Duke Math Meet 2013-14
 Power Round
 Quadratic Residues and Prime Numbers

For integers a and b, we write $a \mid b$ to indicate that a evenly divides b, and $a \nmid b$ to indicate that a does not divide b. (For example, $2 \mid 4$ and $4 \nmid 2$.)

Let p be a prime number. An integer a is called a quadratic residue modulo p if there exists an integer x with $p \mid x^{2}-a$. For example, if we take $p=5$, then 0,1 , and 4 are quadratic residues modulo 5 , as $5 \mid 0^{2}-0=1^{2}-1=2^{2}-4$.

1. a. (1 point.) Explain why for every integer x, there must be an integer k such that x is equal to one of $5 k, 5 k+1,5 k+2,5 k+3$, or $5 k+4$.
Solution. Using division with remainder, we can write $x=5 k+r$, where $0 \leq$ $r \leq 4$. Thus we have x in the desired form.
b. (1 point.) Explain why every integer of the form $5 k, 5 k+1$, or $5 k+4$ is a quadratic residue modulo 5 .
Solution. For $a=5 k$ we may take $x=0$ in the definition of a quadratic residue; we then have $5 \mid x^{2}-a=-5 k$ as desired.
For $a=5 k+1$ we may take $x=1$, as we obtain $5 \mid 1-(5 k+1)=-5 k$. Similarly for $a=5 k+4$ we may take $x=2$.
c. (2 points.) Using part (a), show that 2 and 3 are not quadratic residues modulo 5. Explain why every number of the form $5 k+2$ or $5 k+3$ is not a quadratic residue modulo 5 .
Solution. We show that 2 is not a quadratic residue modulo 5 by contradiction. Suppose there exists x such that $5 \mid x^{2}-2$. Write $x=5 k+r$, so that $x^{2}=$ $25 k^{2}+10 k r+r^{2}=5\left(5 k^{2}+2 k r\right)+r^{2}$. Then we must have $5 \mid 5\left(5 k^{2}+2 k r\right)+r^{2}-2$, so that $5 \mid r^{2}-2$. But we only have 5 possibilities for r, none of which work: 5 does not divide $-2,-1,2,7$, or 14 . Hence 2 cannot be a quadratic residue modulo 5. An analogous argument shows that 3 is not a quadratic residue modulo 5 either.
As $5 \mid x^{2}-a$ iff $5 \mid x^{2}-(a+5 k)$, replacing 2 by $2+5 k$ or 3 by $3+5 k$ in the above arguments doesn't change their validity. Hence no number of the form $5 k+2$ or $5 k+3$ is a quadratic residue modulo 5 .

Given p and a as above, we write

$$
\left(\frac{a}{p}\right)=\left\{\begin{array}{cl}
1 & \text { if } a \text { is a quadratic residue modulo } p \text { and } p \nmid a ; \\
0 & \text { if } p \mid a \\
-1 & \text { if } a \text { is not a quadratic residue modulo } p
\end{array}\right.
$$

This notation is commonly called the Legendre symbol. Do not confuse this with the fraction $a / p!^{1}$
2. a. (1 point.) Compute ($\frac{2}{5}$) and $\left(\frac{2}{7}\right)$.

[^0]Solution. By 1(c), we know that 2 is not a quadratic residue modulo 5. Hence $\left(\frac{2}{5}\right)=-1$.
We have $7 \mid 3^{2}-2$, so 2 is a quadratic residue modulo 7 . Hence $\left(\frac{2}{7}\right)=1$.
b. (1 point.) Explain why $\left(\frac{a^{2}}{p}\right)=1$ for all primes p and integers a with $p \nmid a$.

Solution. Taking $x=a$ in the definition of a quadratic residue, we have $p \mid$ $a^{2}-a^{2}=0$ for all primes p and integers a. Hence a^{2} is always a quadratic residue modulo p; if we further assume that $p \nmid a$ then $\left(\frac{a^{2}}{p}\right)=1$.
c. (2 points.) Show that if $p \mid a-b$, then $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$.

Solution. Suppose that $\left(\frac{a}{p}\right)=1$. Then a is a quadratic residue modulo p, so there exists x with $p \mid x^{2}-a$. Hence $p \mid\left(x^{2}-a\right)+(a-b)=x^{2}-b$, so b is a quadratic residue modulo p. Furthermore, if $p \nmid a$ and $p \mid a-b$, then $p \nmid b$, so $\left(\frac{b}{p}\right)=1$.
If $\left(\frac{a}{p}\right)=0$, then $p \mid a$. Hence $p \mid a+(b-a)=b$, so $\left(\frac{b}{p}\right)=0$.
If $\left(\frac{a}{p}\right)=-1$, then there does not exist x with $p \mid x^{2}-a$. If there existed x^{\prime} with $p \mid x^{2}-b$, then we would have $p \mid\left(x^{2}-b\right)+(b-a)=x^{2}-a$, a contradiction. Hence b is not a quadratic residue modulo p, and so $\left(\frac{b}{p}\right)=-1$.
3. (3 points.) Suppose that $p>2$. Explain why exactly $(p+1) / 2$ of the numbers $\{0,1,2, \cdots, p-1\}$ are quadratic residues modulo p. (Hint: if a is a quadratic residue, factor the polynomial $x^{2}-a$.)

Solution. Consider the pairs $(0,0),(1,1), \cdots,\left(x, \overline{x^{2}}\right), \cdots,(p-1,1)$, where $\overline{x^{2}}$ is the unique number between 0 and $p-1$ such that $p \mid x^{2}-\overline{x^{2}}$. For example, as $p \mid(p-1)^{2}-1=p^{2}-2 p$, we have $\overline{(p-1)^{2}}=1$.

Then the number of quadratic residues among $\{0,1,2, \cdots, p-1\}$ is clearly the number of distinct second elements among all these pairs. Clearly $\overline{x^{2}}=\overline{(p-x)^{2}}$, as $(p-x)^{2}=p^{2}-2 p x+x^{2}$. Hence 1 and $p-1$ have the same second element, and similarly for $2, p-2$ and so on. There are $(p-1) / 2$ of these pairs, and all of them have nonzero second element, as if $p \mid x^{2}$ then $p \mid x$.

Now we claim that no other pairs have equal second element. For if $x \neq y$ have equal second elements $\overline{x^{2}}, \overline{y^{2}}$, then $p \mid 0=\overline{x^{2}}-\overline{y^{2}}$. Hence $p \mid x^{2}-y^{2}=(x-y)(x+y)$, and thus either $p \mid x-y$ or $p \mid x+y$. Note that as $x, y \in\{0, \cdots, p-1\}$ we have $0<|x-y|<p$ and thus $p \nmid x-y$. Hence $p \mid x+y$, and thus $y=p-x$. So no other pairs have equal second elements. Throwing in the second element of zero from the pair $(0,0)$ does not give us any more collisions, as noted above, and hence there are $(p-1) / 2+1=(p+1) / 2$ quadratic residues among $\{0,1,2, \cdots, p-1\}$.
4. (4 points.) Using the result of question 3 , show that for any prime number p there must exist positive integers a, b with $p \mid a^{2}+b^{2}+1$.

Solution. If $p=2$ the result is clear: take a even and b odd.
Now if $p>2$, then exactly $(p+1) / 2$ elements of the set $\{0,1,2, \cdots, p-1\}$ are quadratic residues. The map $x \mapsto p-1-x$ maps this set to itself bijectively, and hence by the pigeonhole principle there exists c such that c and $p-1-c$ are quadratic residues. Thus there exist integers a, b such that $p \mid a^{2}-c$ and $p \mid b^{2}-(p-1-c)$.

Hence we have

$$
p \mid\left(a^{2}-c\right)+\left(b^{2}-p+1+c\right)=a^{2}+b^{2}+1-p
$$

and hence $p \mid a^{2}+b^{2}+1$. We may clearly take a, b to be positive.
A celebrated theorem of Euler gives a somewhat convenient way to calculate Legendre symbols:

Euler's Criterion. Let $p>2$ be a prime, and let a be an integer. Then

$$
p \left\lvert\,\left(\frac{a}{p}\right)-a^{(p-1) / 2}\right.
$$

To see how to use this to compute Legendre symbols, let's calculate ($\frac{2}{3}$). We know that $\left(\frac{2}{3}\right)-2^{1}$ must be divisible by 3 . As $\left(\frac{2}{3}\right)$ must be 1 or -1 , it follows that $\left(\frac{2}{3}\right)=-1$. Hence 2 is not a quadratic residue modulo 3 .
5. (3 points.) Show that $\left(\frac{-1}{p}\right)=1$ if $p=2$ or p is of the form $4 k+1$ and $\left(\frac{-1}{p}\right)=-1$ if p is of the form $4 k+3$.

Solution. Clearly $\left(\frac{-1}{2}\right)=1$; now suppose $p>2$. Then we have $p \left\lvert\,\left(\frac{-1}{p}\right)-\right.$ $(-1)^{(p-1) / 2}$. As $p>2$ the only way that p can divide the difference of $\left(\frac{-1}{p}\right)$ and $(-1)^{(p-1) / 2}$ is if they are equal to each other. Hence we have $\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2}$. Thus if $p=4 k+1$ then $\left(\frac{-1}{p}\right)=(-1)^{2 k}=1$, and if $p=4 k+3$ then $\left(\frac{-1}{p}\right)=(-1)^{2 k+1}=-1$.
6. (5 points.) Show that $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)$.

Solution. The statement is obvious for $p=2$ - there are only 4 cases to check and they are all immediately clear. Now suppose $p>3$.

Then we have $p \left\lvert\,\left(\frac{a}{p}\right)-a^{(p-1) / 2}\right.$, and hence $p \left\lvert\,\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)-a^{(p-1) / 2}\left(\frac{b}{p}\right)\right.$. Similarly, $p \left\lvert\,\left(\frac{b}{p}\right)-b^{(p-1) / 2}\right.$, and hence $p \left\lvert\, a^{(p-1) / 2}\left(\frac{b}{p}\right)-a^{(p-1) / 2} b^{(p-1) / 2}\right.$. Hence we have $p \left\lvert\,\left[\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)-a^{(p-1) / 2}\left(\frac{b}{p}\right)\right]+\left[a^{(p-1) / 2}\left(\frac{b}{p}\right)-a^{(p-1) / 2} b^{(p-1) / 2}\right]=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)-(a b)^{(p-1) / 2}\right.$.

We also have $p \left\lvert\,\left(\frac{a b}{p}\right)-(a b)^{(p-1) / 2}\right.$, and thus

$$
p \left\lvert\,\left[\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)-(a b)^{(p-1) / 2}\right]-\left[\left(\frac{a b}{p}\right)-(a b)^{(p-1) / 2}\right]=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)-\left(\frac{a b}{p}\right) .\right.
$$

As $p>2$ and as the two terms in the rightmost expression are equal to ± 1, they must be equal. Hence $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)$ as desired.
7. (6 points.) Let p be a prime of the form $4 k+3$. Using the above results, show that if there exist integers a, b with $p \mid a^{2}+b^{2}$, then $p \mid a$ and $p \mid b$. (Hint: how are $\left(\frac{-1}{p}\right)$ and ($\left.\frac{-b^{2}}{p}\right)$ related?)

Solution. Suppose that $p \nmid a, b$; that is, $\left(\frac{a}{p}\right),\left(\frac{b}{p}\right) \neq 0$. As $p \mid a^{2}+b^{2}=a^{2}-\left(-b^{2}\right)$, we know that $-b^{2}$ is a quadratic residue modulo p, and so $\left(\frac{-b^{2}}{p}\right)=1$. By above we have $\left(\frac{-b^{2}}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{b^{2}}{p}\right)$. We have $\left(\frac{b^{2}}{p}\right)=1$, and thus $\left(\frac{-1}{p}\right)=1$, contradicting the hypothesis that $p=4 k+3$. Hence it must be the case that $p \mid a, b$.

The second famous theorem concerning the Legendre symbol is generally credited to Gauss, and is known as the law of quadratic reciprocity:

Quadratic Reciprocity. Let $p \neq q$ be odd prime numbers. Then

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{(p-1)(q-1)}{4}} .
$$

This theorem can be extended to the case $q=2$ and p odd, in which case it gives

$$
\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}
$$

8. (6 points.) Calculate, with explanation, $\left(\frac{42}{2017}\right)$. Solution. We have

$$
\left(\frac{42}{2017}\right)=\left(\frac{2}{2017}\right)\left(\frac{3}{2017}\right)\left(\frac{7}{2017}\right) .
$$

We have $16 \mid 2017-1$, and hence $16 \mid 2017^{2}-1$ so that $2 \mid\left(2017^{2}-1\right) / 8$. Hence $\left(\frac{2}{2017}\right)=1$ by the $q=2$ case above.

Now we turn to the $\left(\frac{3}{2017}\right)$ term. As $8 \mid 2017-1$, by quadratic reciprocity we have $\left(\frac{3}{2017}\right)\left(\frac{2017}{3}\right)=1$. As $\left(\frac{2017}{3}\right)=\left(\frac{1}{3}\right)=1$ it follows that $\left(\frac{3}{2017}\right)=1$.

Finally we calculate $\left(\frac{7}{2017}\right)$. We have similarly to the 3 case that $\left(\frac{7}{2017}\right)\left(\frac{2017}{7}\right)=1$. As $2016=2100-84$, we have $\left(\frac{2017}{7}\right)=\left(\frac{1}{7}\right)=1$. Hence $\left(\frac{7}{2017}\right)=1$, and thus $\left(\frac{42}{2017}\right)=1$.
9. (7 points.) Show that if p is a prime and n is an integer with $p \mid n^{2}+n+1$, then either $p=3$ or $p=6 k+1$ for some positive integer k. (Hint: multiply by 4.)

Solution. Note that $n^{2}+n+1$ is odd for all n, and so $p \neq 2$. Now suppose $p>3$.
Taking the hint, we have $p \mid 4 n^{2}+4 n+4=(2 n+1)^{2}+3$. Hence -3 is a quadratic residue modulo p. Hence we have

$$
1=\left(\frac{-3}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{3}{p}\right)=(-1)^{(p-1) / 2}\left(\frac{3}{p}\right) .
$$

By quadratic reciprocity we have $\left(\frac{3}{p}\right)\left(\frac{p}{3}\right)=(-1)^{2(p-1) / 4}$; as $\left(\frac{3}{p}\right)= \pm 1$ we have thus $\left(\frac{3}{p}\right)=\left(\frac{p}{3}\right)(-1)^{(p-1) / 2}$. Hence

$$
1=\left(\frac{-3}{p}\right)=\left(\frac{p}{3}\right)(-1)^{2(p-1) / 2}=\left(\frac{p}{3}\right)(-1)^{p-1}=\left(\frac{p}{3}\right)
$$

and thus p is a quadratic residue modulo 3 . Hence $p=3 j+1$. As p must be odd, we must have $j=2 k$ even, and thus $p=6 k+1$.
10. (8 points.) Let k be an integer, and suppose that p is an odd prime with $p \mid 5 k^{2}+1$. Show that the tens digit of p must be even. (Hint: what must $\left(\frac{-5}{p}\right)$ be?)

Solution. Note that if $p=3$ then the hypothesis is trivially satisfied. Hence suppose $p>5$.

Using the same trick as in the last problem, we have $p \mid 25 k^{2}+5$, and thus $\left(\frac{-5}{p}\right)=1$. We have $\left(\frac{-5}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{p}{5}\right)$, and thus as $\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2}$ we have by quadratic reciprocity that

$$
1=\left(\frac{-5}{p}\right)=(-1)^{(p-1) / 2} \cdot\left(\frac{p}{5}\right)(-1)^{(p-1)}=(-1)^{(p-1) / 2}\left(\frac{p}{5}\right) .
$$

Hence we have two cases: first, that $4 \mid p-1$ and $\left(\frac{p}{5}\right)=1$, and second, that $2 \mid p-1$ but $4 \nmid p-1$ and $\left(\frac{5}{p}\right)=-1$. Note that $\left(\frac{1}{5}\right)=\left(\frac{4}{5}\right)=1$ and $\left(\frac{2}{5}\right)=\left(\frac{3}{5}\right)=-1$.

Hence in the first case we have either $p=20 k+1$ or $p=20 k+9$, and in the second case we have either $p=20 k+3$ or $p=20 k+7$. Thus the tens digit of p must be odd, as desired.

[^0]: ${ }^{1}$ Yeah, this notation isn't the best. Unfortunately, it's traditional.

