1. a. $\frac{41}{24}$. Going reverse. $2+\frac{1}{3}=\frac{7}{3}, 2+\frac{3}{7}=\frac{17}{7}, 1+\frac{7}{17}=\frac{24}{17}, 1+\frac{17}{24}=\frac{41}{24}$
b. $[1,2,3,4] \frac{43}{30}=1+\frac{13}{30}, \frac{30}{13}=2+\frac{4}{13}, \frac{13}{4}=3+\frac{1}{4}, 4=4+0$,
c. $[1, \overline{1,2}]$

$$
\begin{aligned}
\sqrt{3} & =1+(\sqrt{3}-1) \\
\frac{1}{\sqrt{3}-1} & =\frac{\sqrt{3}+1}{2} \\
\frac{\sqrt{3}+1}{2} & =1+\frac{\sqrt{3}-1}{2} \\
\sqrt{3}+1 & =\frac{2}{\sqrt{3}-1} \\
\sqrt{3}+1 & =2+\sqrt{3}-1
\end{aligned}
$$

Here we note that, we already encountered $\sqrt{3}-1$ (remainder of the first step) so we see that continued fraction will repeat.
d. $\sqrt{6}$

Let $x=[\overline{2,4}]$. Then we have $x=[2,4, x]$

$$
\begin{aligned}
x & =[2,4, x] \\
x & =\left[2,4+\frac{1}{x}\right] \\
x & =\left[2, \frac{4 x+1}{x}\right] \\
x & =2+\frac{x}{4 x+1} \\
x & =\frac{9 x+2}{4 x+1}
\end{aligned}
$$

So we see that $4 x^{2}+x=9 x+2 \Longrightarrow 2 x^{2}-4 x-1=0$. So $x=\frac{4 \pm 2 \sqrt{6}}{4}=\frac{2 \pm \sqrt{6}}{2}$. Remember that we want $2+\frac{1}{x}=2+\sqrt{6}-2=\sqrt{6}$.
2. a. We prove by induction. Base case: $n=1$. $p_{1} q_{0}-p_{0} q_{1}=\left(a_{1} a_{0}+1\right)(1)-a_{0} a_{1}=1=(-1)^{0}$. Now suppose the claim is true for n.

$$
\begin{aligned}
p_{n+1} q_{n}-p_{n} q_{n+1} & =\left(a_{n+1} p_{n}+p_{n-1}\right) q_{n}-p_{n}\left(a_{n+1} q_{n}+q_{n-1}\right) \\
& =p_{n-1} q_{n}-p_{n} q_{n-1} \\
& =(-1)(-1)^{n-1} \\
& =(-1)^{n}
\end{aligned}
$$

b. Note we used the identity from part a.

$$
\begin{aligned}
p_{n+1} q_{n-1}-p_{n-1} q_{n+1} & =\left(a_{n} p_{n}+p_{n-1}\right) q_{n-1}-p_{n-1}\left(a q_{n}+q_{n-1}\right) \\
& =a_{n}\left(p_{n} q_{n-1}-p_{n-1} q_{n}\right) \\
& =a_{n}(-1)^{n-2} \\
& =(-1) a_{n}
\end{aligned}
$$

3. We first find the continued fraction of $\frac{1+\sqrt{5}}{2}$.

$$
\begin{aligned}
& \frac{1+\sqrt{5}}{2}=1+\frac{\sqrt{5}-1}{2} \\
& \frac{1+\sqrt{5}}{2}=\frac{2}{\sqrt{5}-1}
\end{aligned}
$$

So $\frac{1+\sqrt{5}}{2}=[\overline{1}]$. Hence all the $a_{i}=1$.
Note that we have $p_{n}=p_{n-1}+p_{n-2}$ and $p_{0}=1=F_{1}, p_{1}=2=F_{2}$. Thus $p_{n}=F_{n+1}$. We also have $q_{n}=q_{n-1}+q_{n-2}$ and $q_{0}=1=F_{0}, q_{1}=1=F_{1} \Longrightarrow q_{n}=F_{n}$. So we have the nth convergent $\frac{p_{n-1}}{q_{n-1}}=\frac{F_{n}}{F_{n-1}}$
4. $(-34,74)$ or anything of the form $(-34+567 t, 74-1234 t)$. We first find the continued fraction expansion $\frac{1234}{567}=$ [2, 5, 1, 2, 33].

a_{n}	2	5	1	2	33
p_{n}	2	11	13	37	1234
q_{n}	1	5	6	17	567

From problem we have that $1234(17)-567(37)=-1$. So $1234(-34)+567(74)=2$.
5. a. From the given theorem, we know that α lies between any two consecutive convergents. So for $n \geq 1$, we have $\left|\alpha-\frac{p_{n}}{q_{n}}\right|<\left|\frac{p_{n+1}}{q_{n+1}}-\frac{p_{n}}{q_{n}}\right|<\frac{1}{q_{n+1} q_{n}}$.
b. Suppose not. Then there exists n such that $\left|\alpha-\frac{p_{n}}{q_{n}}\right|<\frac{1}{2 q_{n}^{2}}$ and $\left\lvert\, \alpha-\frac{p_{n+1}}{q_{n+1}}<\frac{1}{2 q_{n+1}^{2}}\right.$. $\left|\alpha-\frac{p_{n}}{q_{n}}\right|+\left|\alpha-\frac{p_{n+1}}{q_{n+1}}\right| \geq$ $\left|\frac{p_{n}}{q_{n}}-\frac{p_{n+1}}{q_{n+1}}\right|=\frac{1}{q_{n} q_{n+1}}$. But $\frac{1}{2 q_{n+1}^{2}}+\frac{1}{2 q_{n}^{2}} \geq \frac{1}{q_{n} q_{n+1}}$ by AM-GM inequality. Contradiction. Thus at least one of any two consecutive convergents to x works.
c. We can see that $\sqrt{2}=[1, \overline{2}]$.

a_{n}	1	2	2	2	2	2
p_{n}	1	3	7	17	41	99
q_{n}	1	2	5	12	29	70

$29 * 70>1000$ so we can use $\frac{41}{29}$ or $\frac{99}{70}$.
6. a. $\alpha-\alpha^{\prime}>0 \Longrightarrow \frac{\sqrt{D}}{Q}>0$ so $Q>0$.
$\alpha+\alpha^{\prime}>0$, so $P>0$.
$\alpha^{\prime}<0$ so $P<\sqrt{D}$
$\alpha>1$ so $Q<P+\sqrt{D}<2 \sqrt{D}$
b. $\alpha-\lfloor\alpha\rfloor$ is of the form $\frac{A+\sqrt{D}}{B}$. Then $\frac{B}{A+\sqrt{D}}=\frac{-B A+\sqrt{D} B}{\left(D^{2}-A\right)}$. So α_{1} is a quadratic irrational. Since $\alpha-\lfloor\alpha\rfloor<1$, we know that $\alpha_{1}>1$. In addition, note that $\alpha^{\prime}=\lfloor\alpha\rfloor+\frac{1}{\alpha_{1}^{\prime}} \Longrightarrow \alpha_{1}^{\prime}=-\frac{1}{q_{0}-\alpha^{\prime}} . \alpha^{\prime}$ is negative and q_{0} is positive so $-1<\alpha_{1}^{\prime}<0$. So α_{1} is reduced.
c. We know that inductively all the α_{i} are reduced. But there are a finite number of possibilities as seen by problem 6. Thus there exists $i<j$ such that $\alpha_{i}=\alpha_{j}$, and so $\alpha_{i+1}=\alpha_{j+1}$ and so on. So the sequence is periodic.
7. a. We want $\sqrt{N}+m>1$ and $-1<m-\sqrt{N}<0$. So we see that $m=\lfloor\sqrt{N}\rfloor$.
b. We know that $\sqrt{N}+m=\left[\overline{a_{0}, \ldots, a_{n}}\right]$. But note that $a_{0}=\lfloor\sqrt{N}+m\rfloor=2 m$. So we have $\sqrt{N}+m=\left[2 m, \ldots, a_{n}\right]$ so $\sqrt{N}=\left[m, \overline{a_{1}, \ldots, a_{n}, 2 m}\right]$.
8. a. The area would be $\frac{1}{2}\left|P_{n+2} Q_{n}-Q_{n+2} P_{n}\right|=\frac{a_{n+2}}{2}$ since triangle is half of the parallelogram. However since $P_{n+2}=a_{n+2} P_{n+1}+P_{n}$ and $Q_{n+2}=a_{n+2} Q_{n+1}+Q_{n} .\left(P_{n}+Q_{n}\right)+i\left(P_{n+1}, Q_{n+1}\right)$ for $0 \leq i \leq a_{n+2}$ must all be boundary points. So we have $a_{n+2}+2$ boundary points (don't forget to include origin). So by Pick's, we see that $I=0$.
(a) Area of parallelogram is $\left|2 P Q-2 Q^{2} \alpha\right|=2 Q^{2}\left|\alpha-\frac{P}{Q}\right|<1$. Now suppose there was an interior point in the region (x, y), then $(2 P-x, 2 Q-y)$ is also in the region. But then consider the figure $(0,0),(x, y),(P, Q)$, and $(2 P-$ $x, 2 Q-y)$. Pick's Theorem tells us that this area is at least 1. But this lies in the parallelogram. Contradiction.
c. Suppose that $\left|a-\frac{P}{Q}\right|<\frac{1}{2 Q^{2}}$ and $\frac{P}{Q}$ isn't a continued fraction convergent. Then from part b, we know no lattice points in that parallelogram. But then (P, Q) lies in the triangle of $(0,0),\left(P_{n}, Q_{n}\right)$, and $\left(P_{n+2}, Q_{n+2}\right)$. This can be seen as all three points lie on the same side of line thru $(2 Q \alpha, 2 Q)$ since by considering slope, we know $\left(P_{n}, Q_{n}\right)$ and $\left(P_{n+2}, Q_{n+2}\right)$ are on the same side and (P, Q) is between those two and thus must be on the same side. Contradiction to part a.

