Duke Math Meet 2017
 Relay Round Solution

Relay Round 1

1. We have

$$
\begin{aligned}
\sin 20^{\circ} \cdot \sin 10^{\circ} \cdot \sin 50^{\circ} \cdot \sin 70^{\circ} & =\sin 20^{\circ} \cos 20^{\circ} \cdot \cos 40^{\circ} \cdot \cos 80^{\circ} \\
& =\frac{1}{2} \sin 40^{\circ} \cdot \cos 40^{\circ} \cdot \cos 80^{\circ} \\
& =\frac{1}{4} \sin 80^{\circ} \cdot \cos 80^{\circ} \\
& =\frac{1}{8} \sin 160^{\circ}=\frac{1}{8} \sin 20^{\circ}
\end{aligned}
$$

Therefore $\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ}=\frac{1}{16}$. The answer is 16
2. $T=16$. We have $a_{n+1}-4 a_{n}=4\left(a_{n}-4 a_{n-1}\right)=4^{2}\left(a_{n-1}-4 a_{n-2}\right)=$ $\cdots=4^{n}\left(a_{1}-4 a_{0}\right)=0$ So we have $a_{n+1}=4 a_{n}$. Therefore $a_{n}=4^{n}$ and $\log _{2} a_{2017}=4034$
3. $T=4034$. We want to show, by induction, that if there are $n=2 k$ participants, the largest total number of matches played in the tournament is less than k^{2}. First, when $k=1$, there are only two participants, so the total number of matches can't exceed 1. Therefore the statement is true. Suppose it is true for $k-1$, then given a tournament with $2 k$ participants, we can find a pair that has played a match. Let's say participant A played with participant B. If they together played more than $n-1$ matches in total, then by pigeonhole principle, there exists another participant C who played with both A and B. It contradicts to the fact that no 3 participants of whom each pair has played with each other. So the total number of matches played by A and B is at most $n-1$. The rest $2 n-2$ participants played at most $(k-1)^{2}$ matches by induction hypothesis. Therefore the total number of matches in this tournament is at most $(k-1)^{2}+n-1=(k-1)^{2}+2 k-1=k^{2}$. Taking $n=4034=2 k$, we obtain the answer $2017^{2}=4068289$

Relay Round 2

1. We have $p=\left(c^{2}-q\right)\left(c^{2}+q\right)$. Since p is a prime, $c^{2}-q=1$ and $c^{2}+q=p$. Now we know $q=c^{2}-1=(c-1)(c+1)$. So either $c-1=1$ and $c+1=q$ or $c-1=-q$ and $c+1=-1$. Both solutions show that $q=3$. Then $p=7$. Hence $p+q=10$
2. $T=10$. Let s_{n} be the number of subsets in $\{1,2, \ldots, n\}$ that do not contain two consecutive numbers. Then $s_{n}=s_{n-1}+s_{n-2}$. We know $s_{1}=2$ and $s_{2}=3$. So $s_{10}=144$
3. $T=144$. Since $a+b+c=0, a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+\right.$ $\left.c^{2}-a b-a c-b c\right)=0$. Hence, $a b c=\frac{e^{-6}}{3}$.
