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Tiebreaker Round Solutions

1. An 8-inch by 11-inch sheet of paper is laid flat so that the top and bottom edges are 8 inches
long. The paper is then folded so that the top left corner touches the right edge. What is the
minimum possible length of the fold?

Solution. Label the vertices of the rectangle clockwise from upper-left as A,B,C,D, so that
A gets folded to X ∈ CD. Then the fold is the perpendicular bisector ` of AX. Then we
have three cases: either ` intersects AB and CD, ` intersects AB and AD, or ` intersects AD
and BC.

In the first case let ` intersect AB at P and CD at Q. Write ∠BAX = θ. Then construct
P ′ ∈ AB such that P ′D ‖ PQ. Then we have P ′D = PQ. Furthermore, triangle ADP ′ is
similar to triangle BAX. Hence we have PQ = P ′D = AD sec θ. This is minimized when
θ = 0◦, or when A is folded to B and PQ = 11.

In the second case, let ` intersect AB at P and AD at Q. Let PQ intersect AX at R,
which is the midpoint of AX. Let H be the foot of the perpendicular from B to AX. Then
we know that triangle AQP is similar to triangle BAX. Hence PQ/AR = AX/BH. But
as ∠ABX = 90◦, we may calculate the area of triangle ABX in two different ways to get
AX ·BH = AB ·BX. Hence we have

PQ =
AR ·AX
BH

=
AX2

2BH
=

AX3

2AB ·BX
.

Writing θ = ∠BAX, we find that PQ = AB/(2 sin θ cos2 θ); hence we need only maximize
sin θ cos2 θ. Writing u = sin θ, we have sin θ cos2 θ = sin θ − sin3 θ = u − u3. Making the
substitution u = 2 sinφ/

√
3, we have u − u3 = 2 sin(3φ)/3

√
3 ≤ 2/3

√
3. Hence we find that

PQ ≥ 3
√

3AB/4 = 6
√

3. (This minimization may also be done more quickly with calculus,
but this particular non-calculus-based technique is rather nice.)

In the third case, let ` intersect BC at P and AD at Q. Construct Q′ ∈ AD such that
BQ′ ‖ PQ. Then we know that BQ′ = PQ. We know also that triangle AQ′B is similar
to triangle BAX, so that BQ′/AB = AX/BX. Hence to minimize BQ′ = PQ, we need
only minimize the ratio AX/BX. Writing θ = ∠BAX, we have AX/BX = csc θ. To
minimize csc θ, we want ∠BAX as large as possible, so we take X = C. Then this gives
AX =

√
82 + 112 =

√
185 and BX = 11. Thus we get PQ ≥ 8

√
185/11.

In order to determine which case gives us the global minimum, we need to determine the
relative ordering of 8

√
185/11, 6

√
3, and 11. As it turns out, we have 8

√
185/11 < 6

√
3 < 11,

so the minimum possible length of the crease is 8
√

185/11.

2. Triangle ABC is equilateral, with AB = 6. There are points D,E on segment AB (in the
order A,D,E,B), points F,G on segment BC (in the order B,F,G,C), and points H, I
on segment CA (in the order C,H, I,A) such that DE = FG = HI = 2. Considering all
such configurations of D,E, F,G,H, I, let A1 be the maximum possible area of (possibly
degenerate) hexagon DEFGHI and let A2 be the minimum possible area. Find A1 −A2.
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Solution. We know that [DEFGHI] = [ABC]−([ADI]+[BFE]+[CHG]). Hence maximizing
[ADI]+[BFE]+[CHG] is equivalent to minimizing [DEFGHI]. Write u = AD, v = BF,w =
CH. Then we know that

[ADI] + [BFE] + [CHG] =

√
3

4
[u(4− w) + v(4− u) + w(4− v)] ,

where we have 0 ≤ u, v, w ≤ 4. Clearly the minimum occurs when u = v = w = 0, so that
[DEFGHI] = [ABC] = 9

√
3.

For convenience write f(u, v, w) = u(4 − w) + v(4 − u) + w(4 − v). Now we claim that
f(u, v, w) ≤ 16. We show that for any 0 ≤ u, v, w ≤ 4, either f(0, v, w) ≥ f(u, v, w) or
f(4, v, w) ≥ f(u, v, w). Indeed we have

f(0, v, w)− f(u, v, w) = u(v + w − 4);

f(4, v, w)− f(u, v, w) = (u− 4)(v + w − 4).

As u and u − 4 have opposite signs it follows that one of the two differences will be non-
negative. Hence in maximizing f we may assume that u, v, w ∈ {0, 4}. To obtain a maximum
clearly we cannot have u = v = w = 0 or u = v = w = 4. But if one or two of u, v, w are 4
and the others are 0, then f(u, v, w) = 16. Hence f(u, v, w) ≤ 16 for all 0 ≤ u, v, w ≤ 4.

Thus [DEFGHI] achieves its minimum when [ADI] + [BFE] + [CHG] = 4
√

3, so that
[DEFGHI] = 9

√
3− 4

√
3 = 5

√
3. We find A1 −A2 = 4

√
3.

3. Find

tan
π

7
tan

2π

7
tan

3π

7
.

Solution. By De Moivre’s formula, we know that for θ ∈ R we have

(cos θ + i sin θ)k = cos(nθ) + i sin(nθ).

Take k = 7, θ = nπ/7, and consider the imaginary parts of both sides. The imaginary part
of the right-hand side is zero, while we can find the imaginary part of the left-hand side by
the binomial theorem. This gives

7 cos6 θ sin θ − 35 cos4 θ sin3 θ + 21 cos2 θ sin5 θ − sin7 θ = 0.

Dividing by sin7 θ, which is nonzero, gives

7 cot6 θ − 35 cot4 θ + 21 cot2 θ − 1 = 0,

which holds for θ = π/7, θ = 2π/7, and θ = 3π/7. Thus we have by Vieta’s formulas that

cot2
π

7
cot2

2π

7
cot2

3π

7
=

1

7
,

so inverting and taking square roots gives

tan
π

7
tan

2π

7
tan

3π

7
=
√

7.
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