1C. Let $k = \pi \cdot TNYWR - 3$. What is the total number of rectangles that can be formed out of a $k \times k$ grid such that the sides of the rectangles are parallel to the grid lines?

1C. Let $k = \pi \cdot TNYWR - 3$. What is the total number of rectangles that can be formed out of a $k \times k$ grid such that the sides of the rectangles are parallel to the grid lines?

1C. Let $k = \pi \cdot TNYWR - 3$. What is the total number of rectangles that can be formed out of a $k \times k$ grid such that the sides of the rectangles are parallel to the grid lines?

1C. Let $k = \pi \cdot TNYWR - 3$. What is the total number of rectangles that can be formed out of a $k \times k$ grid such that the sides of the rectangles are parallel to the grid lines?

1C. Let $k = \pi \cdot TNYWR - 3$. What is the total number of rectangles that can be formed out of a $k \times k$ grid such that the sides of the rectangles are parallel to the grid lines?

1C. Let $k = \pi \cdot TNYWR - 3$. What is the total number of rectangles that can be formed out of a $k \times k$ grid such that the sides of the rectangles are parallel to the grid lines?