Duke Math Meet 2017 Tiebreak Round

1. Find the sum of all 3-digit positive integers \overline{abc} that satisfy

$$\overline{abc} = \binom{n}{a} + \binom{n}{b} + \binom{n}{c}$$

for some $n \leq 10$.

- 2. Feng and Trung play a game. Feng chooses an integer p from 1 to 90, and Trung tries to guess it. In each round, Trung asks Feng two yes-or-no questions about p. Feng must answer one question truthfully and one question untruthfully. After 15 rounds, Trung concludes there are n possible values for p. What is the least possible value of n, assuming Feng chooses the best strategy to prevent Trung from guessing correctly?
- 3. A hypercube H_n is an *n*-dimensional analogue of a cube. Its vertices are all the points $(x_1, ..., x_n)$ that satisfy $x_i = 0$ or 1 for all $1 \le i \le n$ and its edges are all segments that connect two adjacent vertices. (Two vertices are adjacent if their coordinates differ at exactly one x_i . For example, (0,0,0,0) and (0,0,0,1) are adjacent on H_4 .) Let $\phi(H_n)$ be the number of cubes formed by the edges and vertices of H_n . Find $\phi(H_4) + \phi(H_5)$.
- 4. Denote the legs of a right triangle as a and b, the radius of the circumscribed circle as R and the radius of the inscribed circle as r. Find $\frac{a+b}{R+r}$.