Duke Math Meet 2016
 Individual Round

1. Trung took five tests this semester. For his first three tests, his average was 60 , and for the fourth test he earned a 50 . What must he have earned on his fifth test if his final average for all five tests was exactly 60 ?
2. Find the number of pairs of integers (a, b) such that $20 a+16 b=2016-a b$.

Duke Math Meet 2016 Individual Round

3. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a strictly increasing function with $f(1)=2016$ and $f(2 t)=$ $f(t)+t$ for all $t \in \mathbb{N}$. Find $f(2016)$.
4. Circles of radius $7,7,18$, and r are mutually externally tangent, where $r=\frac{m}{n}$ for relatively prime positive integers m and n. Find $m+n$.

Duke Math Meet 2016 Individual Round

5. A point is chosen at random from within the circumcircle of a triangle with angles $45^{\circ}, 75^{\circ}, 60^{\circ}$. What is the probability that the point is closer to the vertex with an angle of 45° than either of the two other vertices?
6. Find the largest positive integer a less than 100 such that for some positive integer $b, a-b$ is a prime number and $a b$ is a perfect square.

Duke Math Meet 2016 Individual Round

7. There is a set of 6 parallel lines and another set of six parallel lines, where these two sets of lines are not parallel with each other. If Blythe adds 6 more lines, not necessarily parallel with each other, find the maximum number of triangles that could be made.
8. Triangle $A B C$ has sides $A B=5, A C=4$, and $B C=3$. Let O be any arbitrary point inside $A B C$, and $D \in B C, E \in A C, F \in A B$, such that $O D \perp B C$, $O E \perp A C, O F \perp A B$. Find the minimum value of $O D^{2}+O E^{2}+O F^{2}$.

Duke Math Meet 2016
 Individual Round

9. Find the root with the largest real part to $x^{4}-3 x^{3}+3 x+1=0$ over the complex numbers.
10. Tony has a board with 2 rows and 4 columns. Tony will use 8 numbers from 1 to 8 to fill in this board, each number in exactly one entry. Let array ($a_{1}, . ., a_{4}$) be the first row of the board and array $\left(b_{1}, . ., b_{4}\right)$ be the second row of the board. Let $F=\sum_{i=1}^{4}\left|a_{i}-b_{i}\right|$, calculate the average value of F across all possible ways to fill in.
