Duke Math Meet 2016 Relay Solutions

1.1 From the first sequence, we have $y-x=4\left(a_{2}-a_{1}\right)$. From the second relationship, we have $3\left(b_{4}-b_{3}\right)=2(y-x)$. Hence we have $\frac{b_{4}-b_{3}}{a_{2}-a_{1}}=\frac{8}{3}$. Hence $p+q=8+3=11$.
1.2 $T=11$. We have $\left(x^{2}-7 x+11\right)^{x^{2}-1}=1 . a^{b}=1$ when $a=1, b=0$, or $a=-1$ and b is even. $x^{2}-7 x+11=1 \Longrightarrow x=2,5 . \quad x^{2}-1=0$ when $x=1,-1$. $x^{2}-7 x+11=-1 \Longrightarrow x=3,4$ but $x^{2}-1$ is only even when $x=3$. So we have a total of 5 solutions which are $-1,1,2,3,5$.
1.3 TNYWR $=5$. Let a_{n} be the probability that David has the ball after n seconds. If David has the ball after n seconds, then he can't have the ball after $n+1$ seconds. If he doesn't have the ball, then there's a $\frac{1}{5}$ the ball can be passed to him. Hence $a_{n+1}=\frac{1}{5}\left(1-a_{n}\right)$. Starting with initial condition of $a_{0}=1$, we see that $a_{1}=0, a_{2}=$ $\frac{1}{5}, a_{3}=\frac{4}{25}, a_{4}=\frac{21}{125}, a_{5}=\frac{104}{625}$.
$2.1 \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{2}}=\sum_{k=1}^{\infty} \frac{1}{k^{2}}-2 \sum_{k=1}^{\infty} \frac{1}{(2 k)^{2}}=\frac{\pi^{2}}{6}-\frac{\pi^{2}}{12}=\frac{\pi^{2}}{12}$.
2.2 Hence $T=12$. If we make a Venn diagram, we see that every toy must lie in one of the circles but cannot lie in the all three. So there are a total of 6 parts of the circle that each toy can go. Hence the answer is 6^{12}.
2.3 We see that $T=12$ and $n=29 . a_{28}$ shakes with everyone; a_{27} shakes with everyone except $a_{1} ; a_{26}$ everyone except $a_{1}, a_{2} ; \ldots a_{15}$ everyone except $a_{1}, . ., a_{13}$ then we are done. Hence, the answer is 14 .

