1C. Let $k=\pi \cdot T N Y W R-3$. What is the total number of rectangles that can be formed out of a $k \times k$ grid such that the sides of the rectangles are parallel to the grid lines?

1 C . Let $k=\pi \cdot T N Y W R-3$. What is the total number of rectangles that can be formed out of a $k \times k$ grid such that the sides of the rectangles are parallel to the grid lines?

1 C . Let $k=\pi \cdot T N Y W R-3$. What is the total number of rectangles that can be formed out of a $k \times k$ grid such that the sides of the rectangles are parallel to the grid lines?

1C. Let $k=\pi \cdot T N Y W R-3$. What is the total number of rectangles that can be formed out of a $k \times k$ grid such that the sides of the rectangles are parallel to the grid lines?

1C. Let $k=\pi \cdot T N Y W R-3$. What is the total number of rectangles that can be formed out of a $k \times k$ grid such that the sides of the rectangles are parallel to the grid lines?

1 C . Let $k=\pi \cdot T N Y W R-3$. What is the total number of rectangles that can be formed out of a $k \times k$ grid such that the sides of the rectangles are parallel to the grid lines?

