Duke Math Meet 2017
Relay Round Solution

Relay Round 1

1. We have

\[
\sin 20^{\circ} \cdot \sin 10^{\circ} \cdot \sin 50^{\circ} \cdot \sin 70^{\circ} = \sin 20^{\circ} \cos 20^{\circ} \cdot \cos 40^{\circ} \cdot \cos 80^{\circ}
\]
\[
= \frac{1}{2} \sin 40^{\circ} \cdot \cos 40^{\circ} \cdot \cos 80^{\circ}
\]
\[
= \frac{1}{4} \sin 80^{\circ} \cdot \cos 80^{\circ}
\]
\[
= \frac{1}{8} \sin 160^{\circ} = \frac{1}{8} \sin 20^{\circ}
\]

Therefore \(\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ} = \frac{1}{16} \). The answer is \(16 \).

2. \(T = 16 \). We have

\[
a_{n+1} - 4a_n = 4(a_n - 4a_{n-1}) = 4^2(a_{n-1} - 4a_{n-2}) = \cdots = 4^n(a_1 - 4a_0) = 0
\]

So we have \(a_{n+1} = 4a_n \). Therefore \(a_n = 4^n \) and

\[
\log_2 a_{2017} = 4034
\]

3. \(T = 4034 \). We want to show, by induction, that if there are \(n = 2k \) participants, the largest total number of matches played in the tournament is less than \(k^2 \). First, when \(k = 1 \), there are only two participants, so the total number of matches can’t exceed 1. Therefore the statement is true. Suppose it is true for \(k - 1 \), then given a tournament with \(2k \) participants, we can find a pair that has played a match. Let’s say participant \(A \) played with participant \(B \). If they together played more than \(n - 1 \) matches in total, then by pigeonhole principle, there exists another participant \(C \) who played with both \(A \) and \(B \). It contradicts to the fact that no 3 participants of whom each pair has played with each other. So the total number of matches played by \(A \) and \(B \) is at most \(n - 1 \). The rest \(2n - 2 \) participants played at most \((k - 1)^2 \) matches by induction hypothesis. Therefore the total number of matches in this tournament is at most

\[
(k - 1)^2 + n - 1 = (k - 1)^2 + 2k - 1 = k^2.
\]

Taking \(n = 4034 = 2k \), we obtain the answer \(2017^2 = 4068289 \).
1. We have \(p = (c^2 - q)(c^2 + q) \). Since \(p \) is a prime, \(c^2 - q = 1 \) and \(c^2 + q = p \). Now we know \(q = c^2 - 1 = (c - 1)(c + 1) \). So either \(c - 1 = 1 \) and \(c + 1 = q \) or \(c - 1 = -q \) and \(c + 1 = -1 \). Both solutions show that \(q = 3 \). Then \(p = 7 \). Hence \(p + q = 10 \).

2. \(T = 10 \). Let \(s_n \) be the number of subsets in \(\{1, 2, \ldots, n\} \) that do not contain two consecutive numbers. Then \(s_n = s_{n-1} + s_{n-2} \). We know \(s_1 = 2 \) and \(s_2 = 3 \). So \(s_{10} = 144 \).

3. \(T = 144 \). Since \(a + b + c = 0 \), \(a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) = 0 \). Hence, \(abc = \frac{-6}{3} \).