Duke Math Meet 2017
 Tiebreak Round

1. Find the sum of all 3 -digit positive integers $\overline{a b c}$ that satisfy

$$
\overline{a b c}=\binom{n}{a}+\binom{n}{b}+\binom{n}{c}
$$

for some $n \leq 10$.
2. Feng and Trung play a game. Feng chooses an integer p from 1 to 90 , and Trung tries to guess it. In each round, Trung asks Feng two yes-or-no questions about p. Feng must answer one question truthfully and one question untruthfully. After 15 rounds, Trung concludes there are n possible values for p. What is the least possible value of n, assuming Feng chooses the best strategy to prevent Trung from guessing correctly?
3. A hypercube H_{n} is an n-dimensional analogue of a cube. Its vertices are all the points $\left(x_{1}, \ldots, x_{n}\right)$ that satisfy $x_{i}=0$ or 1 for all $1 \leq i \leq n$ and its edges are all segments that connect two adjacent vertices. (Two vertices are adjacent if their coordinates differ at exactly one x_{i}. For example, $(0,0,0,0)$ and $(0,0,0,1)$ are adjacent on H_{4}.) Let $\phi\left(H_{n}\right)$ be the number of cubes formed by the edges and vertices of H_{n}. Find $\phi\left(H_{4}\right)+\phi\left(H_{5}\right)$.
4. Denote the legs of a right triangle as a and b, the radius of the circumscribed circle as R and the radius of the inscribed circle as r. Find $\frac{a+b}{R+r}$.

