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Team Solutions

1. It is easy to show that 8 is possible. First each tile has area 4 and total area is 36
so we can have at most 9 tiles. We will show that 9 is not possible. Color the 6 × 6
grid in a checkboard pattern. Then there are an 18 white squares. Each tile will cover
either 1 or 3 white squares. Hence 9 tiles will cover an odd number of white squares.
This isn’t possible so the maximum is 8.

2. 6 BEC = 90o and 6 CDB = 90o. So BECD is a cyclic quadrilateral. Let F be the
intersection of BD and CE. Then 4DEF is similar to BCF . Hence DE

BC
= FD

BF
but

triangle BDF is a 30-60-90 right triangle so FD
BF

=

√
3

2
.

3. So we have 2f(x)+f(1−x) = x2 and 2f(1−x)+f(x) = (1−x)2 (we substitute 1−x for
x). We can solve this as a system of linear equations. If we multiply the first equation
by 2 and then subtract the second, we see that 3f(x) = 2x2 − (1− x)2 = x2 − 2x− 1.

Hence the sum of the coefficients is 1
9
(1 + 4 + 1) =

2

3
.

4. We want to find the minimum integer k of the form 15m2 − a2 where 15m2 < a2 − 1.
Checking k = 0, . . . , 5, all will not satisfy through modulo 3, 2, and 5. 15m2 − 6 = a2.
So a = 3b so we have 5m2 − 2 = 3b2. Modulo 5, we see that b ≡ 1, 4 (mod 5). Trying
possibilities, we see that b = 9,m = 7 works. So the answer is 6 .

5. Expanding (
√

5+2)2016 +(
√

5−2)2016, we see that it is equal to an integer. In addition√
5− 2 < 1 so any power of it is less than 1. So b(

√
5 + 2)2016c = (

√
5 + 2)2016 + (

√
5−

2)2016 − 1. Since we only need the last two digits, we can consider the expression mod
100. (

√
5 + 2)2016 + (

√
5− 2)2016 = 2(5)1008 + 2

(
2016
2

)
(5)100722 + . . . +

(
2016
2

)
2(5)22014 +

2(2)2016. Note that most terms are divisible by 100 so we can ignore them. So we
have 2(5)1008 + +22017. 22017 repeats every φ(25) = 20 mod 25 so we have 22017 ≡
217 ≡ 2−3 ≡ −3 (mod 2)5. So 22017 ≡ 72 (mod 1)00. 2(5)1008 + 22017 ≡ 50 + 72 ≡ 22
(mod 1)00. Hence 22− 1 = 21

6. Suppose f(2a3b) is the maximum over the given range with 2a3b smallest. Since
f(2a−53b+3) = f(2a3b) but 2a−53b+3 = 27

32
2a3b. Then we see that a < 5 otherwise

we contradict our minimality of 2a3b. For a fixed a, we just want to pick the largest
b such that 2a3b ≤ 10000. For powers of 3, we have 1, 3, 9, 27, 243, 729, 2187, 6561. So
when a = 0, we get b = 8. a = 1 =⇒ b = 7, a = 2 =⇒ b = 7, a = 3 =⇒ b = 6,
a = 4 =⇒ b = 5. Calculating 3a+ 5b we see that the maximum is when a = 2, b = 7
so 3(2) + 7(5) = 41 .

7. Considering only 4n+ 3 primes. Suppose x is any odd number and p a 4n+ 3 prime.
Then x, px, p2x, . . . , p2n−1x contains the same number of 4n+ 1 numbers as 4n+ 3. So
we see that every power of a 4n+ 3 prime must be even. In addition, we can see that

1



when all the 4n + 3 primes are raised to an even power that is has precisely 1 more
4n+1 divisor than 4n+3. Now consider the 4n+1 prime factors. Let x be the product
of all 4n+ 1 prime factors. Since multiplying by 4n+ 1 doesn’t change if the number
is 4n+ 1 or 4n+ 3, we see that multiplying by x to a product of 4n+ 3 prime powers
just multiplies the difference in 4n+ 1 and 4n+ 3 powers by the number of divisors of
x. So we just need x to have 6 divisors (55 works) and the 4n + 3 powers to be even.

So a possible answer is 553272 .

8. Consider the graph y = x3/2. bi3/2c is the number of lattice points below the graph at
x = i (includes the point on the graph if i3/2 is an integer. But y = x2/3 is the inverse
of y = x3/2. So bi2/3c is the number of lattice points to the left of the graph of y = x3/2

at y = i. Hence overall since the bounds match up, this is just the area of a rectangle
with side lengths 100 and 1000 plus the number of lattice points on the graph which
is just 10. Hence our answer is 100(1000) + 10 = 100010 .

9. We find the probability that A ⊆ B. The probability that an element is in A but not in
B is 1

4
. So the probability that A ⊆ B is 310

410
. But we are overcounting the probablility

that A = B. The probability that an element is in A and in B is 1
2
. So probability

that A = B is 1
210

. So overall probability is
2(310)− 210

410
.

10. The answer is 21. Suppose there are more than 21 teams. Let the teams be A1, . . . , Ak.
Then |Ai| = 5 and |Ai ∩ Aj| = 1. Consider the intersection of A1 with A2, . . . , Ak.
Then some element of A1 must appear at least 5 times by pigeonhole principle. Hence
we have at least six teams sharing a person a. Call these teams B1, B2, B3, B4, B5, B6.
Let b be a person on B1 and b′ in B2. This team must intersect B3, B4, B5, B6 but this
is not possible since the only element these sets share is a. So we can have at most 21
teams.

On the other hand, if there are less than 21 teams, some person a can be on at most 4
teams. Suppose these are B1, B2, B3, B4. Take some person b from B1 and b′ from B2.
Then this team must share a teammate with B3 and B4. The last teammate c cannot
come from B1, B2, B3, B4 otherwise two teams have the same pair of people. But then
a and c are never on a team.

So the answer is 21 .
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