Problem 1.

The only solutions are 134 \((n = 8)\), 246 \((n = 9)\) and 505 \((n = 10)\). Thus, the answer is \(885\).

Problem 2.

Trung can ask a trivial first question (e.g. “Is \(p\) an integer?”) in order to determine the truthful answer to the second question. Using this strategy, Trung can eliminate half of the possible integers each round. For example, the second question in the first round could be “Is \(p\) at least 45?” Thus, the least possible value of \(n\) is \(1\).

Problem 3.

The 8 vertices of a cube in \(H_n\) will be identical in all but 3 coordinates. Thus, for \(H_4\), exactly 1 coordinate will be the same for all 8 vertices. There are 4 possible positions for this coordinate, and two choices for the value of the coordinate (0 or 1), so \(H_4\) contains 8 distinct cubes. By similar reasoning, \(H_5\) contains \(\binom{5}{2} \cdot 2 \cdot 2 = 40\) distinct cubes, so the answer is \(48\).

Problem 4.

Draw the center of the incircle, and label it \(I\). Then draw the radii tangent to \(a, b, c\) and label them \(P, Q, S\) respectively. Note that \(AQ = AS = \frac{b + c - a}{2}\), \(BS = BP = \frac{a + c - b}{2}\) and \(CP = CQ = \frac{a + b - c}{2}\). Further note that \(CPIQ\) must be a square, as \(CP = CQ\), \(IQ\) is parallel to \(CP\), and \(PI\) is parallel to \(CQ\). Thus \(r = \frac{a + b - c}{2}\) and since \(R = \frac{c}{2}\), we have \(r + R = \frac{a + b}{2}\). Thus the ratio is just \(2\).