DUKE MATH MEET- Power Round Solutions

1. (a) $3^{-1} = 5, 5^{-1} = 3, 6^{-1} = 6$ (1 pts)
 $\text{Ord}(3) = 6, \text{Ord}(5) = 6, \text{Ord}(6) = 2$ (1 pts)

 (b) $\langle 2 \rangle = \{1, 2, 4\}$ (1 pts)
 $\langle 3 \rangle = \{1, 2, 3, 4, 5, 6\} = T$ (1 pts)

2. (a) Let $m = kn$, then $g^m = (m^k)^n = e^n = e$. (2 pts)

 (b) Let $ord_G(g) = n, d = kn + r, 0 \leq r < n$. (1 pts)

 $e = g^d = g^{kn+r} = (g^n)^k * g^r = e^k * g^r = g^r$.

 From the definition of n and $0 \leq r < n$, r must be 0 or d is divisible by n. (1 pts)

3. (a) Check criteria for a subgroup:

 i) For $a = g^i$ and $b = g^j$ in $\langle g \rangle$, $a * b = g^i * g^j = g^{i+j}$ which is also in H. (0.5 pts)

 ii) For each $a = g^i$ in $\langle g \rangle$, pick j such that $i+j$ is a multiple of k. We have g^i is in G and $g^i * g^j = g^{i+j} = e$ (from 2a) or g^j is the inverse of a. (0.5 pts)

 Finally, we have $g^x = g^y$ iff $g^{x-y} = e$ or $x - y = 0 \bmod k$ (from 2b). Since there are k residues modulo k, there are k distinct elements g^x or $|\langle g \rangle| = k$. (1 pts)

 (b) From a), $\langle g \rangle$ is a subgroup of G. By Theorem 1, $|\langle g \rangle| = k$ divides $|G|$. (0.5 pts)

 Now, from 2a, we have $g^{[G]} = e$. (0.5 pts)

 (c) Let $ord_G(g^i) = n$, then $(g^i)^n = g^{in} = e$. From 2b, we know in is divisible by k, but $(i, k) = 1$, so n is divisible by k. (1 pts)

 From the definition of order, n must be k. (1 pts)

 (d) We use contrapositive: if $\langle g \rangle \cap \langle b \rangle \neq \{e\}$, then there exist $g^i = b^j$, where $i, j \neq 0 \bmod k$. Here, we can pick m and n such that $imjn = 1 \bmod k$, or $g^n = b^jn = b$

 and $b^m = g^{jm} = g$. (1 pts)

 Now, for each $g^k \in \langle g \rangle$, $b^{mk} = g^k$ implies $g^k \in \langle b \rangle$. Hence, $\langle g \rangle \subseteq \langle b \rangle$.

 Similarly, $\langle b \rangle \subseteq \langle g \rangle$ and we are done. (1 pts)

4. (a) $h * g_1 * g_2 * h^{-1} = (h * g_1 * h^{-1}) * (h * g_2 * h^{-1})$ (1 pts)

 (b) Let $r = f_h(g) = h * g * h^{-1}$ and $ord_G(r) = t$.

 $e = r^t = h * g * h^{-1} * h * g * h^{-1} * \ldots * h * g * h^{-1}$

 $= h * g * (h^{-1} * h) * g * (h^{-1} * h) * \ldots * h * g * h^{-1}$

 $h * g * h^{-1} = h * g * h^{-1}$ (1 pts)

 Hence, $h^{-1} * e * h = h^{-1} * (h * g^i * h^{-1}) * h = g^i = h^{-1} * h = e.$
From 2b, k divides t. (0.5 pts)
In addition, using similar transformation, \(r^k = h \cdot g^k \cdot h^{-1} = h \cdot e \cdot h^{-1} = e \). From
2b, t divides k.
So t=k. (0.5 pts)

(c) Since the function is from G to G, it is enough to show injectivity. (1 pts)

\[f_h(g_1) = f_h(g_2) \Rightarrow h \cdot g_1 \cdot h^{-1} = h \cdot g_2 \cdot h^{-1} \]
\[\Rightarrow h^{-1} \cdot (h \cdot g_1 \cdot h^{-1}) \cdot h = h^{-1} \cdot (h \cdot g_1 \cdot h^{-1}) \cdot h \Rightarrow g_1 = g_2 \] (1 pts)

5. (a) From 3b, the order of g divides \(|P| = p^k\) so it must be a power of p.

(b) From \(|G| = 56 = 7 \cdot 8\), by Sylow Theorem, \(n_7(G) \) divides 8 and \(n_7(G) = 1 \) mod 7, so \(n_7(G) = 1 \) or 8. But \(n_7(G) \) can not be 1 because this implies there is only 1 Sylow 7-subgroup in G, so it must be normal from Sylow Theorem iii) which means G is not simple. Hence, \(n_7(G) = 8 \). (1 pts)
Consider any element g of order 7, g is in \(\langle g \rangle \) which is a Sylow 7-subgroup of G (from 3a), so g belongs to some Sylow 7-subgroup. From 3d, we know that the Sylow 7-subgroups in G either coincide or share only the identity element. From 3c, each Sylow 7-subgroup includes the identity and 6 distinct elements of order 7. Therefore, there are \(8 \cdot 6 = 48 \) elements of order 7 in G. (1 pts)

(c) Assume G is simple, \(|G| = 520 = 13 \cdot 5 \cdot 8\).
Since G is simple, for each \(p = 13, 5, \text{ and } 2 \), G can not have just 1 Sylow p-subgroup since this implies this Sylow p-subgroup will be normal from Sylow iii) or G is not simple. (0.5 pts)
By Sylow Theorem, \(n_{13}(G) \) divides 5.8 and \(n_{13}(G) = 1 \) mod 13, so it must be 1 or 40. From above, \(n_{13}(G) = 40 \). Similar to part b, there are 40.12 elements of order 13. (0.5 pts)
By Sylow Theorem, \(n_5(G) \) divides 13.8 and \(n_5(G) = 1 \) mod 5, so it must be 1 or 26. From above, \(n_5(G) = 26 \). Similar to part b, there are 26.4 elements of order 5. (0.5 pts)
These elements of 2 different orders must be distinct so G has \(\geq 26.4 + 40.12 > 520 \) elements which is a contradiction. (0.5 pts)