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Team Round Solutions

1. Let 2k be the largest power of 2 dividing 30! = 30 · 29 · 28 · · · 2 · 1. Find k.

Solution. There are b30/2c multiples of 2 in the range [1, 30]. Each of these contributes a
power of 2. There are b30/4c multiples of 4, and each of these contributes an additional power
of 2. This pattern continues for 8, 16, ad infinitum. Hence we have

k = b30/2c+ b30/4c+ b30/8c+ b30/16c+ b30/32c+ · · ·
= 15 + 7 + 3 + 1 + 0 + 0 + · · · = 26.

2. Let d(n) be the total number of digits needed to write all the numbers from 1 to n in base
10; for example, d(5) = 5 and d(20) = 31. Find d(2012).

Solution. We will count separately the digits in the numbers 1–9, 10–99, 100–999, and 1000–
2012. We get d(2012) = 9 · 1 + 90 · 2 + 900 · 3 + (2012− 1000 + 1) · 4 = 6941.

3. Jim and TongTong play a game. Jim flips 10 coins and TongTong flips 11 coins; whoever
gets the most heads wins. If they get the same number of heads, there is a tie. What is the
probability that TongTong wins?

Solution. Suppose that TongTong first sets aside one of her coins. She and Jim then each
flip 10 coins. If TongTong flips more heads, she wins regardless of her extra coin; if Jim flips
more heads, she cannot win, even with the extra coin. Hence Tong-Tong has a 1/2-chance of
winning if she and Jim flip different number of heads. Now if they flip the same number of
heads on the fist 10 coins, then TongTong flips her extra coin for a 1/2 chance of winning.

Hence TongTong has in total a 1/2-chance of winning.

4. There are a certain number of potatoes in a pile. When separated into mounds of three, two
remain. When divided into mounds of four, three remain. When divided into mounds of five,
one remain. It is clear there are at least 150 potatoes in the pile. What is the least number
of potatoes there can be in the pile?

Solution. If the potatoes are divided into piles of 12, 11 must remain. Similarly, if the potatoes
are divided into piles of 60, 11 must remain. Hence the minimum number of such potatoes is
3 · 60 + 11 = 191.

5. Call an ordered triple of sets (A,B,C) nice if |A ∩ B| = |B ∩ C| = |C ∩ A| = 2 and
|A ∩ B ∩ C| = 0. How many ordered triples of subsets of {1, 2, · · · , 9} are nice? (Note: |S|
denotes the number of elements of S, and S ∩ T denotes the intersection of S and T .)

Solution. As (A ∩ B) ∩ (A ∩ C) = A ∩ B ∩ C, the two elements in A ∩ B are distinct from
the two elements in B ∩C, and both of these pairs of two elements are distinct from the two
elements in C ∩A.

There are
(
9
2

)
ways to choose the elements of A∩B,

(
7
2

)
ways to choose the elements of B∩C,

and
(
5
2

)
ways to choose the elements of C ∩A. Finally, the three elements not yet assigned to
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any of the sets may appear in exactly one of A,B,C or in none of them. There are thus 4 ways
to pick where to assign each of the 3 remaining elements, for a total of

(
9
2

)(
7
2

)(
5
2

)
43 = 483840

such ordered triples (A,B,C).

6. Brett has an n × n × n cube (where n is an integer) which he dips into blue paint. He then
cuts the cube into a bunch of 1 × 1 × 1 cubes, and notices that the number of un-painted
cubes (which is positive) evenly divides the number of painted cubes. What is the largest
possible side length of Brett’s original cube?

Solution. The number of unpainted cubes is (n − 2)3 and the number of painted cubes is
n3− (n− 2)3. If (n− 2)3 | n3− (n− 2)3, then (n− 2)3 | n3, so we must have n− 2 | n. Hence
n− 2 | 2, so that n ≤ 4. In case n = 4, Brett has 8 unpainted cubes and 56 painted cubes, so
Brett’s cube can be at most 4× 4× 4.

7. Choose two real numbers x and y uniformly at random from the interval [0, 1]. What is the
probability that x is closer to 1/4 than y is to 1/2?

Solution. We must have |x− 1/4| ≤ |y − 1/2|. We obtain four inequalities, depending on the
signs of x − 1/4 and y − 1/2; if we plot the region in [0, 1]2 satisfying these inequalities, we
obtain the following figure:

(0,0) (1,0)

(0,1) (1,1)

The total area of this region is 7/16, which is thus the probability that x, y satisfy |x−1/4| ≤
|y − 1/2|.

8. In triangle ABC, we have ∠BAC = 20◦ and AB = AC. D is a point on segment AB such
that AD = BC. What is ∠ADC, in degrees?

2



Solution. Construct E opposite AC from B such that AEC is equilateral. As AD = BC,
EA = AB, and ∠ABC = 80◦ = 60◦ + 20◦ = ∠DAE, we have that 4ABC ∼= 4EAD. Hence
CE = DE, so that 4CDE is isosceles. As ∠CED = 60◦− 20◦, it follows that ∠DCE = 70◦.
As ∠ACE = 60◦, it follows that ∠DCA = 10◦, so that ∠ADC = 150◦.

9. Let a, b, c, d be real numbers such that

ab+ c+ d = 2012, bc+ d+ a = 2010, cd+ a+ b = 2013, da+ b+ c = 2009.

Find d.

Solution. Set s = a + c, t = b + d, u = a − c, v = b − d. Adding all four equations and
adding 4 to both sides gives (s+ 2)(t+ 2) = 8048. Adding the first and third equations, and
subtracting the second and fourth gives uv = 6. Adding the first and second and subtracting
the third and fourth gives v(s − 2) = 0. Adding the first and fourth and subtracting the
second and third gives u(t− 2) = −2.

As v 6= 0 since uv = 6, it follows that s = 2. Hence t = 2010. Thus u = −1/1004 and
v = −6024. Hence we know that d = (t− v)/2 = 8034/2 = 4017.

10. Let θ ∈ [0, 2π) such that cos θ = 2/3. Find

∞∑
n=0

1

2n
cos(nθ).

Solution. Write z = exp iθ, and let <(z) denote the real part of the complex number z. We
have

∞∑
n=0

1

2n
cos(nθ) =

∞∑
n=0

<
(
eiθ

2

)n
= <

( ∞∑
n=0

(
eiθ

2

)n)

= <

(
1

1− eiθ

2

)
= <

[
1

1− eiθ

2

(
1− e−iθ

2

1− e−iθ

2

)]

= <

(
1− e−iθ

2
5
4 − cos θ

)
=

4− 2 cos θ

5− 4 cos θ
.

As cos θ = 2/3, we have
∞∑
n=0

1

2n
cos(nθ) =

8

7
.
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