots}}}}}$$

Problem 8. Consider all possible quadrilaterals $\Box ABCD$ that have the following properties; $\Box ABCD$ has integer side lengths with AB||CD, the distance between \overline{AB} and \overline{CD} is 20, and AB=18. What is the maximum area among all these quadrilaterals, minus the minimum area?

Problem 9. How many perfect cubes exist in the set $\{1^{2018}, 2^{2017}, 3^{2016}, \dots, 2017^2, 2018^1\}$?

Problem 10. Let n be the number of ways you can fill a 2018×2018 array with the digits 1 through 9 such that for every 11×3 rectangle (not necessarily for every 3×11 rectangle), the sum of the 33 integers in the rectangle is divisible by 9. Compute $\log_3 n$.